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Abstract

I study the implications of two key facts for aggregate investment dy-

namics: micro-level investment mainly occurs along the extensive mar-

gin and the real interest rate is mildly countercyclical. I build a dynamic

general equilibrium model which captures these facts and find two key

results. First, the elasticity of aggregate investment with respect to pro-

ductivity shocks or policy stimulus is procyclical because in expansions

more firms are likely to make an extensive margin investment. Second,

targeting firms close to the extensive margin can substantially increase

the cost effectiveness of stimulus policy.
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1 Introduction

Aggregate investment is one of the most volatile components of GDP over the

business cycle, accounting for 38% of the decline in GDP during recessions.1

Measures to stimulate investment are therefore a key element of countercyclical

fiscal policy; for example, the Bonus Depreciation Allowance, which was the

main investment stimulus used in the recent crisis, cost an estimated $100

billion per year in foregone tax revenue.2 Evaluating these policies, as well as

designing new ones going forward, requires a model consistent with the key

role of aggregate investment over the business cycle.

The predictions of any such model are determined by two components

of the model: how individual investment decisions are made taking prices as

given, and how prices are determined in general equilibrium. Existing models

in the literature do not jointly match two key facts about these components

in the data. First, at the micro level investment decisions are “lumpy,” i.e.,

occur mainly along the extensive margin.3 Second, the real interest rate – a

key component of the cost of capital – is mildly countercyclical, whereas most

models predict that it is highly procyclical.4 Taken together, these two facts

point to a gap in the literature since they jointly determine how aggregate

investment responds to business cycle shocks and policy stimulus.

1Computed as the average contribution to percentage change in GDP from BEA Table
1.1.2 during NBER recession dates, 1953-2012.

2Computed as the forgone tax revenue for the fiscal years 2011 and 2012
with respect to 100% bonus depreciation, estimated by the White House in
http://www.whitehouse.gov/sites/default/files/fact sheet expensing 9-8-10.pdf. The esti-
mated cost over ten years is only $30 billion, reflecting the fact that the bonus defers tax
payments to the future.

3Lumpy micro-level investment has been extensively documented in, for example, Doms
and Dunne (1998), Cooper and Haltiwanger (2006), or Gourio and Kashyap (2007).

4Although less well known than lumpy investment, this fact has also been extensively
documented in the literature; see Beaudry and Guay (1996), King and Watson (1996), King
and Rebelo (1999), or Cooper and Willis (2014).
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I fill this gap in the literature by developing a dynamic general equilibrium

model that matches both micro-level lumpiness of investment and the macro-

level cyclicality of the real interest rate. The model predicts that the elasticity

of aggregate investment with respect to shocks is procyclical; in expansions,

more firms than average are close to making an extensive margin investment, so

additional shocks induce more total investment. This mechanism also implies

that aggregate investment is less responsive to stimulus policies in recessions.

However, policymakers can substantially increase the cost effectiveness of these

policies by targeting firms close to the extensive margin, and I develop a size-

dependent policy which implements this idea in a simple way.

In order to emphasize the role of lumpy investment and realistic inter-

est rate dynamics, the model is a direct extension of the real business cycle

framework.5 To generate lumpy investment, I assume there are heterogeneous

firms who invest subject to a fixed capital adjustment cost. To generate realis-

tic interest rate dynamics, I assume the household’s preferences feature habit

formation over consumption, which makes capital supply more responsive to

shocks.6 I empirically discipline these two ingredients by matching key features

of micro investment real interest rate data.

Quantitatively, the calibrated model predicts that aggregate investment is

up to 35% more responsive to a productivity shock in a brisk expansion than

in a similarly deep recession. This procyclical elasticity is in contrast to nearly

5Because of its approximate linearity, the real business cycle model is a natural bench-
mark against which to compare the nonlinearities generated by my model. These compar-
isons would apply equally well to any approximately linear business cycle model at the cost
of additional complications not central to the analysis.

6Throughout the paper I focus on the real interest rate as the key cyclical component of
the cost of capital, but in principle the cyclicality of risk premia should also enter into this
calculation. Empirically, risk premia are also countercyclical, so including these movements
would strengthen my conclusions. However, generating movements in risk premia is a con-
ceptually and computationally challenging particularly in a heterogeneous firm environment,
so I leave it to future work.
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linear models – including both real business cycle and New Keynesian models

– which instead predict a constant elasticity. This additional flexibility allows

the model to match the procyclical volatility in the aggregate investment rate

time series recently documented by Bachmann, Caballero, and Engel (2013); in

expansions, the elasticity is high so underlying shocks generate more volatility

in the time series.

Jointly matching both micro-level investment lumpiness and macro-level

interest rate dynamics is important in generating this procyclical elasticity. As

described above, lumpiness at the micro level implies that aggregate dynamics

depend on the distribution of firms relative to their adjustment thresholds. But

this force alone is not enough; as Thomas (2002) and Khan and Thomas (2003,

2008) forcefully demonstrate, the quantitative strength of this mechanism is

sensitive to general equilibrium movements in the real interest rate. In their

model, highly procyclical movements in the real interest rate increase the cost

of capital in expansions and choke off investment demand; in my model, the

cost of capital falls in expansions and this choking off does not occur. Building

on Khan and Thomas’ insight that equilibrium price movements are important

to take into account, this result shows that the dynamics of the real interest

rate place sharp discipline on the exact specification of equilibrium.

The same mechanism also implies that the aggregate effect of stimulus pol-

icy falls by more than 15% in severe recessions.7 More generally, the extent of

this decline depends on the severity of the recession. Forecasts based on lin-

ear models, which imply a constant policy elasticity, will therefore potentially

7The policy analysis in this paper is purely positive; the goal is simply to understand
how matching micro-level lumpiness and macro-level interest rate dynamics matters for
these policies. Carefully characterizing the normative implications of these policies would
require specifying the market failure they address, such as an upward-sloping aggregate
supply curve due to nominal rigidities. The results presented here would be an important
input into such an exercise.
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overstate the effectiveness of stimulus policy in severe recessions.

Finally, I use the model to develop a simple size-dependent policy which

increases cost effectiveness up to five times compared to existing policies. The

main insight of this alternative policy is to avoid subsidizing inframarginal

investment that would have been done even without the policy; because in-

vestment is lumpy, most of this inframarginal investment is accounted for by

subsidizing firms who make an extensive margin investment even without the

policy. In the model, small firms grow faster than average and are therefore

more likely to be inframarginal to the policy.

A key challenge throughout the analysis is efficiently computing the equi-

librium of the model, which involves the entire cross-sectional distribution of

individual firms. The standard approach in the literature, following Krusell

and Smith (1998), is to approximate the distribution with a small number

of moments. This strategy places sharp restrictions on how the distribution

can affect aggregate dynamics, a centerpiece of the analysis. I instead use the

methodology developed concurrently in Winberry (2016), which allows for an

approximation of the entire distribution.

Related Literature This paper relates to three main strands of literature.

First, it contributes to a long-standing question of how micro-level lumpy

investment matters for aggregate dynamics. Early papers working in partial

equilibrium find that lumpy investment generates a time-varying aggregate

elasticity, as in my model.8 However, Thomas (2002) and Khan and Thomas

(2003, 2008) show that when prices are endogenized in an otherwise standard

real business cycle framework this time-varying elasticity disappears, rendering

8See, for example, Caballero, Engel, and Haltiwanger (1995), Caballero and Engel (1999),
or Cooper and Haltiwanger (2006).
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lumpy investment irrelevant for aggregate dynamics.9 I show that a different

specification of general equilibrium, disciplined by data on real interest rate

dynamics, once again generates a time-varying elasticity.10

To match the dynamics of the real interest rate, I follow Beaudry and Guay

(1996) in using habit formation and capital adjustment costs. These features

have also been used to match the level of the equity premium in production

models such as Jermann (1998) and Boldrin, Christiano, and Fisher (2001).

All these papers work in a representative agent environment; my results show

that many of their lessons carry over to a heterogeneous firm environment as

well.

Finally, this paper contributes to a large literature which studies invest-

ment stimulus policy. Most recently in House and Shapiro (2008) and Zwick

and Mahon (2016), many papers estimate the effect of policy through linear

user cost or tax-adjusted q models, ruling out state-dependence by construc-

tion. Edge and Rudd (2011) introduce the Bonus Depreciation Allowance into

a linearized New Keynesian model, again ruling out aggregate state depen-

dence.11

9In this spirit, House (2008) argues that even with fixed costs, the intertemporal elasticity
of investment timing is infinite, implying that the capital demand curve is flat and therefore
irrelevant for aggregate dynamic. His model includes many simplifying assumptions, such
as no depreciation and no idisoyncratic shocks, which are not satisfied in my model. Miao
and Wang (2014a, 2014b) study the aggregate implications of lumpy investment, and how
it shapes the response to stimulus policy, in a model with constant returns to scale. This
assumption implies that their model “rules out distributional dynamics and cannot address
distributional asymmetry and nonlinearity” which are the focus of my analysis.

10Other papers challenge the irrelevance results on other grounds; see, for example, Gourio
and Kashyap (2007), Bachmann and Ma (2016), or Bachmann, Caballero, and Engel (2013).
Bridging the gap between partial and general equilibrium approaches, Cooper and Willis
(2014) parameterize an interest rate process from the data and solve the firms’ problems
given this process. My paper produces such an interest rate process endogenously in general
equilibrium.

11Berger and Vavra (2015) analyze a related class of consumer durable stimulus policies
in a model of lumpy durable investment. They find that stimulus policies are less effective
in recessions for similar reasons as here; however, they focus detailed features of the micro
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Road Map The rest of the paper is organized as follows. I describe the model

and solution method in Section 2. I then document the empirical properties of

micro-level lumpy investment and macro-level interest rate dynamics central

to the paper and calibrate the model to match them in Section 3. In Section

4, I show that these two features generate a procyclical elasticity of aggregate

investment with respect to shocks and discuss the role of the two key facts in

generating this. In Section 5, I introduce stimulus policy into the model, show

that the effect of the policy is state-dependent, and develop my micro-targeting

proposal. Section 6 concludes.

2 Model

In this section I extend the benchmark real business cycle model to incorporate

lumpy investment and realistic interest rate dynamics.

2.1 Environment

The model is a version of the neoclassical growth model in discrete time.

Firms The firm side of the model builds heavily on Khan and Thomas

(2008), extended to include the corporate tax code. There is a fixed mass

of firms j ∈ [0, 1] who produce output yjt using the production function

yjt = ezteεjtkθ
jtn

ν
jt, θ + ν < 1

data while I focus on the role of real interest rate dynamics in aggregation and designing
more cost effective policies.
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where zt and εjt are productivity shocks, kjt is capital, njt is labor, and θ and

ν are parameters. zt is an aggregate shock which is common to all firms and

drives business cycle fluctuations. It follows the AR(1) process

zt+1 = ρzzt + ωz
t+1, where ωz

t+1 ∼ N(0, σ2
z).

εjt is an idiosyncratic shock which generates heterogeneity in investment pat-

terns across firms and time. It is independent across firms but within firm

follows the AR(1) process

εjt+1 = ρεεjt + ωε
jt+1, where ωε

jt+1 ∼ N(0, σ2
ε).

Each period, a firm j observes these two shocks, uses its pre-existing capital

stock, hires labor from a competitive market, and produces output.

After production, the firm decides how much capital to invest in for the next

period. Gross investment of firm j in period t, ijt, yields kjt+1 = (1−δ)kjt+ijt

units of capital in period t + 1. This investment is subject to two capital

adjustment costs. First, if ijt /∈ [−akjt, akjt] the firm must pay a fixed cost

ξjt in units of labor, generating an extensive margin decision for the firm.

The parameter a captures the idea that small maintenance investments do

not incur the fixed cost. The fixed cost ξjt is a random variable distributed

uniformly over
[
0, ξ
]
, and is independent across firms and over time. The

second adjustment cost is −ϕ
2

(
ijt
kjt

)2
kjt in units of output, which captures

costs which are increasing in the amount of investment.12

After production and investment, the firm pays a linear tax τ on its revenue

yjt net of two deductions. First, the firm deducts its labor costs wtnjt where

12Abel and Eberly (1994) carefully analyze a related adjustment cost function with both
fixed and convex components in partial equilibrium.
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wt is the real wage in period t. Second, it deducts capital depreciation costs

according to the following geometric schedule. The firm enters the period with

a pre-existing stock of depreciation allowances, djt. It writes off a constant

fraction δ̂ of this stock djt, as well as the same fraction δ̂ of new investment,

ijt. The remaining portion is then carried into the next period, so that dj+1 =

(1− δ̂) (djt + ijt). In total, the tax bill in period t is

τ ×
(
yjt − wtnjt − δ̂ (djt + ijt)

)
.

I include the tax code to analyze investment stimulus policy in Section 5.

Households There is a representative household with preferences repre-

sented by the expected utility function

E
∞∑
t=0

βt log

(
Ct −Ht − χ

N1+η
t

1 + η

)
,

where Ct is consumption, Ht is habit stock, and Nt is labor supplied to the

market. I define the habit stock Ht to capture the idea that utility of current

consumption is judged relative to past consumption. Specifically, following

Campbell and Cochrane (1999), I first define the surplus consumption ratio

St =
Ct−Ht

Ct
and then specify the law of motion

logSt+1 = (1− ρS) log S + ρS logSt + λ log
Ct+1

Ct

, (1)

which implies that current habit is approximately a geometric average of past

consumption. I assume that the household does not take into account the

fact that their choice of consumption impacts the habit stock. The total time

endowment per period is 1, so that Nt ∈ [0, 1]. The household owns all firms
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in the economy and markets are complete.

Government The government collects the corporate profits tax and trans-

fers the proceeds lump sum to the household. In period t, this transfer is

Tt = τ
(
Yt − wtNt − δ̂ (Dt + It)

)
, (2)

where Yt is aggregate output, Nt aggregate labor input, Dt aggregate stock of

depreciation allowances, and It is aggregate investment.

2.2 Firm Optimization

I characterize the optimization problem of a firm recursively. The firm’s indi-

vidual state variables are εjt, its current draw of the idiosyncratic productivity

shock, kjt, its pre-existing stock of capital, djt, its pre-existing stock of depre-

ciation allowances, and ξjt, its current draw of the fixed cost. The aggregate

state vector is denoted st and determines prices which firms take as given. I

postpone discussion of the elements in st until I define the recursive competi-

tive equilibrium in Section 2.4.

The firm’s value function, v(ε, k, d, ξ; s), solves the Bellman equation

v(ε, k, d, ξ; s) = τ δ̂d+max
n

{
(1− τ)

(
ezeεkθnν − w(s)n

)}
(3)

+ max {va(ε, k, d; s)− ξw(s), vn(ε, k, d; s)} .

The first max operator represents the optimal choice of labor and the second

max operator represents the optimal choice of investment. These two choices

are independent because the choice of labor is a purely static problem.

If the firm chooses to pay its fixed cost −ξw(s), it achieves the choice-
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specific value function va(ε, k, d; s), defined by the Bellman equation:

va(ε, k, d; s) = max
i∈R

−
(
1− τ δ̂

)
i− ϕ

2

(
i

k

)2

k + E[Λ(z′; s)v(ε′, k′, d′, ξ′; s′)|ε, k, d]

(4)

s.t. k′ = (1− δ)k + i and d′ =
(
1− δ̂

)
(d+ i) ,

where Λ(z′; s) is the stochastic discount factor. The implied “target” capital

stock ka (ε, k, d; s) = (1− δ) k+ ia (ε, k, d; s) is what firms would like to adjust

to absent the fixed cost.

If the firm chooses not to pay its fixed cost, it achieves the choice-specific

value function vn (ε, k, d; s), defined by the Bellman equation:

vn(ε, k, d; s) = max
i∈[−ak,ak]

−
(
1− τ δ̂

)
i− ϕ

2

(
i

k

)2

k + E[Λ(z′; s)v(ε′, k′, d′, ξ′; s′)|ε, k, d]

(5)

s.t. k′ = (1− δ)k + i and d′ =
(
1− δ̂

)
(d+ i) .

The only difference from the unconstrained Bellman equation (4) is that in-

vestment is constrained to be in the set [−ak, ak]. I call the implied capital

stock, kn (ε, k, d; s) = (1− δ) k + in (ε, k, d; s), the constrained capital stock

because firms face the constrained choice set [−ak, ak].

The firm will choose to pay the fixed cost if and only if the value from doing

so is higher than not paying the fixed cost, i.e., if and only if va(ε, k, d; s) −

ξw(s) ≥ vn(ε, k, d; s). For each (ε, k, d; s), there is a unique threshold ξ̂(ε, k, d; s)

which makes the firm indifferent between these two options. This threshold

solves

ξ̂(ε, k, d; s) =
va(ε, k, d; s)− vn(ε, k, d; s)

w(s)
. (6)
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For draws of the fixed cost ξ below ξ̂(ε, k, d; s), the firm pays the fixed cost;

for draws of the fixed cost above ξ̂(ε, k, d; s), it does not. This threshold is

increasing in the “capital imbalance” |ka(ε, k, d; s)− kn(ε, k, d; s)| since the

gain from adjusting is higher when the target capital stock is further away

from the constrained capital stock. The firms’ optimal choice to only pay the

fixed cost infrequently generates lumpy investment patterns as in the data.

2.3 Household Optimization

Since investment is done by firms, there are no dynamic links in the household’s

choices and the decision problem is equivalent to the following static problem

state by state:

max
C,N

log

(
C −H(s)− N1+η

1 + η

)
subject to C ≤ w(s)N +Π(s) + T (s). (7)

The household chooses consumption and labor supply to maximize its period

utility, subject to the budget constraint. Total expenditure is consumption C.

Total income is labor income, w(s)N , profits from owning the firms Π(s), and

the lump sum transfer from the government, T (s).

Although households do not make investment decisions themselves, mar-

ket completeness implies that the stochastic discount factor used by firms to

price investment is equal to the household’s intertemporal marginal rate of

substitution state by state:

Λ(z′; s) =
C(s)× S(s)− χN(s)1+η

1+η

C(s′)× S(s′)− χN(s′)1+η

1+η

. (8)

These preferences, along with firms’ capital adjustment costs, allow the model

to generate a countercyclical real interest rate. Intuitively, the cyclicality of the
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interest rate is determined by the responsiveness of capital supply and demand

to an aggregate productivity shock. Habit formation makes capital supply

sensitive to shocks – households want smoother consumption profiles, so they

save more of the income generated by the shock – while the adjustment costs

make capital demand less responsive – firms find it more costly to accumulate

capital. The calibration will formally discipline the strength of these two forces

using the empirical behavior of the real interest rate.

2.4 Equilibrium

To define the recursive competitive equilibrium, I use the aggregate state s =

(z, S−1, C−1, µ), where z is the aggregate productivity shock, C−1 is previous

period’s consumption, and µ is the distribution of firms over their individual

state vector (ε, k, ξ).

Definition 1. A Recursive Competitive Equilibrium for this economy

is a list of functions v(ε, k, d, ξ; s), n (ε, k, d, ξ; s), ia (ε, k, d; s), in (ε, k, d; s),

ξ̂ (ε, k, d; s), C(s), N(s), T (s), w(s), Π(s), Λ(z′; s), S ′
−1(s), C

′
−1(s), and µ′(s)

such that

(i) (Household Optimization) Taking w(s), Π(s), and T (s) as given, C(s)

and N(s) solve the utility maximization problem (7).

(ii) (Firm Optimization) Taking w(s), Λ(z′; s), C ′
−1(s), and µ′(s) as given,

v(ε, k, ξ; s), n (ε, k, ξ; s), ia (ε, k, ξ; s), in (ε, k, ξ; s) and ξ̂ (ε, k; s) solve the

firm’s maximization problem (3) - (6).

(iii) (Government) For all s, T (s) is given by (2).

(iv) (Consistency) For all s,
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(a) Π(s) =
∫
[ (1− τ) (ezeεkθn (ε, k, d, ξ; s)ν−w(s)n (ε, k, d, ξ; s)) + τ δ̂d

−
(
1− τ δ̂

)
i(ε, k, d, ξ; s) − ϕ

2

(
i(ε,k,d,ξ;s)

k

)2
k − ξw(s)1

{
i(ε,k,d,ξ;s)

k
/∈ [−a, a]

}
]

µ(dε, dk, dd, dξ), where i (ε, k, d, ξ; s) = ia (ε, k, d, ξ; s) if ξ ≤ ξ̂ (ε, k, d; s)

and i (ε, k, d, ξ; s) = in (ε, k, d, ξ; s) otherwise.

(b) Λ(z′; s) is given by (8).

(c) S ′
−1(s) follows (1).

(d) C ′
−1(s) = C(s).

(e) For all measurable sets ∆ε×∆k ×∆d×∆ξ, µ
′(∆ε×∆k ×∆d×∆ξ)

=
∫
p(ε′ ∈ ∆ε|ε)dε′ × 1{ i(ε, k, d, ξ; s) + (1 − δ)k ∈ ∆k } × 1{

(1 − δ̂) (i(ε, k, d, ξ; s) + d) ∈ ∆d } × G(∆ξ) × µ(dε, dk, dd, dξ),

where G(ξ) is the CDF of ξ.

(v) (Market Clearing) For all s, N(s) =
∫
n (ε, k, d, ξ; s)µ(dε, dk, dd, dξ).

The mapping in Condition iv(e) defines the measure of firms in the set

∆ε × ∆k × ∆d × ∆ξ next period in terms of the distribution of firms and

individual decisions in the current period. Intuitively, this mapping counts

up the mass of individual states in the current period which leads into the set

∆ε × ∆k × ∆d × ∆ξ next period. The mass of firms in ∆ε is determined by

the mass of firms who had a particular draw of ε and a draw of the innovation

ω′
ε such that ρεε + ω′

ε ∈ ∆ε. The mass of firms in ∆k are those firms whose

investment policy leads to capital in that set, i.e., (1− δ) k + i (ε, k, d, ξ; s) ∈

∆k. The mass of firms in ∆d are those for whom (1− δ̂) (i(ε, k, d, ξ; s) + d) ∈

∆d. Finally, the mass of firms with fixed cost in ∆ξ is simply G(∆ξ), since ξ

is i.i.d. over firms and time.
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2.5 Solution Method

The fact that the aggregate state vector s contains the entire cross-sectional

distribution of firms is a key challenge in solving the model. The standard

approach, following Krusell and Smith (1998), is to approximate the distribu-

tion with a small number of moments. This places sharp restrictions on how

the distribution can impact aggregate dynamics which are at the center of my

analysis.13

I solve the model using a method, developed concurrently in Winberry

(2016), which includes the entire distribution in the aggregate state vector. To

do that, I approximate the cross-sectional distribution of firms at any point

in time using a flexible, finite-dimensional parametric family. A good approx-

imation of the distribution may require many parameters, leaving globally

accurate approximation techniques infeasible due to the curse of dimensional-

ity. I therefore solve for the dynamics of the distribution using locally accurate

perturbation methods. See Appendix A.3 for details on the implementation.

3 Empirical Targets and Model Calibration

The goal of the model is to show that jointly matching micro-level lumpy in-

vestment and macro-level interest rate dynamics is important to understanding

aggregate investment dynamics. In this section, I document those two features

of the data and calibrate key model parameters to match those features.

13One can in principle add enough moments of the distribution to capture its relevant
features for aggregate dynamics, but this is subject to the curse of dimensionality.
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3.1 Empirical Targets

Micro-Level Lumpy Investment The lumpiness of investment at the

micro level is a well-known fact documented in the Longitudinal Research

Database (LRD) sample of Census manufacturing firms. For example, Doms

and Dunne (1998) show that up 40% of an average plant’s total investment

over a sixteen year period can be accounted for by one large investment project,

and outside this large spike plants invest relatively little. Cooper and Halti-

wanger (2006), among others, estimate that nonconvex adjustment costs are

necessary to match micro investment behavior.

Instead of using LRD data, I calibrate my model to match moments drawn

from a dataset drawn from annual IRS corporate income tax returns, reported

in Zwick and Mahon (2016) Appendix B. The key advantage of this dataset is

that it covers all sectors of the economy, not just manufacturing, and so allows

for a more representative sample than previous studies.14

Table I show that the IRS sample features significant micro-level lumpiness,

in line with the previous literature’s findings in Census data. Following Cooper

and Haltiwanger (2006), the table focuses on the distribution of investment

rates pooled over firms and time.15 A significant share of observations, about

one fourth of the sample, have essentially zero investment; at the same time,

about one-fifth of the sample have large investment rate spikes greater than

14A disadvantage of the IRS data for studying lumpy investment is that measured invest-
ment includes mainly equipment goods while measured capital includes both equipment and
structures. This mismatch potentially biases measured investment rates down to the extent
that the denominator includes more goods than the numerator. Despite these limitations, I
prefer to work with the IRS data for the main text since it provides a comprehensive sample
of firms.

15Another difference between the IRS and Census datasets is that the IRS data is recorded
at the firm level while Census is at the plant level. The firm is the appropriate unit of analysis
for this study given my focus on investment stimulus policy, which operates by changing a
firm’s tax incentives.
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Table I
Micro-Level Lumpy Investment

Statistic Value
Inaction rate (%) 23.7%
Spike rate (%) 14.4%
Positive investment rates (%) 61.9%
Average investment rate (%) 10.4%
Standard deviation of investment rates 0.160

Notes: Micro investment moments from annual firm-level IRS data, 1998 - 2010, as
reported in Zwick and Mahon (2016) Appendix Table B.1. Statistics drawn from
distribution of investment rates pooled over firms and time. Inaction rate is fraction of
observations with investment rate less than 1%. Spike rate is fraction of observations with
investment rate greater than 20%. Positive investment is fraction of observations between
1% and 20%.

20% annually. Cooper and Haltiwanger (2006) show the coexistence of inaction

and spikes is consistent with nonconvex adjustment costs.

Real Interest Rate Dynamics Starting with Summers (1986), a common

early criticism of the real business cycle framework is that it predicts a highly

procyclical real interest rate, while in the data interest rates are typically

countercyclical. King and Rebelo (1999) note this fact in their survey of real

business cycle models and Beaudry and Guay (1996) show that it is also true

conditional on fluctuations driven by productivity shocks.

The counterfactual performance of the RBC model for real interest rates is

potentially problematic for studying aggregate investment given the tight link

between the interest rate and the stochastic discount factor firms use to price

their investment decisions:

Et[Λt+1 ×Rt+1] = 1, (9)

17



Table II
Macro-Level Real Interest Rate Dynamics

σ (rt) ρ (rt, yt−2) ρ (rt, yt−1) ρ (rt, yt) ρ (rt, yt+1) ρ (rt, yt+2)
T-bill 2.18% -0.01 -0.08 -0.17 -0.25 -0.31
AAA 2.34% -0.21 -0.29 –0.37 -0.40 -0.38
BAA 2.43% -0.22 -0.32 -0.41 -0.45 -0.42
Stock 24.7% -0.22 -0.24 -0.14 0.02 0.16
RBC 0.16% 0.32 0.61 0.97 0.74 0.54

Notes: Cyclical properties of various measures of the real interest rate. “T-bill” refers to
90-day treasury bill rate, “AAA” to Moody’s Seasoned AAA Corporate Bond Yield,
“BAA” to Moody’s Seasoned BAA Corporate Bond Yield, and “Stock” to the return on
the Russell 3000 stock index, each expressed in annual percentage points. I construct real
rates by subtracting realized CPI inflation. rt refers to the particular real interest rate and
yt to the log of real GDP, and both have been HP-filtered with smoothing parameter 1600.
Data is quarterly, 1947q1 - 2016q2. “RBC” refers to risk-free rate in a benchmark RBC
model.

where Λt+1 is the stochastic discount factor between periods t and t + 1 and

Rt+1 is the rate of return. Equation (9) shows that when interest rates rise,

the stochastic discount factor falls in expectation, implying that firms value

future profits – and therefore current investment – less.

Table II documents the countercyclicality of four key real interest rates:

the 90-day Treasury bill, the yield on AAA rated corporate bonds, the yield

on BAA rated corporate bonds, and the return on the aggregate stock mar-

ket. Each of these rates provides a different measure of the return to capital

priced by households through (9). Consistent with the early criticisms, each

of these interest rates is negatively correlated with output contemporaneously.

Furthermore, also consistent with that literature, interest rates tend to be a

leading indicator of the business cycle in the sense that they are negative cor-

related with future output. In contrast, a benchmark real business cycle model

predicts that the interest rate is highly positively correlated with output at
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each horizon, reaching up to 0.97 contemporaneously. In the calibration, I will

focus on the contemporaneous correlation of the real interest rate and output.

Appendix A.1 shows that the empirical countercyclicality of these interest

rates is a robust fact. First, it survives using alternative methods of filtering

the data (a linear trend, a bandpass filter, or simply comparing the raw rates

to log GDP growth). Second, it is robust to using different price indices to

compute the inflation rate (the GDP deflator, PCE deflator, or nonresidential

fixed investment goods deflator). Finally, it is robust to using ex-ante inflation

to compute expectations rather than ex-post realizations.

3.2 Model Calibration

I calibrate the model in two steps. First, I exogenously fix a set of parameters

to match standard macroeconomic targets. Given those parameters, I then

choose the remaining parameters to match moments of micro-level investment

and macro level real interest rate dynamics reported in Section 3.1.

Fixed Parameters Table III lists the parameters I fix exogenously. A model

period is one quarter. I set the discount factor β = 0.99 so that the steady

state annual real interest rate is 4%. I set the Frisch elasticity of labor supply

to 2, within the range of macro elasticities identified by Chetty et al. (2011).

I set the labor share θ = 0.64 and choose the capital share so that the total

returns to scale is 85%. The returns to scale lies within the range considered

in the current literature, from 60% in Gourio and Kashyap (2007) to 92% in

Khan and Thomas (2008). I set δ = 0.025 so that the steady state aggregate

investment rate is 10%, roughly in line with the average in the postwar data.

I set the stochastic process for TFP to ρz = 0.95 and σz = 0.007 as in King
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Table III
Fixed Parameter Values

Parameter Description Value
β Discount factor .99
η Inverse Frisch 1

2

θ Labor share .64
ν Capital share .21
δ Capital depreciation .025
ρz Aggregate TFP AR(1) .95
σz Aggregate TFP AR(1) .007
τ Tax rate .35

δ̂ Tax depreciation .119

Notes: Parameters fixed exogenously in calibration.

and Rebelo (1999).

I set the tax rate τ = .35 to match the top marginal tax rate in the fed-

eral corporate income tax code. I then choose the tax depreciation schedule δ̂

to reproduce the average present value of depreciation allowances per unit of

investment documented by Zwick and Mahon (2016). I show in Appendix A.2

that this present value completely summarizes the impact of the tax depreci-

ation schedule on firms’ investment decisions.

Fitted Parameters I choose the remaining parameters – governing micro

heterogeneity on the firm side and habit formation on the household side –

to match the moments in Table IV. The micro investment targets are drawn

from Zwick and Mahon (2016) Appendix B as described in Section 3.1. The

interest rate targets are drawn from the dynamics of the 90-day Treasury bill

adjusted for realized inflation.16 There are presumably many shocks driving

16I use the 90-day Treasury bill rate, which I identify as the risk-free rate in the model,
for two reasons. First, it cleanly maps into movements in the conditional expectation of the
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fluctuations in the interest rates reported in Table II while in the model the

only aggregate shock is productivity. I project the interest rate on ten lags of

the level and square of measured TFP as a simple way to extract the portion

of empirical interest rate fluctuations driven by productivity shocks. I then

extract a Hodrick-Prescott filter of these fitted values to focus on the business

cycle component. I target the overall volatility of the interest rate and its

correlation with output, which has also been projected on measured TFP and

HP filtered. The resulting cyclicality of the real interest rate is similar to the

raw series but the overall volatility is one fourth the size.

The calibrated model fits the moments targeted in Table IV well. Impor-

tantly, it captures the fraction of observations with nearly zero investment as

well as the fraction of observation with large investment rates. The fit to the

interest rate dynamics is nearly exact. However, the dispersion of investment

rates is low relative to the data.

Table V shows that the calibrated parameter values are broadly comparable

to previous findings in the literature. The upper bound on the fixed cost ξ

is within the wide range of 0.0083 in Khan and Thomas (2008) and 4.4 in

Bachmann, Caballero, and Engel (2013). The calibrated value implies that

the average fixed cost paid conditional on adjusting is 3.5% of the average

output the firm. The average size of the surplus consumption ratio S is smaller

than in Campbell and Cochrane (1999) because they target the level of the

equity premium, which requires a more volatile intertemporal marginal rate of

substitution.

The identification of these parameters can be understood in two broad

stochastic discount factor through 1 + rt =
1

Et[Λt+1]
. Second, in my model the risk premium

is negligible so that the risk-free rate captures almost all variation in the stochastic discount
factor. Given the robustness of the empirical facts documented in Section 3.1, I conjecture
the results are ultimately robust to this choice.
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Table IV
Moments Targeted in Calibration

Micro Investment
Target Data Model
Inaction rate (%) 23.7% 23.9%
Spike rate (%) 14.4% 15.9%
Positive investment rates (%) 61.9% 60.2%
Average investment rate (%) 10.4% 10.6%
Standard deviation of investment rates 0.160 0.121
Interest Rate Dynamics
Target Data Model
Standard deviation of interest rate (%) 0.48% 0.48%
Correlation of interest rate and output −0.21 −0.20

Notes: Micro investment moments from annual firm-level IRS data, 1998 - 2010, as
reported in Zwick and Mahon (2016) Appendix Table B.1. Statistics drawn from
distribution of investment rates pooled over firms and time. Inaction rate is fraction of
observations with investment rate less than 1%. Spike rate is fraction of observations with
investment rate greater than 20%. Positive investment is fraction of observations between
1% and 20%. Interest rate dynamics correspond to the 90-day Treasury bill rate, adjusted
for realized inflation, projected on ten lags of the level and square of measured TFP, and
HP filtered. Output is log of real GDP, also projected on lags of TFP and HP filtered.

Table V
Fitted Parameter Values

Micro Heterogeneity
Parameter Description Value

ξ Upper bound on fixed costs 0.44
a Size of no fixed cost region 0.003
ϕ Quadratic adjustment cost 2.69
ρε Idiosyncratic productivity AR(1) 0.94
σε Idiosyncratic productivity AR(1) 0.026
Habit Formation
Parameter Description Value

S Average surplus consumption 0.65
ρS Autocorrelation of surplus consumption 0.95

Notes: Parameters chosen to match moments in Table IV.
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steps. First, the dynamics of the real interest rate pins down the overall

strength of habit formation and adjustment costs in determining capital supply

and demand in the model. As discussed in Section 2.3, the countercyclicality

of the interest rate indicates that capital supply is more responsive to shocks

than demand. Second, given the overall responsiveness of capital demand to

shocks, the micro investment data then pins down the importance of idiosyn-

catic shocks and particular types of capital adjustment frictions.

4 Business Cycle Analysis

Appendix A.4 shows that my model and a benchmark real business cycle model

have quantitatively similar predictions for the unconditional second moments

of aggregate output, consumption, investment, and hours.17 However, they

differ in their predictions conditional on stage in the business cycle: my model

predicts that aggregate investment is more responsive to shocks in expansions

than recessions while the benchmark model does not. This state dependence

allows my model to match the procyclical volatility in aggregate investment

rate series documented by Bachmann, Caballero, and Engel (2013).

4.1 State Dependent Impulse Responses

I first illustrate the model’s state dependence by comparing the response of

aggregate investment to a productivity shock starting from different points in

the business cycle. As an example, I feed in two different histories of aggregate

shocks; one history pushes the economy into an expansion and the other into

17The benchmark real business cycle model can be seen as a special case of the full model in
which there are no capital adjustment frictions, which implies that thee firm side aggregates
to a representative firm, and no habit formation, which implies the household has standard
GHH preferences.
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Figure 1: State Dependent Impulse Response to Productivity Shock

(a) Model (b) Benchmark
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Notes: Impulse response of aggregate investment to one standard deviation productivity
shock as a function of the previous three quarter’s shocks. Normalized so that response
upon impact in steady state is 1. (a) Model from text. (b) Benchmark model without
adjustment costs or habit formation.

a recession.18 Starting from these different points I then compute the response

to an additional one standard deviation positive shock.

The left panel of Figure 1 shows that the impulse response to this addi-

tional shock differs substantially starting from the expansion and recession.

Starting from the expansion, the shock generates 26% more investment upon

impact than it would starting from steady state; summed over the life of the

shock, the total effect is 17% higher, reflecting intertemporal substitution as

firms initially pull forward investment projects. In contrast, starting from the

recession, the shock generates 6% less investment than it would starting from

steady state; summed over the life of the shock, the total effect is also 6% less,

18To generate these histories of shocks, I first compute the history of aggregate produc-
tivity shocks required to reproduce the aggregate investment rate time series observed in
the data 1953 - 2012. These shocks do not share exactly the same time series properties
of aggregate TFP used by firms to form expectations, so I rescale to reflect the assumed
stochastic process. The example expansion then corresponds to the late 1990s expansion
and the recession to the early 2000s recession.
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indicating intertemporal plays a smaller role. As I explain in Section 4.2, this

state dependence is due to the fact that more firms find it optimal to pay their

fixed cost ξ and make an extensive margin investment in the expansion than

in the recession.19

The right panel of Figure 1 shows that the benchmark real business cycle

model generates virtually none of this state dependence starting from the same

history of shocks. In the expansion, the effect of the additional productivity

shock is only 1% larger than starting from steady state; in the recession, the ef-

fect is 1% smaller. The small degree of state dependence is due to the fact that

capital is higher starting in the expansion and is complementary with produc-

tivity. However, this effect is quantitatively small, reflecting the approximate

linear of the real business cycle model.

Figure 2 confirms that state dependence is a general property of my model.

A one standard deviation productivity shock generates 20% less investment

than average starting from a severe recession and 15% more investment than

average starting from a similarly extreme expansion.

Evidence in Aggregate Data Appendix A.5 shows that my model is con-

sistent with the conditional heteroskedasticity estimated in the aggregate in-

vestment rate time series by Bachmann, Caballero, and Engel (2013). They

find the residuals of a reduced-form time series model are more volatile in

expansions than recessions; my model generates this reduced-form because in-

vestment is more responsive to underlying homoskedastic shocks in expansions

than recessions while the benchmark model does not. The calibrated model

quantitiatively generates between 50%-100% of the heteroskedasticity in the

19The asymmetry starting from the expansion and recession reflects the fact that the
histories of shocks are themselves state dependent; Figure 2 shows the underlying mechanism
is more symmetric.
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Figure 2: State Dependent Impulse Responses Over the Cycle
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Notes: Impulse response upon impact to one standard deviation productivity shock, after
different histories of shocks. Normalized so that response upon impact in steady state is 1.

data depending on the specification of the time series model.

4.2 Role of Two Key Facts

Jointly capturing both micro-level lumpy investment and the mild counter-

cyclicality of the real interest rate is important in generating these state-

dependent impulse responses.

Lumpy Investment The presence of fixed adjustment costs implies that

the impulse response of aggregate investment to a productivity shock depends

on the number of firms who make an extensive margin investment. In an

expansion, more firms are close to making an extensive margin investment so

aggregate investment is more responsive to additional shocks; in recessions,

the opposite occurs. The mechanism underlying this asymmetry over the cycle

has been discussed extensively in for example Caballero and Engel (2007) or
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Bachmann, Caballero, and Engel (2013), so I keep my description brief. For

simplicity, consider a version of the model without taxes (τ = 0) and quadratic

adjustment costs (ϕ = 0).

As discussed in Section 2.2, firms’ investment decisions are characterized by

the target capital stock ka(ε, k; s) it adjusts to conditional on paying the fixed

cost, the constrained capital stock kn(ε, k; s) it adjusts to conditional on not

paying the fixed cost, and the fixed cost threshold ξ̂(ε, k; s) below which it finds

it optimal to pay the fixed cost. Since ξ is i.i.d., for each value of productivity

and capital (ε, k) a fraction ξ̂(ε, k; s) of firms pay their fixed costs and adjust

while the remaining fraction 1 − ξ̂(ε, k; s) do not. The function ξ̂(ε, k; s) is

referred to as the adjustment hazard because it controls the proportion of

firms who adjust their capital.

The key source of state dependence in the impulse responses is that on aver-

age firms hold less capital than their target, implying kn(ε, k; s) < ka(ε, k; s);

once firms adjust to their target, capital depreciates. A history of negative

shocks, which generates a recession, will decrease the target capital stock and

bring the average firm more in line with its target kn(ε, k; s) ≈ ka(ε, k; s). In

this case, firms will be close to their optimum and be relatively unwilling to

adjust to additional shocks. On the other hand, a history of positive shocks

which generates an expansion will increase the target capital stock implying

kn(ε, k; s) << ka(ε, k; s). In this case, firms will be even further from their op-

timum and be more willing to adjust to additional shocks. Caballero and Engel

(2007) emphasize the “increasing hazard” property that adjustment probabil-

ities increase in |kn(ε, k; s)−ka(ε, k; s)| is the key channel through which fixed

cost models potentially generate nonlinear dynamics.

Figure 3 plots this mechanism in a stylized example. The left panel plots

the distribution of firms and their adjustment hazard, conditional on the mean
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Figure 3: Illustrating the Role of Lumpy Investment
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Notes: Stylized illustration of lumpy investment mechanism. “Distribution” refers to
distribution of firms over capital. “Hazard” refers to probability firm draws a fixed cost
below its adjustment threshold. Panel (a) plots these objects in a stationary environment,
while Panel (b) plots them after a positive shock which shifts the adjustment threshold
rightward.

value of idiosyncratic productivity, in steady state. The adjustment hazard is

flat where kn(ε, k; s) = ka(ε, k; s) and increasing in |kn(ε, k; s)−ka(ε, k; s)|. The

mass of the stationary distribution is concentrated on the left side of the hazard

because firms hold less capital than their target. A positive productivity shock

increases the target capital stock and shifts the adjustment hazard rightward,

plotted in the right panel. In this case, the distribution is concentrated in a

region of the state space where the adjustment hazard is increasing.

Real Interest Rate Dynamics Although the lumpy investment mecha-

nism described above is well-established in partial equilibrium models, Thomas

(2002) and Khan and Thomas (2003, 2008) show that its quantitative strength

is sensitive to general equilibrium price movements. Specifically, they endog-

enize prices in an otherwise standard real business cycle framework featuring
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a highly procyclical real interest rate and, therefore, a highly procyclical cost

of capital. After a positive productivity shock, when in partial equilibrium

many firms would like to undertake an extensive margin investment, the real

interest rate increases and chokes off capital demand.20 This force restrains

movements in the adjustment hazards illustrated in Figure 3 and eliminates

state dependence in aggregate impulse responses.

Building on Khan and Thomas’ critical insight, my results illustrate how

the exact specification of general equilibrium also matters for the quantitative

strength of the lumpy investment mechanism. In my model, a positive pro-

ductivity shock is accompanied by a fall in the real interest rate, consistent

with the empirical evidence documented in Section 3.1. In this case general

equilibrium does not choke off investment demand and the distributional dy-

namics re-emerge as a quantitatively relevant force generating state dependent

impulse responses. To ensure that the overall volatility of investment rates are

in line with the data, my model requires larger calibrated adjustment costs.21

In general equilibrium, the calibration of adjustment costs and the dynam-

ics of the real interest rate are tightly linked through the intersection of capital

supply and demand.22 To be consistent with a countercyclical real interest rate,

the capital demand curve must be less responsive to productivity shocks than

the capital supply curve. The calibrated model achieves this by higher values

for the fixed and convex adjustment costs than in Khan and Thomas’ (2008)

20Recall that a higher real interest rate implies a lower discount factor through the asset
pricing equation 1 + rt =

1
Et[Λt,t+1]

.
21Ultimately my general equilibrium model returns aggregate dynamics qualitatively con-

sistent with previous partial equilibrium studies. However, the endogenous price process
leads to quantitatively different dynamics and allows me to study policy implications in
Section 5.

22Cooper and Willis (2014) separate these forces by estimating a price process from the
data and solving firms’ decision problems given that process. In this case, the fixed costs
change aggregate dynamics, consistent with the results presented here.
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parameterization, giving stronger quantitative kick to the lumpy investment

mechanism.23

5 Policy Analysis

Having shown the model accounts for the dynamics of aggregate investment in

recessions, I now introduce countercyclical stimulus policy into the model and

analyze the model’s policy implications. As with business cycle shocks, the

effectiveness of policy is also state dependent and falls in recessions. However,

the fact that investment is lumpy at the micro level implies that a micro-

targeted policy can increase cost effectiveness up to five times compared to

existing policies.

5.1 Introducing Stimulus Policy Into the Model

Historical stimulus policies in the U.S. incentivize firms to investment by in-

creasing the effective tax writeoff for new investment. To illustrate these poli-

cies, Table VI reproduces the tax writeoff associated with a $1000 computer

purchase under three tax schedules: the standard schedule, known as MACRS;

the schedule under a Bonus Depreciation Allowance, the main policy used fol-

lowing the 2001 and 2007 recessions; and the schedule under an investment tax

credit. The Bonus Depreciation Allowance allows firms to immediately write

off a fraction of their investment rather than following the baseline MACRS

schedule, raising the present value of tax writeoffs. Similarly, the investment

tax credit reduces the firm’s overall tax bill by a fraction of the investment

23In the language of Bachmann, Caballero, and Engel (2013), the countercyclical real
interest rate eliminates a large portion of “price response smoothing” and instead loads
more onto “adjustment cost” smoothing, which leads to state dependence.
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Table VI
Tax Depreciation Schedule Under Different Investment Stimu-
lus Policies

Standard MACRS Schedule (No policy)
Year 0 1 2 3 4 5 Total PV, 7%
Deductions 200 320 192 115 115 58 1000 890
50% Bonus Depreciation
Year 0 1 2 3 4 5 Total PV, 7%
Deductions 500+100 160 96 57.5 57.5 29 1000 945
5% Investment Tax Credit
Year 0 1 2 3 4 5 Total PV, 7%
Deductions 50

35%
+190 304 182.4 109.3 109.3 55 1093 1093

Notes: Tax depreciation schedule for purchase of $1000 computer. Top panel: standard
schedule absent stimulus policy. Middle panel: 50% bonus depreciation allowance. Bottom
panel: 5% investment tax credit. Present value computed using 7% discount rate.

cost.

The present value of tax depreciation schedule in these two examples is a

useful summary of their impact on incentives; Proposition 1 shows that, in the

model, the present value is the only way the tax schedule affects the incentive

to invest. Firms behave as if there is a tax-adjusted price of investment qt =

1− τ ×PVt where PVt is the present value of tax writeoffs. Intuitively, once a

firm has invested the tax writeoffs are simply a stream of risk-free dividends

which the firm values at τ × PVt.

Proposition 1. The only way the tax depreciation schedule affects a firm’s

investment policy rule is through the effective price qt:

qt = 1− τ × PVt, where

PVt = Et

∞∑
s=0

(
Πs

j=0

1

Rt+j

)
︸ ︷︷ ︸

discount rate for period t+s

×
(
1− δ̂

)s
δ̂︸ ︷︷ ︸

deduction in period t+s

.
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Proof. In Appendix A.2. �

A wide class of investment stimulus policies simply map into a change in

PVt; I therefore model investment stimulus policy as an exogenous shock to

this present value:

qt = 1− τ × (PVt × subt)

where subt is an implicit subsidy representing a general stimulus policy. For

example, the Bonus Depreciation Allowance maps into an implicit subsidy

subt = .5×(1−PVt) and the investment tax credit into subt = .05×( 1
τ
−PVt).

I assume the subsidy subt follows the simple stochastic process

log subt = log sub+ εt. (10)

The policy shock εt is distributed N(0, σ2
sub). I choose sub = 0.01, and given

that choose the variance of the policy shock σsub so that a one standard devi-

ation shock roughly corresponds to a 50% bonus depreciation allowance.

Average Impulse Response to a Policy Shock Figure 4 illustrates the

transmission mechanism of stimulus policy starting from steady state. Taken

together, the two panels imply that the average semi-elasticity of aggregate

investment with respect to stimulus is nearly one. In what follows, I will not

focus on this average elasticity and instead focus on two key implications of

my model: how the elasticity varies over the business cycle and how it can be

increased by a more cost effective micro-targeted policy.
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Figure 4: Impulse Response to Policy Shock in Steady State

(a) Effective Price qt (b) Aggregate Investment
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Notes: Impulse response to one standard deviation policy shock, starting from steady
state. (a) Effective price of investment. (b) Aggregate investment.

5.2 State Dependent Effective of Policy

As in Section 4.1, I first illustrate the state dependent effects of policy by com-

paring the impulse response of a one standard deviation positive policy shock

starting from two different points in the cycle.24 I generate these two different

starting points with two different histories of productivity shocks: a history of

no shocks, which leaves the economy in steady state, and a history of negative

shocks, which pushes the economy into a severe recession comparable to the

2007 recession in terms of the fall in GDP. Starting from the recession, stimu-

lus policy is generates nearly 20% less investment than it would on average. A

linear forecasting model – such as user cost or tax-adjusted q models – would

abstract from this state dependence and therefore be biased up in recessions.

A natural way to overcome this negative state dependence is to offer a larger

24State dependence in the effect of policy does not follow directly from the result sin
Section 4.1 because policy shocks have different general equilibrium implications than pro-
ductivity shocks.
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Figure 5: State Dependent Impulse Response to Policy Shock
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Notes: Impulse response upon impact to one standard deviation productivity shock, after
different histories of shocks. Normalized so that response upon impact in steady state is 1.

subsidy in recessions. The solid line in Figure 6 plots the subsidy necessary to

raise the same amount of investment as in steady state as a function of the

last year’s productivity shocks. Consistent with the impulse response in Figure

5, the required subsidy is larger in recessions, when any given policy is less

powerful. The dashed line in Figure 6 shows that the subsidy implicitly offered

by the Bonus Depreciation Allowance, subt = 1 − PVt, qualitatively follows

this countercyclical pattern and is quantitatively large enough to overcome the

negative state dependence. This happens because 1−PVt is countercyclical; in

recessions, high interest rates imply that firms discount future writeoffs more

heavily and therefore value pulling the writeoffs into the present more highly.
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Figure 6: State Dependence of Policy Multiplier
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Notes: Solid line is subsidy required to generate same amount of investment as one
standard deviation policy shock in steady state. Dotted line is subsidy implied by a 50%
bonus depreciation allowance. Horizontal axis is size of last year’s productivity shocks.
Normalized so that subsidy in steady state is 1.

5.3 Increasing Cost Effectiveness with Micro Targeting

A general issue with investment stimulus policies is that most of their cost is

due to subsidizing investment which would have been done even without the

policy. To increase cost effectiveness, we would like to avoid paying for this

inframarginal investment and instead focus incentives on subsidizing marginal

investment that is done because of the policy. In general, it is difficult to

identify the marginal from inframarginal investment. However, because micro-

level investment is lumpy in my model, most of the inframarginal investment

is accounted for by subsidizing inframarginal firms who would have made an

extensive margin investment even without the policy. This simplifies the policy

problem to identifying these inframarginal firms and not subsidizing them.

To illustrate the power of this insight, I propose a simple micro-targeted
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policy which conditions on the size of the firm. In the model, small firms grow

faster than average due to mean reversion in idiosyncratic shocks, and are

therefore more likely to invest even without the policy and should therefore be

avoided. I avoid subsidizing these firms with the following firm-level subsidy

per unit of investment:

subjt = α1 × nα2
jt

where α1 controls the baseline slope of the subsidy and α2 controls how much

the subsidy favors avoids subsidizing small firms. I assume this policy is im-

plemented for one period and is completely unexpected.25

Figure 7 shows that this size-dependent subsidy can generate up to five time

more investment than existing policies. For each value of α2 on the horizontal

axis, I choose α1 to ensure budget equivalence and plot the total amount of

investment generated by the policy. Larger values of α2 place a smaller weight

on small firms and generate substantially more investment.26

6 Conclusion

In this paper, I have argued that jointly accounting for the lumpiness of in-

vestment at the micro level and the mild countercyclicality of the real interest

25The goal of this exercise is to illustrate the potential cost savings associated with
micro-targeting firms along the extensive margin rather than advocate this particular size-
dependent specification. In reality, other factors affect firm’s investment decisions that are
potentially important for policy design. Furthermore, to the extent that the subsidy is ex-
pected firms may alter their employment decisions to take advantage of it. However, these
complications are only important to consider in light of the result that micro-targeted poli-
cies are in principle a powerful policy tool.

26I do not consider higher values of α2 because they would lead to a negative effective
price of investment, as the same amount of resources are targeted to a smaller group of
firms.
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Figure 7: Amount of Investment From Micro-Targeted Policy
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Notes: Total amount of investment generated by per-unit subsidy α1 × nα2 , where n is
employment. Normalized so that amount generated by α2 = 0 is 1. Horizontal axis is α2;
given α2, I choose α1 which is budget equivalent to the case α2 = 0, and plot the total
amount of investment generated on the vertical axis.

rate at the macro level has important implications for aggregate investment

dynamics. Together, these two facts imply that the elasticity of aggregate in-

vestment with respect to productivity and policy shocks is procyclical. I also

explored how to exploit the lumpiness of investment to significantly improve

the cost effectiveness of investment stimulus policy.

In order to emphasize the key role played by micro-level lumpiness and

real interest rate dynamics, I have abstracted from other forces which are

also potentially important in accounting for aggregate investment dynamics.

First, in adopting a real business cycle framework, I exclude nominal rigidities

which likely motivates the use of investment stimulus policy in the first place.

Incorporating this channel would likely raise the average size of the policy

multiplier through the aggregate demand channel but not significantly alter the
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state-dependence generated by lumpy investment. Second, I have abstracted

from financial frictions. Although such frictions are not required to match

the features of the data I target in this paper, it is likely that the estimated

adjustment costs partly capture the effect of financial frictions in these data.

Determining the relative magnitudes of adjustment costs and financial frictions

is an important task for future research.
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A Appendix (For Online Publication Only)

A.1 Robustness of Countercyclical Real Interest Rate

Dynamics

Data Sources I obtain rate of return data from the St. Louis FRED database.

The 90-day treasury bill rate is the average secondary market rate over the

quarter, not seasonally adjusted. The AAA corporate bond yield is Moody’s

seasoned AAA corporate bond yield averaged over the quarter and not sea-

sonally adjusted. The BAA corporate bond yield is Moody’s seasoned BAA

corporate bond yield averaged over the quarter and not seasonally adjusted.

The return on the stock market is computed from the Russell 3000 total market

index, averaged over the quarter and not seasonally adjusted.

I obtain quantity data from the BEA tables. Output is real gross domestic

product. I construct TFP as measured TFP at a quarterly frequency using

total hours in the nonfarm business sector from BLS productivity and costs

release and a quarterly capital series constructed as in Bachmann, Caballero,

and Engel (2013).

Filtering Table VII shows that the countercyclicality of the real interest

rates reported in Table II is robust to different filtering methods. Relative to

the Hodrick-Prescott filter used in the main text, a linear trend leaves less

overall variation but the cyclicality is largely unaffected. The bandpass filter

leaves less variation but again the cyclicality is unaffected. The correlation of

raw interest rates with raw GDP growth is substantially smaller than for the

other filters, though still negative for the T-bill, AAA, and BAA rates.
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Table VII
Interest Rate Dynamics Using Different Filters

Linear trend Bandpass First diff.
σ (rt) ρ (rt, yt) σ (rt) ρ (rt, yt) σ (rt) ρ (rt,∆yt)

T-bill 2.53% -0.13 1.40% -0.12 3.03% -0.06
AAA 2.70% -0.31 1.64% -0.36 3.31% -0.09
BAA 2.83% -0.35 1.77% -0.40 3.96% -0.12
Stock 25.68% -0.15 16.76% -0.17 25.97% 0.27

Notes: Cyclical properties of various measures of the real interest rate from Table II and
different filtering methods. rt refers to particular rate of return and yt to the particular
cyclical component of log real GDP. “HP filter” takes out an HP trend with smoothing
parameter 1600 of both rt and yt. Linear trend takes out a linear trend, approximated as
an HP filter with smoothing parameter 100,000, of both rt and yt. “Bandpass” takes out a
Baxter and King (1996) bandpass filter with minimum periodicity 6 quarters and
maximum periodicity 32 quarters of both rt and yt. “First diff.” uses the level of the real
interest rate rt and the first difference of log real GDP ∆yt.

Measuring Inflation Table VIII shows that the conclusions in the main

text are robust to different measures of inflation. Table IX shows that con-

clusions are robust to using either ex-ante or ex-post inflation to measure

expectations.

A.2 Characterizing Equilibrium

In this Appendix I characterize the recursive competitive equilibrium defined in

Section 2.4. I use this characterization to numerically compute the equilibrium

in Appendix A.3 and to model investment stimulus policy in Proposition 1 of

the main text.

Firm’s Decision Problem I begin by simplifying the firm’s decision prob-

lem in a series of three propositions. These propositions eliminate two individ-

ual state variables, which greatly simplifies the numerical approximation.
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Table VIII
Interest Rate Dynamics For Different Measures of Inflation

CPI GDP Deflator PCE Defl. Inves. Defl.
σ (rt) ρ (rt, yt) σ (rt) ρ (rt, yt) σ (rt) ρ (rt, yt) σ (rt) ρ (rt, yt)

T-bill 2.18% -0.17 2.75% -0.01 1.81% -0.08 2.27% -0.20
AAA 2.34% -0.37 3.33% -0.30 1.85% -0.34 2.37% -0.40
BAA 2.43% -0.41 4.29% -0.36 1.94% -0.40 2.46% -0.44
Stock 24.7% -0.14 9.04% -0.12 24.60% -0.13 25.05% -0.15

Notes: Cyclical properties of various measures of the real interest rate from Table II and
different measures of inflation. “CPI” refers to the Consumer Price Index for all urban
consumers. “GDP Deflator” is the implicit price deflator for GDP from BEA Table 1.1.9.
“PCE Defl.” is the implicit price deflator for personal consumption expenditure from BEA
Table 1.1.9. “Invest. Defl.” is the implicit price deflator for nonresidential fixed investment
from BEA Table 1.1.9.

Table IX
Interest Rate Dynamics Using Different Measures of Expecta-
tions

Realized Inflation Ex-Ante Inflation
σ (rt) ρ (rt, yt) σ (rt) ρ (rt, yt)

T-bill 2.18% -0.17 2.12% -0.17
AAA 2.34% -0.37 2.26% -0.38
BAA 2.43% -0.41 2.36% -0.42
Stock 24.7% -0.14 24.78% -0.15

Notes: Cyclical properties of various measures of the real interest rate from Table II and
different methods of computing expected inflation. “Realized inflation” refers to using
realized value of inflation in t+ 1 to compute return in t+ 1. “Ex-Ante Inflation” refers to
using realized value of inflation in t to compute return in t+ 1; this is expected inflation if
inflation follows a random walk.
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For ease of notation, define after-tax revenue net of tax writeoffs:

π (ε, k; s) = max
n

{
(1− τ)

(
ezeεkθnν − w(s)n

)}
By construction, this does not depend on current depreciation allowances d or

the fixed adjustment cost ξ.

The first proposition shows that the firm’s value function v(ε, k, d, ξ; s) is

linear in the pre-existing stock of depreciation allowances d. I exploit this

property in the other propositions to simplify the decision rules.

Proposition 2. The firm’s value function is of the form v(ε, k, d, ξ; s) =

v1(ε, k, ξ; s) + τPV (s)d where PV (s) is defined by the recursion PV (s) =

δ̂ +
(
1− δ̂

)
E [Λ(z′; s)PV (s′)]. Furthermore, v1(ε, k, ξ; s) is defined by the

Bellman equation

v1(ε, k, ξ; s) = π (ε, k; s) + max
i

 − (1− τPV (s)) i− ϕ
2

(
i
k

)2
k − ξw(s)1 {i /∈ [−ak, ak]}

+E[Λ(z′; s)v1 (ε′, (1− δ) k + i, ξ′; s′)]


(11)

Proof. First, I show that the value function is of the form v(ε, k, d, ξ; s) =

v1(ε, k, ξ; s) + τPV (s)d for some function v1(ε, k, ξ; s). I begin by showing

that the operator T defined by the right hand side of the Bellman equation

maps function of the form f(ε, k, ξ; s) + τPV (s)d into functions of the form

g(ε, k, ξ; s) + τPV (s)d. Applying T to f , we get:

T (f)(ε, k, ξ; s) = π(ε, k; s) + τ δ̂d

+max
i

 −
(
1− τ δ̂

)
i− ϕ

2

(
i
k

)2
k − ξw(s)1 {i /∈ [−ak, ak]}

+E[Λ(z′; s)(f(ε′, (1− δ)k + i, ξ′; s′) + τPV (s)(1− δ̂)(d+ i))]


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Collecting terms,

T (f)(ε, k, ξ; s) = π(ε, k; s) + τ
(
δ̂ + (1− δ̂)E[Λ(z′; s)PV (s′)]

)
d (12)

+ max
i

 −
(
1− τ δ̂ − τ(1− δ̂)E[Λ(z′; s)PV (s′)]

)
i− ϕ

2

(
i
k

)2
k

−ξw(s)1 {i /∈ [−ak, ak]}+ E[Λ(z′; s)f(ε′, (1− δ)k + i, ξ′; s′)]


By the definition of PV (s), we have that

τ
(
δ̂ + (1− δ̂)E[Λ(z′; s)PV (s′)]

)
d = τPV (s)

−
(
1− τ δ̂ − τ(1− δ̂)E[Λ(z′; s)PV (s′)]

)
i = − (1− τPV (s)) i

Plugging this back into (12) and rearranging gives

T (f)(ε, k, ξ; s) = τPV (s)d+

π(ε, k; s) + max
i

 − (1− τPV (s)) i− ϕ
2

(
i
k

)2
k − ξw(s)1 {i /∈ [−ak, ak]}

+E[Λ(z′; s)f (ε′, (1− δ) k + i, ξ′; s′)]

︸ ︷︷ ︸
g(ε,k,ξ;s)

which is of the form τPV (s)d + g(ε, k, ξ; s). Hence, T maps functions of the

form τPV (s)d+ f(ε, k, ξ; s) into functions of the form τPV (s)d+ g(ε, k, ξ; s).

This is a closed set of functions, so by the contraction mapping theorem, the

fixed point of T must lie in this set as well. Since the fixed point of T is the

value function, this establishes that v(ε, k, d, ξ; s) = v1(ε, k, ξ; s) + τPV (s)d.

To derive the form of v1(ε, k, ξ; s), plug v(ε, k, d, ξ; s) = v1(ε, k, ξ; s) +

τPV (s)d into both sides of the Bellman equation to get

v1(ε, k, ξ; s) + τPV (s)d = π(ε, k; s) + τ δ̂d+

max
i

 −
(
1− τ δ̂

)
i− ϕ

2

(
i
k

)2
k − ξw(s)1 {i /∈ [−ak, ak]}

+E[Λ(z′; s)(v1(ε′, (1− δ)k + i, ξ′; s′) + τPV (s)(1− δ̂)(d+ i))]


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Rearranging terms as before shows that

v1(ε, k, ξ; s) + τPV (s)d = π (ε, k; s) + τPV (s)d+

max
i

 − (1− τPV (s)) i− ϕ
2

(
i
k

)2
k − ξw(s)1 {i /∈ [−ak, ak]}

+E[Λ(z′; s)v1 (ε′, (1− δ) k + i, ξ′; s′)]


Subtracting τPV (s)d from both sides establishes (11). �

The above proposition shows that the depreciation allowances d do not

interact with the other state variables of the firm. The next proposition shows

that this implies that investment decisions do not depend on d. To ease

notation, I first define the ex ante value function:

v0 (ε, k; s) =

∫ ξ

0

v1(ε, k, ξ; s)
1

ξ
dξ.

Proposition 3. The investment decision rule is independent of d and given

by

i(ε, k, ξ; s) =

 ia (ε, k; s) if ξ ≤ ξ̂ (ε, k; s)

in (ε, k; s) if ξ > ξ̂ (ε, k; s)


where

ia (ε, k; s) = argmax
i

− (1− τPV (s)) i−ϕ

2

(
i

k

)2

k+E[Λ(z′; s)v0 (ε′, (1− δ) k + i; s′)

in (ε, k; s) =


ak if ia (ε, k; s) > ak

ia (ε, k; s) if ia (ε, k; s) ∈ [−ak, ak]

−ak if ia (ε, k; s) < −ak


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ξ̂ (ε, k; s) =
1

w(s)
×



− (1− τPV (s))(ia (ε, k; s)− in (ε, k; s))

−ϕ
2

((
ia(ε,k;s)

k

)2
−
(

in(ε,k;s)
k

))
k

+E[Λ(z′; s)(v0 (ε′, (1− δ) k + ia (ε, k; s) ; s′)

−v0 (ε′, (1− δ) k + in (ε, k; s) ; s′))]


Proof. The form of ia(ε, k; s) follows directly from the Bellman equation, us-

ing the law of iterated expectations and the fact that ξ′ is i.i.d. The form of

in(ε, k; s) also follows from the Bellman equation, which shows that the objec-

tive function in the no-adjust problem is the same as the adjust problem and

the choice set is restricted. The form of i (ε, k, ξ; s) comes from the follow-

ing argument. At ξ = 0, the objective function of adjusting must be weakly

greater than the no-adjust problem, because the no-adjust problem has a con-

strained choice set. Further, the payoff of adjusting is strictly decreasing in

ξ. Therefore, there must be a cutoff rule. Setting the adjust and no adjust

payoffs equal gives the form of the threshold ξ̂ (ε, k; s). �

The above proposition shows that knowing v0(ε, k; s) is enough to derive

the decision rules. The next and final proposition defines the Bellman equation

which determines v0(ε, k; s).

Proposition 4. v0(ε, k; s) solves the Bellman equation

v (ε, k; s) = π(ε, k; s)

+
ξ̂ (ε, k; s)

ξ

 − (1− τPV (s)) ia (ε, k; s)− ϕ
2

(
ia(ε,k;s)

k

)2
k

− ξ̂(ε,k;s)
2

w(s) + E[Λ(z′; s)v0(ε′, (1− δ)k + ia (ε, k; s) ; s′)]


+

(
1− ξ̂ (ε, k; s)

ξ

) − (1− τPV (s)) ia (ε, k; s)− ϕ
2

(
in(ε,k;s)

k

)2
k

+E[Λ(z′; s)v0(ε′, (1− δ)k + in (ε, k; s) ; s′)]


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Proof. This follows from integrating v0 (ε, k; s) =
∫
v1 (ε, k, ξ; s) 1

ξ
dξ, using the

expression for v1 (ε, k, ξ; s) from Proposition 2 and the form of the policy func-

tion from Proposition 3. �

A Characterization of the Equilibrium The series of propositions above

show that firms’ decision rules are determined by the alternative value function

v0 (ε, k; s). I now embed this alternative value function into a simplified charac-

terization of the recursive competitive equilibrium. In addition to simplifying

firms’ decisions, this characterization also eliminates household optimization

by directly imposing the implications of optimization on firm behavior through

prices as in Khan and Thomas (2008). To do so, define the marginal utility of

consumption in state s as p(s). Abusing notation, I then renormalize the value

function through

v(ε, k; s) = p(s)v0(ε, k; s)

This renormalization leaves the decision rules unchanged and I continue to de-

note them ia(ε, k; s), etc. In a final abuse of notation, I denote the distribution

of firms over measurable sets ∆ε ×∆k as µ.

Proposition 5. The recursive competitive equilibrium from Definition 1 is

characterized by a list of functions v (ε, k; s), w(s), p(s), S ′
−1(s), C

′
−1(s), and

µ′(s) such that

(i) (Firm optimization) v (ε, k; s) solves the Bellman equation

v (ε, k; s) = p(s)π(ε, k; s)

+
ξ̂ (ε, k; s)

ξ

 −p(s) (1− τPV (s)) ia (ε, k; s)− p(s)ϕ2

(
ia(ε,k;s)

k

)2
k

−p(s) ξ̂(ε,k;s)2 w(s) + βE[v (ε′, (1− δ)k + ia (ε, k; s) ; s′)]


+

(
1− ξ̂ (ε, k; s)

ξ

) −p(s) (1− τPV (s)) in (ε, k; s)− p(s)ϕ2

(
in(ε,k;s)

k

)2
k

+βE[v (ε′, (1− δ)k + in (ε, k; s) ; s′)]


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where ia (ε, k; s), in (ε, k; s), and ξ̂ (ε, k; s) are derived from v (ε, k; s) us-

ing

ia (ε, k; s) = argmax
i

−p(s) (1− τPV (s)) i−p(s)
ϕ

2

(
i

k

)2

k+βE[v (ε′, (1− δ) k + i; s′)

in (ε, k; s) =


ak if ia (ε, k; s) > ak

ia (ε, k; s) if ia (ε, k; s) ∈ [−ak, ak]

−ak if ia (ε, k; s) < −ak



ξ̂ (ε, k; s) =
1

p(s)w(s)
×



−p(s) (1− τPV (s))(ia (ε, k; s)− in (ε, k; s))

−p(s)ϕ
2

((
ia(ε,k;s)

k

)2
−
(

in(ε,k;s)
k

))
k

+βE[(v (ε′, (1− δ) k + ia (ε, k; s) ; s′)

−v (ε′, (1− δ) k + in (ε, k; s) ; s′))]


and PV (s) is defined by the recursion

p(s)PV (s) = p(s)δ̂ +
(
1− δ̂

)
βE [p(s′)PV (s′)|s] .

(ii) (Labor market clearing)

(
w(s)

χ

) 1
η

=

∫ (
n(ε, k; s) +

ξ̂ (ε, k; s)2

2ξ

)
µ (dε, dk)

where n (ε, k; s) =
(

ezeεkθν
w(s)

) 1
1−ν

.

(iii) (Consistency)

p(s) =

C(s)× S(s)− χ

((
w(s)
χ

) 1
η

)1+η

1 + η


−σ

50



where C(s) is derived from the decision rules by C(s) =
∫
(ezeεkθn(ε, k; s)ν

− i (ε, k; s) − AC(ε, k; s))µ (dε, dk) using i (ε, k; s) = ξ̂(ε,k;s)

ξ
ia (ε, k; s) +(

1− ξ̂(ε,k;s)

ξ

)
in (ε, k; s) and

AC(ε, k; s) =
ξ̂(ε, k; s)

ξ

(
ϕ

2

(
ia (ε, k; s)

k

)2

k

)
+

(
1− ξ̂(ε, k; s)

ξ

)(
ϕ

2

(
in (ε, k; s)

k

)2

k

)
.

S(s) is derived from C(s) using S(s) = S
1−ρs

Sρs
−1

(
C(s)
C−1

)λ
.

(iv) (Laws of motion)

S ′
−1(s) = S(s)

C ′
−1(s) = C(s)

(v) (Law of motion for measure) For all measurable sets ∆ε ×∆k,

µ′(s) (∆ε ×∆k) =

∫
p(ε′ ∈ ∆ε|ε)(

ξ̂(ε, k; s)

ξ
1 {(1− δ) k + ia (ε, k; s) ∈ ∆k}+(

1− ξ̂(ε, k; s)

ξ

)
1 {(1− δ) k + in (ε, k; s) ∈ ∆k} dε′µ(dε, dk)

Proof. Condition (i) follows from Propositions 2-4, using the definition v (ε, k; s) =

p(s)v0 (ε, k; s) and noting that Λ(z′; s) = βp(s′)
p(s)

. Condition (ii) follows from the

household’s FOC, the firms’ FOC, and labor market clearing. Condition (iii)

follows from output market clearing and the definition of p(s). Condition (iv)

directly reproduces conditions iv(c) and iv(d) from Section 2.4 in the main

text. Condition (v) follows from the original law of motion in condition iv(e)

in the main text, eliminating d as an individual state variable and integrating

out ξ. �
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A.3 Solution Algorithm

I solve the model using the Winberry (2016) method which approximates the

entire cross-sectional distribution of firms. I provide a brief overview of the

method in this appendix and refer to the interested reader to Winberry (2016),

which describes in detail how to use the method to solve Khan and Thomas’

(2008) model. The method proceeds in three broad steps. First, in each period

t I discretize the model’s equilibrium conditions – including the cross-sectional

distribution – using finite-dimensional approximations. Second, I solve for the

steady state of the discretized model in which there are no aggregate shocks.

Third, I solve for the dynamics of the discretized model by perturbing around

the steady state.

The key step of the method is finding an appropriate approximation for the

value function in period t, vt(ε, k), and the distribution µt(ε, k); the remaining

variables are scalars so no approximation is necessary. I approximate the value

function using a weighted sum of Chebyshev polynomials indexed by a vector

of weights θt.
27 I approximate the density function of the distribution, denoted

g(ε, log(k)), using the parametric family

g (ε, log(k)) ∼= g0 exp{g11
(
ε−m1

1

)
+ g21

(
log(k)−m2

1

)
+ (13)

ng∑
i=2

i∑
j=0

gji

[(
ε−m1

1

)i−j (
log(k)−m2

1

)j −mj
i

]
},

where ng indexes the degree of approximation,
{
gji
}(ng ,i)

i,j=(1,0)
are parameters,

and
{
mj

i

}(ng ,i)

i,j=(1,0)
are centralized moments of the distribution. Winberry (2016)

shows that the fact that the parameters and moments must be consistent pro-

27The notation in this discussion follows the exposition of Winberry (2016), which provides
further details.
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vides a convenient method for approximating the law of motion of the distri-

bution. With all of these approximations, the discretized equilibrium of the

model is characterized by a sequence of state vectors xt = (mt, Ct−1, St−1, zt)

and control vectors yt = (θt,gt, pt, wt) which satisfy

Et[f(xt,xt+1,yt,yt+1)] = 0,

where f is a function returning equilibrium condition residuals. This is a stan-

dard canonical form in the perturbation literature and Winberry (2016) shows

how it can be solved using Dynare.

I use a ng = 2 approximation of the distribution, in which case the paramet-

ric family reduces to a log-normal distribution.28 To focus on the nonlinearities

emphasized in the main text, I do not directly use the locally accurate solution

to compute the dynamics of aggregate variables; instead, following Krusell and

Smith (1997), at each point in time I use the distribution’s law of motion to

forecast future prices but compute current prices and aggregate quantities to

solve the nonlinear equilibrium conditions exactly. Using this approach, the lo-

cally accurate dynamics have the same interpretation as a Krusell and Smith

(1997) forecasting rule. Table X shows that this implied forecasting rule has a

very high R2, a typical measure of accuracy in this literature.

A.4 Unconditional Second Moments

In this Appendix I show that the model performs equally well as a benchmark

real business cycle model with respect to the unconditional second moments of

28In a model simulation, higher-order moments implied by directly aggregating individual
decisions were close to those implied by the log-normal family. Furthermore, the parametric
family implies very similar aggregates to those generated by a fully nonparametric histogram.
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Table X
Forecast Accuracy

Forecast R2

Wage .9998
Marginal utility .9997

Notes: Accuracy of forecasting rules for wt and pt in model simulation, comparing the

prices implied by the forecasting rule to those which exactly solve market clearing

conditions.

Table XI
Unconditional Second Moments

(a) Volatility (b) Autocorrelation
Statistic Data Model RBC Statistic Data Model RBC
σ(Y ) 1.57% 1.61% 1.59% ρ(Y, Y−1) .85 .72 .72
σ(C)/σ(Y ) .53 .66 .66 ρ(C,C−1) .88 .72 .74
σ(I)/σ(Y ) 2.98 3.31 2.76 ρ(I, I−1) .91 .71 .71
σ(H)/σ(Y ) 1.21 .68 .66 ρ(H,H−1) .91 .72 .72

Notes: All aggregate series 1954 - 2012, logged, and HP filtered. Model: full model from

main text. Benchmark: no adjustment costs or habit formation.

aggregate output, consumption, investment, and hours, and compare the model

predictions to the data. In the data, I measure output as real GDP from BEA

Table 1.1.6, consumption as the sum of nondurables and durable services

from BEA Table 1.1.6, investment as nonresidential fixed investment from

BEA Table 1.1.6, and hours as total hours in the nonfarm business sector

from the BLS productivity and costs release. All series are quarterly 1953 -

2012, logged, and HP filtered with smoothing parameter λ = 1600.

Table XI shows that the model matches these standard aggregate second

moments as well as the benchmark real business cycle model. Both models re-

produce the overall volatility of output and the relative ranking of the volatil-
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ity of consumption and investment. Both models underpredict the volatility of

hours, a well-known problem with real business cycle models.

A.5 Conditional Heteroskedasticity

In this Appendix I argue that the key prediction of my model – that the elastic-

ity of aggregate investment with respect to shocks is procyclical – has evidence

in the aggregate investment rate time series. Intuitively, the procyclical elas-

ticity implies that the volatility of aggregate investment is itself procyclical

because aggregate shocks will generate more variation. Bachmann, Caballero,

and Engel (2013) formalize this idea with a simple reduced-form time series

model of the aggregate investment rate:

It
Kt

= ϕ0 +

p∑
s=1

ϕj
It−j

Kt−j

+ σtet, et ∼ N(0, 1) (14)

σ2
t = β0 + β1

(
1

p

p∑
j=1

It−j

Kt−j

)
+ ut

The first equation is a standard autoregression except that the variance of the

residuals is allowed to vary over time.29 The second equation specifies that this

residual variance depends linearly on an average of past investment rates. The

procyclical elasticity in my model predicts that β1 > 0; in expansions, when

past investment is high, investment is more responsive to shocks.

Table XII confirms the procyclical volatility predicted by the model. With

a lag length of p = 1, the 90th percentile of the residual standard deviation is

approximately 16% higher than the 10th percentile. My model quantitatively

29This specification assumes that the propagation of shocks is constant over time. Figure
1 suggests that propagation also changes over time through intertemporal substitution. In
the interest of power I do not focus on that prediction here.
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Table XII
Conditional Heteroskedasticity

p = 1
Statistic Data Model Bench.

log
(

σ̂90

σ̂10

)
0.032*** (.009) 0.159 0.017

log
(

σ̂75

σ̂25

)
0.015** (0.007) 0.082 0.008

p = 6
Statistic Data Model Bench.

log
(

σ̂90

σ̂10

)
0.263*** (0.041) 0.112 0.006

log
(

σ̂75

σ̂25

)
0.134*** (0.025) 0.057 0.003

Notes: Results from estimating equation 14 in the text. Standard errors computed using a
bootstrapping procedure.

generates nearly the same amount of heteroskedasticity as in the data. With

the data’s preferred lag length (according to the Akaike Information Criterion)

p = 6, the 90th percentile of the residual standard deviation is nearly 30% larger

than the 10th. However, the model can only generate about 50% of this amount

of heteroskedasticity due to the fact that it is driven by AR(1) shocks.

I have interpreted the procyclical volatility in Table XII in terms of pro-

cyclical responsiveness to underlying homoskedastic shocks, but an alterna-

tive explanation is that the respsonsiveness to shocks is constant but that

shocks themselves are heteroskedastic. Table XIII present two pieces of evi-

dence against this interpretation.30 First, there is virtually no heteroskedastic-

ity in measured TFP, a key shock driving a substantial fraction of fluctuations

in the data. Second, there is countercyclical, not procyclical, heteroskedasticity

in aggregate output. This is consistent with the evidence presented by Bloom

30Berger and Vavra (2015) perform similar exercises as I do here and reach the same
conclusions.
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Table XIII
Conditional Heteroskedasticity in Other Series

Measured TFP, p = 1 Real GDP, p = 1
Statistic Data Statistic Data

log
(

σ̂90

σ̂10

)
0.032*** (0.009) log

(
σ̂90

σ̂10

)
-0.124*** (0.045)

log
(

σ̂75

σ̂25

)
0.015** (0.007) log

(
σ̂75

σ̂25

)
-0.065** (0.032)

Notes: Results from estimating equation 14 in the text. Standard errors computed using a
bootstrapping procedure.

(2009) that uncertainty increases in recessions. The fact that aggregate in-

vestment does not share this feature is evidence that the procyclical elasticity

documented in this paper is a quantitatively powerful mechanism.
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