
Payments, Credit & Asset Prices

Monika Piazzesi Martin Schneider Stanford & NBER Stanford & NBER

May 2016

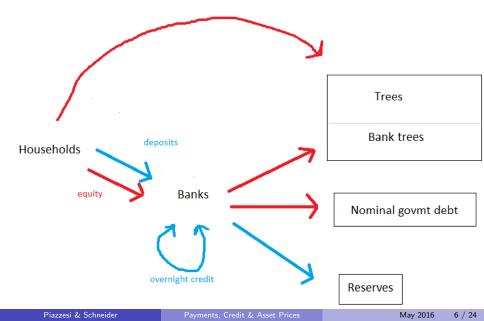
Dollar payments; quarterly at annual rates

Piazzesi & Schneider

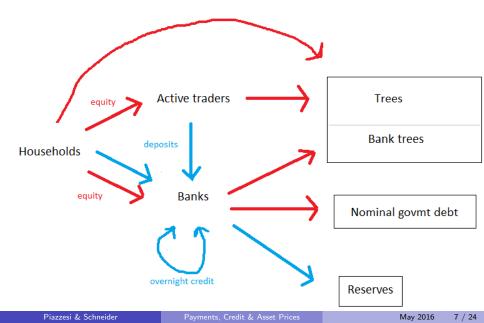
Simple model of payments & asset pricing

- Endusers = households & institutional investors
 - ▶ pay for goods & assets with payment instruments = inside money
 - payment instruments = deposits, MMF shares, credit lines
- Banks handle enduser payment instructions
 - make interbank payments with reserves = outside money
 - liquidity management: hold reserves or rely on interbank credit?
 - capital structure: liquidity benefit vs leverage cost of pmt instruments
- Government issues debt & reserves, trades in assets
- \Rightarrow Questions
 - Interaction asset markets vs payment system
 - How does policy affect asset prices & nominal price level
 - What does an efficient payment system look like?

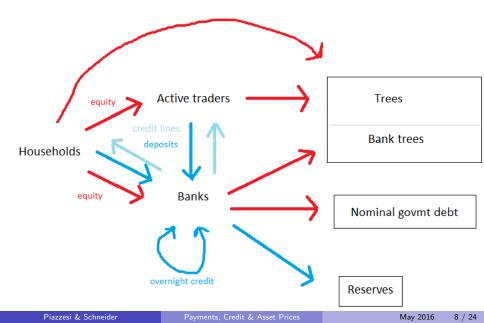
Determination of prices


- Nominal price level: $PT = \bar{v}(D + L)$
 - bank supply of inside money D + L
 - T includes institutional investor trades
 - inflation follows from growth rate of nominal govmt liabilities
- Opportunity cost of payment instruments
 - ▶ inside money in enduser layer: depends on bank leverage, liquidity cost
 - reserves in bank layer: depends on real return set by government
- Intermediary asset pricing
 - banks' valuation high if collateral scarce
 - ★ endogenous market segmentation
 - ★ e.g. short interest rate priced only by banks
 - active traders' valuation high if inside money cheap

Related Literature


- asset pricing with constrained investors
 Lucas 90, Kiyotaki-Moore 97, Geanakoplos 00, He-Krishnamurthy 12,
 Buera-Nicolini 14, Lagos-Zhang 14, Bocola 14, Moreira-Savov 14
- monetary policy & financial frictions
 Bernanke-Gertler-Gilchrist 99, Curdia-Woodford 10, Gertler-Karadi 11,
 Gertler-Kiyotaki-Queralto 11, Christiano-Motto-Rostagno 12,
 Brunnermeier-Sannikov 14, Jakab-Kumhof 15
- banks & liquidity shocks
 Diamond-Dybvig 83, Bhattacharya-Gale 87, Allen-Gale 94,
 Holmstrom-Tirole 98, Bianchi-Bigio 14, Drechsler-Savov-Schnabl 14
- multiple media of exchange
 Freeman 96, Williamson 12, 14, Rocheteau-Wright-Xiao 14,
 Andolfatto-Williamson 14, Chari-Phelan 14, Lucas-Nicolini 15
- interest on reserves

Sargent-Wallace 85, Hornstein 10, Kashyap-Stein 12, Woodford 12, Ireland 13, Cochrane 14, Ennis 14


Baseline: only goods transactions require inside money

Extension: asset trades also require inside money

Inside money: deposits & credit lines

Model: enduser layer

- Constant aggregate output
 - mass one of trees, each yields x units of fruit as dividend
 - Iabor income
- Households
 - risk neutral with discount rate δ
 - can invest in trees, deposits, short credit, bank equity
 - cannot borrow or hold reserves (= numeraire)
- Payments
 - consumption s.t. deposit-in-advance constraint $PC \leq D$
 - equilibrium deposit rate i_D low enough so constraint binds
 - for now: only goods payments
- Capture uncertainty about tree by low payoff expectations
 - households act as if they believe payoffs x decline by s percent
 - can be derived as ambiguity premium (Ilut-Krivenko-Schneider 2015)

Bank layer

Assets		Liabilities	
Μ F ⁺ Β Q ^b θ	Reserves Fed funds lending Govmt bonds Bank trees	Deposits Fed funds borrowing Equity	D F [_]

- Banks owned by households, maximize shareholder value
- nominal shareholder payout

$$\begin{split} M(1+i_R) - M' + F & (1+i) - F' + (Q^b + Px)\theta - Q^b\theta' \\ & \text{short lending} & \text{bank trees} \\ & -D & (1+i_D) + D' + \text{leverage costs} \\ & \text{deposits} \end{split}$$

- short lending $F = F^+ + B F^-$
- constant returns & costless adjustment of equity

Bank liquidity management

- Liquidity shocks
 - bank enters with deposits D, reserves M
 - $ilde{\phi}D$ = net funds sent to other banks (or received if $ilde{\phi} <$ 0)
 - $ilde{\phi}$ iid across banks, cdf *G*, $E\left[ilde{\phi}
 ight]=0$
- Bank liquidity constraint

$$ilde{\phi} D \leq \mathop{M}\limits_{ ext{reserves}} + \mathop{F^{-\prime}}\limits_{ ext{overnight credit}}$$

- ▶ threshold rule: borrow overnight iff $\tilde{\phi} > M/D =: \phi$
- if reserves large relative to deposits, $F^- = 0$ (abundant liquidity)
- Optimal liquidity ratio
 - ▶ higher opportunity cost of reserves $i i_R \ge 0 \Rightarrow$ lower ϕ
 - if $i = i_R$, indifferent between short bonds & reserves

Bank capital structure

- Leverage costs
 - resource cost per unit of real debt
 - strictly increasing & convex in leverage $\ell = \text{debt} / \text{risk}$ weighted assets
 - lower weight $\rho(s)$ on risker assets
- Optimal leverage
 - issue debt until

marginal cost of debt = marginal benefit of collateral κ (ℓ)

- bank Euler equation $\delta = i \pi + \kappa(\ell)$
- higher $i \Rightarrow$ collateral is cheap, hold more collateral
 - \Rightarrow lower leverage ℓ

Bank optimal choices

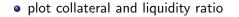
Assets		Liabilities	
Μ F ⁺ Β Q ^b θ	Reserves Fed funds lending Govmt bonds Bank trees	Deposits Fed funds borrowing Equity	D F

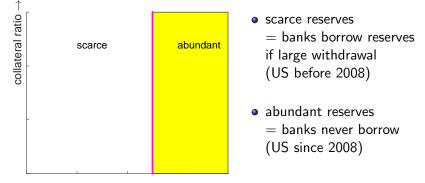
Banks choose two key ratios

1. Liquidity ratio

$$\phi = \frac{M}{D}$$

2. Collateral ratio

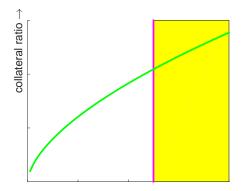

$$\ell^{-1} = \frac{M + F^+ + B + \rho(s)Q^b\theta}{D + F^-}$$


Equilibrium

Government

- fix path of nominal liabilities M_g , B_g and reserve rate i_R
- Iump sum transfers adjust to satisfy budget constraint
- ▶ has leverage cost $c_g(\ell_g)$, where $\ell_g = (M_g + B_g)/$ tax base
- Market clearing
 - goods, reserves, overnight credit, deposits, trees
- Steady state equilibria
 - constant output and growth rate of M, B = inflation
 - neutrality: price level \propto reserves
 - reduce to 2 equations in (ϕ, ℓ)
 - comparative statics
 - after unanticipated shock, new steady state reached after one period

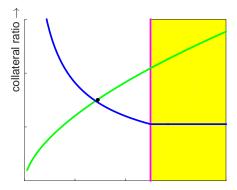
Steady state equilibria with goods trade only



liquidity ratio \rightarrow

Capital structure curve

- what collateral is needed to handle transactions T given reserves?
- slopes up: more reserves, more collateral



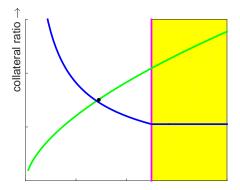
- depends on gov policy because government changes collateral mix
- steeper with larger share of nominal assets in collateral

liquidity ratio \rightarrow

Liquidity management curve

- what collateral holdings maintain return on equity given reserves?
- slopes down: reserves are taxed intermediate input, less collateral

liquidity ratio \rightarrow


 bank's money demand low reserves high opp costs *i* − *i*^R high interest rate *i* collateral cheap ⇒ hold more collateral

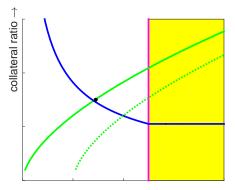
• gov chooses
$$i^R$$
, π

 abundant reserves:
 i = i_R is upper bound on collateral prices

Equilibrium

- intersection of the CS and LM curves
- determines equilibrium collateral and liquidity ratios

liquidity ratio \rightarrow

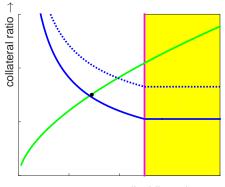

 also determines equilibrium interest rate and Fed funds credit

• read price level from
$$PT = D = M/\phi$$

 could be in scarce or abundant reserves region

Shifts in capital structure curve

• shifts down: less collateral in banking system

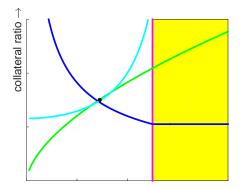


liquidity ratio \rightarrow

- open market purchase = fewer bonds
- increase in uncertainty about bank trees
- new steady state: lower real interest rate inflationary/deflationary
- large shift makes reserves abundant

Shifts in liquidity management curve

- shifts up: higher real return on reserves
- lower tax on reserves: can afford to hold more collateral and still maintain return on equity



liquidity ratio \rightarrow

- higher interest on reserves or lower growth rate of nominal reserves
- new steady state real rate increases deflationary
- large shift makes reserves abundant, policy tools: unconventional monetary policy, real return on reserves

Optimal policy

- Minimize total cost of leverage = move towards origin
- Trade off bank vs government leverage

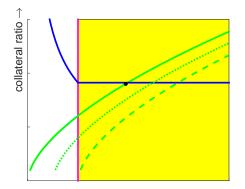
- abundant reserves optimal only if government borrowing cheap
- select optimal equilibrium by picking real return on reserves

liquidity ratio \rightarrow

Active traders

- Competitive firms owned by household
 - issue equity, invest in deposits & subset of trees
 - each firm optimistic about one tree, perceive lower uncertainty s than households and other traders
 - identity of favorite tree within subset changes with probability $\hat{\nu} \leq 1$
 - all trades must be paid with deposits or intraday credit
- budget constraint (z = 1 if identity of favorite tree changes)

$$z\hat{Q} heta' = I + \hat{D}$$


limit on intraday credit

$$I \leq \hat{\gamma} \hat{D}$$

limit binds if $i_D - \pi < \delta$

Increase in uncertainty with active traders

- Shift down: bank collateral worth less
- Shift up: lower demand for inside money from active traders

- forces on price level: less inside money supply less inside money demand
- details of financial structure matter!

liquidity ratio \rightarrow

Summary of main results

- Interaction securities markets vs payment system
 - \blacktriangleright value of banks' collateral \rightarrow supply of inside money
 - \blacktriangleright value of institutional investor trades \rightarrow demand for inside money
- Government policy tools
 - 1. set real return on reserves = tax on intermediate input
 - 2. change mix of collateral by issuing or trading securities
 - both affect collateral & liquidity benefits on assets
 - ★ permanent effects on real asset prices
 - \star policy stance cannot be summarized by interest rates alone
- Scarce vs abundant reserves?
 - select by setting interest on reserves, nominal liabilities
 - optimal policy depends on government vs bank leverage costs