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Introduction
• NK models have been enormously influential in terms of their
policy implications.

• Models’implications for fiscal policy are particularly striking
when ZLB is binding.

• Key results:
— When ZLB binds, output fall is potentially very large.
— The multiplier is larger when the ZLB binds than when it
doesn’t.

— The more binding is the ZLB the larger is the drop in output
and the larger is the multiplier.

• These results generated using linearized version of NK model,
e.g. EW, CER.



Non-uniqueness and policy

• Non-linear NK models have multiple equilibria.

• Policy prescriptions can vary a lot across equilibria (Mertens
and Ravn, Braun et. al. (2012), Cochrane (2015).

— At some ZLB equilibria, multiplier is small or even negative.
— At other ZLB equilibria, mutliplier very large.

• So, in principle non-uniqueness of equilibria poses an enormous
challenge for policy analysis in NK models.



Is non-uniqueness a substantive problem?
• Yes, if there’s no compelling way to select among different
equilibria that give different answers to critical policy questions.

• Our argument starts from presumption that the assumption of
RE obviously wrong.

• But it can be a useful modeling strategy for thinking about a
world where RE isn’t literally true.

“... the model described above ’assumes’that agents know
a great deal about the structure of the economy and
perform some non-routine computations. It is in order to
ask, then: will an economy with agents armed with
‘sensible’rules-of-thumb, revising these rules from time to
time so as to claim observed rents, tend as time passes to
behave as described...”Lucas (1978)



Selecting among equilibria

• Suppose agents make a ‘small’error in forming expectations
about variables relative to their values in a particular REE.

— Does economy converge to that REE ?
— If yes, the RE equilibrium is stable-under-learning.

• In our view, learnability is a necessary condition for an REE to
be empirically interesting.

• Non-learnable REE equilibria are best viewed as mathematical
curiosities.



Non-linear Calvo model with binding ZLB

• Apply learnability criterion to standard fully non-linear NK
model with Calvo pricing frictions.

• Unlike linearized NK models, ZLB REE can’t be characterized
by a set of numbers.

— There’s an endogenous state variable (past price dispersion),
so ZLB REE is a set of functions.

— Must think about how agents learn about these functions.



Key Results...

• There’s multiple REE, including sunspot equilibria (Mertens
and Ravn).

— When we consider fundamental shocks that trigger ZLB
episodes, we find two minimum state variable ZLB equilibria.

— These equilibria converge to different inflation rates if the ZLB
episode lasts forever.

• Impact of government consumption can be very different in the
different ZLB equilibria.

— For example, there are ZLB REE in which multiplier is
negative.



Key Results...

• There exists a unique interior ZLB REE that’s
stable-under-learning.

— That REE that converges to a relatively low ZLB deflation rate.

• Controversial predictions of linearized NK model about fiscal
policy in the ZLB, are satisfied at unique learnable ZLB REE.

• We conclude Calvo model doesn’t have a substantive
uniqueness problem, at least for analysis of fiscal policy.



What about the Rotemberg model?

• Many authors used non-linear versions of the Rotemberg model
to proxy for Calvo model.

— Much easier to work with, no endogenous state variables in
ZLB.

— ZLB REE is a set of numbers (not functions).

• Linearized versions of these models are the same.

• But non-linear versions of the two models are potentially very
different.



The Rotemberg model...

• Some properties of non-linear Rotemberg model are very
sensitive to how you formulate adjustment costs for prices.

• Number of ZLB REE and their stability properties depend on
whether and exactly how you scale adjustment costs for growth.

• But there always exists a unique ZLB REE that’s
stable-under-learning.

• At that equilibrium, impact of fiscal policy in the ZLB are same
as those implied by log-linear NK model.



By-product: Linear Approximations

• Use non-linear Calvo model to assess robustness of log-linear
approximations.

• Log—linear approximations work reasonably well for analysis of
ZLB and fiscal policy.

• Evidence that quality of linear approximations is poor rests on
examples where output deviates by more than 15 percent from
its steady state.



The Neo-Fisherian View
• Conclude talk with remarks about neo-Fisherian view of
monetary policy.

— To acheive a high inflation rate, the monetary should target a
high nominal interest rate.

• Theoretical foundation for that view collapses in the face of
stability-under-learning criterion.

• Non-linear flexible price (BSGU) and NK models (Calvo,
Rotemberg) have unique RE equilibrium that’s
stable-under-learning.

— First result eliminates BSGU based arguments for neo
Ficherian view

— Second result eliminates Cochrane arguments based on NK
model.



Standard NK model

• Household maximizes
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• Discount factor rt can take on two values: ‘normal value’r and

r`, where r` < 0.

— If rt = r`, it stays at that value with prob p.
— Once you switch back to r, you stay there forever.

PtCt + Bt ≤ (1+ Rt−1)Bt−1 +Wtht +Πt.



Model

• Final homogeneous good, Yt, produced by competitive and
identical firms:

Yt =

[∫ 1

0

(
Yj,t
) ε

ε−1 dj
] ε−1

ε

, ε > 1.

• Input j produced by firm j using technology Yj,t = hj,t.

— competitive in factor markets
— monopolist in product market.



Model

• Monopolist j choosing P̃t to maximize

Et

∞

∑
k=0

βkλt+k
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(1+ υ)P̃t − Pt+kst+k

)
Yj,t+k

— υ is a subsidy that removes steady state distortions owing to
monopoly power.

• Monopolist j sets price, Pj,t, subject to demand curve for its
good and Calvo sticky price friction

Pj,t =

{
Pj,t−1 with probability θ

P̃t with probability 1− θ.



Model
• Aggregate output

Yt = p∗t ht

• p∗t is a measure of price dispersion

p∗t =
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• Aggregate resource constraint

Ct +Gt ≤ Yt.

• Monetary policy rule

Rt = max {1, 1+ r+ α (πt − 1)}

— Max operator reflects ZLB and α > 1+ r.



Solving the model
• Can reduce equilibrium conditions to four non-linear equations.

• There’s an endogenous state variable, p∗t−1, and an exogenous
state variable, rt.

• So a solution to the model is a set of functions which satisfy
these conditions.

• Stage 1: solve for the equilibrium functions that obtain when
rt = r, i.e. after the economy has exited the ZLB.

Y(p∗t−1), π(p∗t−1), F(p∗t−1), p∗(p∗t−1)

• Stage 2: solve for equilibrium functions that obtain when rt is
equal to r`

Y`(p∗t−1), π`(p∗t−1), F`(p∗t−1) and p∗` (p
∗
t−1)



ZLB REE Steady State

• Consider limit as t→ ∞ when the economy stays in the ZLB.

• p∗t converges to a number, p̂, for any interior equilibrium.

• System of equations collapses to a system of equations in four
unknowns,

π`(p̂), Y`(p̂), p∗` (p̂), and F`(p̂).



Solving for steady state ZLB

• Equations defining an interior steady-state ZLB equilibrium
collapse into one equation one unknown

f (π`) = 0.

• In a slight abuse of notation we drop explicit dependence of π`
on p̂.

• A necessary condition for ZLB REE equilibrium to be unique
— There’s a unique solution to this equation.



Parameterizing the model

• Benchmark values:

ε = 7.0, β = 0.99, α = 2.0, p = 0.75,

r` = −0.02/4, θ = 0.85, ηg = 0.2.

• Steady state output is normalized to 1 by setting χ = 1.25.

• Sensitivity analysis in appendix.



ZLB Steady States

• The function f (π`) has inverted U shape so there’s either two
interior steady-state ZLB equilibria or none.

• Benchmark case: two steady-state ZLB REE equilibria
— ‘high’and ‘low’inflation.

• Number of minimum state variable ZLB REE equilibria
coincides with number of steady state ZLB REE equilibria.

— A numerical result, not a theorem.



ZLB REE Steady States
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Dynamic Response Functions

• Unlike Rotemberg, ZLB REE isn’t a number because of
endogenous state variable, p∗t−1.

• Consider dynamic response of πt and Ct to rt shock when
economy converges to high and low π steady-state ZLB REE.

• Refer to these paths as: high and low inflation ZLB REE.



Dynamic Response Functions
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Dynamic Response Functions

• Along high π ZLB REE path,

— Quarterly π and C initially drop by 1.5 and −6.35 percentage
points, respectively.

— After about 5 quarters π and C declines stabilize at −1.3 and
−6.3 percentage points.

• Along low π ZLB REE path, quarterly π and C initially drop by
−7.25 and −23.5 percentage points.

— After about 5 quarters π and C declines stabilize at −6.0 and
−23.3 percentage points.



The Multiplier

• G` = 1.05×Gh, i.e. when economy is in ZLB, G rises by 1
percentage of steady state output.

• Multiplier:

G`

(C`(p∗t−1) +G`)
∆
(
C`(p∗t−1) +G`

)
∆G`

.

• If economy is in high π (low π) ZLB REE for low value of G,
it’s in high π (low π) ZLB REE for low value of G.

— A non-trivial assumption.



The Multiplier
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Comparisons

• Multiplier in high-π ZLB REE is large, exceeding two over the
time period displayed.

• Multiplier is negative in low-π ZLB REE.

• To understand this result, note that an increase in G` shifts
f (π`) upwards.
— So effect of increase in G depends on which equilibrium we
focus on.

• Dramatic illustration of basic result in Mertens and Raven
(2011) where multiplier in one REE is a lot smaller than in the
other REE.



ZLB REE Steady States
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Comparison to linearized model
Impact period of shock

• Responses of linearized model similar tothose in high-π ZLB
REE.

• Properties of low-π ZLB REE are very different.

Model Output Inflation Multiplier
Linear -2.18 -0.0066 1.63
Nonlinear, high-inflation -2.84 -0.0093 2.24
Nonlinear, low-inflation -17.87 -0.0734 -0.35



Comparison to linearized model

• Basic qualitative results reported in CER using log-linear
approximation hold up when we focus on high-π ZLB REE.

• Multiplier can be much bigger than 1 when ZLB binds.

• When duration of ZLB increases or degree of flexibility of prices
increases,

— Severity of output collapse and multiplier are larger.

• One interesting difference:
— For parameter values that imply linear multipliers explode, REE
ceases to exist in non-linear model.



Stability-under-learning

• In Calvo model, firms choose Pj,t, based in part on value of Pt.

• But, Pt is a function of firms’collective price decisions.

• Firms can’t ‘know’Pt when they choose their own price, in
sense of actually observing it.

• Standard assumption: firms form a ‘belief’about Pt when they
make their decision.

• In REE that belief is correct.



Stability-under-learning

• If firms don’t have rational expectations, it’s not natural to
assume they see Pt when they choose their prices.

• But if they don’t see Pt, they also don’t see Ct.

• Must attribute to firms views about equilibrium functions for
current and future aggregate π and C.



Stability-under-learning

• xe,f
` (p

∗
t−1, t− 1) : firm’s belief, formed using information up to

time t− 1, about equilibrium function for x`.

• To make time t decision, firms must forecast values of future
variables as p∗t evolves.

— FONC’s involve objects like xe,f
` (p

∗
t−1, t− 1) and

xe,f
` (p

∗
t+j, t− 1) for j ≥ 0.

— So firms must have views about the entire function.

• All these functions have time t− 1 as argument

— Reflects our assumption that firms think they’re in stationary
environment.



Stability-under-learning

• Firms’beliefs evolve according to

xe,f
` (p

∗
t , t) = ωx`(p∗t−1, t− 1) + (1−ω)xe,f

` (p
∗
t−1, t− 1).

• For ω > 0, this formulation embodies the heroic assumption
that agents know time t− 1 equilibrium function for x`.
— Paper reports sensitivity analysis to simpler rules.

• In Rotemberg model, there’s no state variables in ZLB.
— Replace above rule with assumption that agents’expectations
evolve according to simple constant gain algorithm about the
values of variables.



Stability-under-learning in the NK model

• When households make their time t consumption decisions,
firms’actions have already determined πt.

• So households can compute the time t equilibrium function for
π (again heroic!).

• πe,h
` (p

∗
t−1, t) : households’belief, at time t, about equilibrium

function for π`.

• Given new information, households beliefs evolve according to

πe,h
` (p

∗
t , t+ 1) = ωπ`(p∗t−1, t) + (1−ω)πe,h

` (p
∗
t−1, t).



A learning ZLB equilibrium

• Assume agents know REE functions when economy isn’t in
ZLB.

• A sequence of functions for all of endogenous variables that
satisfy

— Resource constraint,
— Monetary policy rule,
— Household and firm optimality conditions for all t,
— given initial set of beliefs π

e,f
` (·, 0), Ce,f

` (·, 0), and πe,h
` (·, 0)

that evolve according to above rules.



Stability-under-learning

• A ZLB REE is stable-under learning if a learning equilibrium
with initial beliefs close to, but not equal to, the REE functions,
converges back to the ZLB REE equilibrium.

• If an economy stays in ZLB forever, it will converge to a steady
state ZLB REE.

• Learning equilibrium must also approach steady state ZLB REE
if initial ZLB REE is stable-under-learning.

• Allows us to eliminate all of ZLB REE that lead to low-π
steady state ZLB REE.

— They’re not stable-under-learning.



Stability-under-learning

• Consider a firm that believes that
— Steady state inflation rate is π

e,f
` .

— Economy is in steady state corresponding to that rate of
inflation.

• The belief π
e,f
` isn’t an REE belief so the steady state

associated with it (including p∗t−1) isn’t a steady state ZLB
REE.

• So f (πe,f
` ) isn’t equal to zero.



Stability-under-learning

• There’s an equivalence between a belief π
e,f
` and a value of p̃e,f

`

=
P̃e,f

t
Pt−1

that will be chosen by firms who can update their price.

• So we use function f (πe,f
` ) to define a new function

f̃ (p̃e
`)

that must be equal to zero at a steady state ZLB REE.

• Write firms’FONC for p̃t = P̃t/Pt−1 can be written, after
imposing all of equilibrium conditions, as

F̃
(

p̃t, p̃e,f
`

)
= 0.



Stability-under-learning

• Define the best-response function

p̃t = g(p̃e,f
` ).

• This function has the property that,

F̃
(

g(p̃e,f
` ), p̃e,f

`

)
= 0.

• In a steady state RE ZLB equilibrium

p̃t = p̃e,f
`



Stability-under-learning

• Following figure plots typical firm’s best response function, i.e.
p̃t as a function of p̃e,f

` .

• Steady state ZLB REE equilibria correspond to the two points
where best response function intersects 45 degree line.

• Given any belief, p̃e,f
` , between RE steady state beliefs, best

response g(p̃e,f
` ) is greater than p̃e,f

` .

• Follows that realized π will exceed beliefs about π.

• So learning equilibrium will move towards high-π ZLB REE
steady state.
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Best Response Function

• Now consider any belief, p̃e,f
` , that exceeds high-π REE ZLB

steady state.

— Best response function g(p̃e,f
` ) is less than p̃e,f

` .
— So realized π will be lower than beliefs about π.
— Learning equilibrium will move towards high-π ZLB REE
steady state.

• Finally, consider any belief, p̃e,f
` , that’s less than low-π ZLB

REE ZLB steady state.

— Here best response function g(p̃e,f
` ) is less than p̃e,f

` .
— So realized π will be lower than beliefs about inflation.
— Learning equilibrium will move away from the low-π ZLB REE
steady state.



Stability-under-learning

• Previous discussion focused on limiting point of ZLB REE.

• To be stable-under-learning, functions defining a learning
equilibrium must converge point-wise to functions defining a
ZLB REE for every possible for p∗t , including steady state value
of p∗` .

• Just showed that any ZLB REE that converges to low-π steady
state ZLB REE doesn’t satisfy this condition.

• So those equilibria aren’t stable-under-learning.



Stability-under-learning
• Previous discussion doesn’t establish that a ZLB REE that
converges to high-π steady state REE ZLB is
stable-under-learning.

• Our solution algorithm parameterizes ZLB REE functions with
a finite number of parameters, zt.

• Learning algorithm defines a mapping from current values of
those parameters to next period’s values:

zt+1 = s (zt) .

• Define

S(z̃) =

[
dsi (z)

dzj

]
|z̃,

for all i, j < N where N is number of parameters.



Stability-under-learning

• Evaluate S for the parameters of the high-π REE.

• Max eigenvalue is less than one in absolute value.
— So, locally, functions in neighborhood of high-π ZLB REE will
converge to those REE functions in a learning equilibrium.

• Repeat analysis for parameters of the low-π ZLB REE.

— Maximum eigenvalue is greater than one in absolute value.
— So, locally, functions in neighborhood of low-π ZLB REE,
equilibrium will diverge from those REE functions in a learning
equilibrium.



Learning equilibria
Dynamic Paths

• At t = −1 economy is in high- π ZLB REE steady state where
p∗−1 = p`.

• At time 0,

xe,f
` (p

∗
−1,−1) = x`(p∗−1) + x̄`, x̄` > 0.

• Agents think that if ZLB ends, economy will be in REE that
converges to high-π steady state.

— Also assume parameter ω = 1 (tomorrow will be like today).

• x̄` = (-.02,-.01, 0, 0.01, 0.02).



Learning equilibria
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Learning equilibria

• Regardless of value of x̄`, π converges to high−π ZLB REE.

• Establishes that learning equilibrium converges to equilibrium
function defining an REE when evaluated at the p∗` .

• Second panel: begin from the low-π ZLB REE.

• Inflation diverges from that equilibrium in the learning
equilibrium.



Learning equilibria

• Till now we’ve assumed that agents belief that once ZLB is
over, economy will go to REE that converges to the high-π
steady state.

• Redo analysis assuming agents think that post-ZLB, economy
will go to REE that converges to low-π steady state.

• All of qualitative results hold, e.g.REE that converge to low π
steady state are not stable-under-learning.



Fiscal policy in learning equilibria

• Initially assume that agents think that when ZLB episode is
over, economy goes to REE that converges to high-π steady
state.

• Economy begins in high-π steady state.

• At time 0, p∗−1 = 1, r falls to r`.

• Firms obey learning laws discussed above.



Fiscal policy in learning equilibria
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Fiscal policy in learning equilibria

• C and and π converge to high π ZLB REE from above.

• Reason that they initially take on higher values is that initial
expectations about higher future π and C spur demand now.

• As expectations adjust downward with realized π and C, they
push C and π down further.

• Multiplier starts out low because ZLB isn’t binding in first few
periods.

• Once ZLB starts to bind, the multiplier quickly rises above 1.



Alternative experiment

• After rt shock, firms and household have beliefs near the low-π
ZLB REE.

• C and π converge to high π ZLB REE from below.

• Reason that they initially take on lower values is that
expectations about low future inflation and consumption
depress demand in the present.



Alternative experiment

• Multiplier starts out around 1 and then rises after that.

• Multiplier rises because fiscal expansion helps quickly move
expectations toward those associated with the high-π ZLB
REE.

— Without change in G , expectations remain close to
low-inflation ZLB REE for some time.

• After many periods, the multiplier eventually approaches the
high-inflation steady state ZLB REEvalue.



Mertens and Ravn (2015)

• Report multiplier is small when they analyze a learning
equilibrium near the low inflation steady state RE ZLB
equilibrium.

• This result is very different than ours - we just argued that the
relevant multiplier is large.

• Why?



Mertens and Ravn (2015)

• When we calculate the multiplier we initially consider an
economy in which agents initial expectations about inflation
differ by επ from the low π steady state ZLB REE.

• We then consider a separate economy with shocks that set r to
r` and a shock to G.

• Expectations start in the same place for the two economies.

• We then use difference in output between the two economies to
calculate the multiplier.



Mertens and Ravn (2015)
• In their experiment when G increases, the rate of inflation in
the steady state of the ZLB REE falls by ε′π.

• When they raise G in the learning equilibrium, they also
decrease agents’expectations about inflation by ε′π.

— In and of itself this fall in inflation reduces output in the ZLB.

• Next figure displays multiplier if we adopt their assumption.

• We obtain a negative multiplier that persists for roughly 10
years.

• Change in expectations is quantitatively much more important
than the increase in G.



Mertens and Ravn (2015)
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Rotemberg model

• Scaling term of price-adjustment costs can have large effect on
properties of the equilibria that we find that aren’t
stable-under-learning.

Φt+k

(
Pj,t+k

Pj,t+k−1
− 1

)2

• But there’s always a unique stable under learning equilibrium in
our examples.

Adj. Cost Stable Equilibrium Unstable Equilibrium
Φt =

φ
2 1.56 0.98

Φt =
φ
2 (Ct +Gt) 1.70 0.36

Φt =
φ
2 Yt 1.65 1.07



Concluding Remarks

• Non-uniqueness of equilibria in NK models does not pose a
substantive challenge to key conclusions about the effi cacy of
fiscal policy in ZLB episodes.

• A close derivative of our analysis is that the ‘neo-Fisherian’
views of monetary policy based on NK models of flexible price
model like BSGU are not empirically relevant.


