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Abstract

This paper addresses whether non-uniqueness of equilibrium is a substan-

tive problem for policy analysis in New-Keynesian (NK) models. There would

be a substantive problem if there were no compelling way to select among

different equilibria that give different answers to critical policy questions. In

fact there is: stability-under-learning. We focus our analysis on the effi cacy

of fiscal policy when the economy is in the ZLB. We study a fully non-linear

NK model with Calvo-pricing frictions and argue that the model has a unique

stable-under-learning rational expectations equilibrium. In that equilibrium,
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the implications of the model for fiscal policy inherit all of the key properties

of linearized NK models.

1. Introduction

New Keynesian (NK) models have been enormously influential in terms of their pol-

icy implications1. The models’implications for fiscal policy are particularly striking

when the zero lower bound (ZLB) on the nominal rate of interest is binding.2 Eg-

gertsson and Woodford (2003) (EW) and Eggertsson (2004) develop an elegant and

transparent framework for studying fiscal policy in the NK model at the ZLB.

The key results that emerge from the literature can be summarized as follows3.

First, when the ZLB binds, the fall in output is potentially very large. Second, the

output multiplier associated with government consumption is larger when the ZLB

binds than when it does not bind. Third, the more flexible are prices and the longer

is the expected duration of the ZLB is longer, the larger is the drop in output and

the larger is the government consumption multiplier.

These controversial results are based on literature that uses a linearized version

of the NK model, which has a unique solution. In fact, the non-linear NK models

have multiple equilibria, even if one restricts attention, as did EW, to minimum

state variable ZLB equilibria. As stressed by Mertens and Ravn (2015), policy pre-

scriptions can vary a great deal across those equilibria. At some ZLB equilibria, the

government consumption multiplier is small or even negative. In others, it is very

large. So, in principle, non-uniqueness of equilibria poses an enormous challenge for

1For a classic exposition of the NK model see Woodford (2003.)
2It is widely understood that zero is not the critical lower bound. What is critical is that some

lower bound on the interest becomes binding on monetary policy.
3see, for example, EW, Eggertsson (2011) and Christiano, Eichenbaum and Rebelo (2011)

(CER),
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policy analysis based on NK models.

This paper addresses a simple question: is non-uniqueness of equilibria a sub-

stantive problem for policy analysis in NK models? There would be a substantive

problem if there were no compelling way to select among different equilibria that give

different answers to critical policy questions. To be concrete we focus our analysis

on the impact of changes in government consumption when the economy is in the

ZLB.

Our argument starts from the presumption that the assumption of rational ex-

pectations is obviously wrong. But it can be a useful modeling strategy for thinking

about a world where the strong assumptions associated with rational expectations

aren’t literally satisfied.4 In the spirit of the literature summarized by Evans and

Honkapohja (2001), we adopt the following selection criterion for rational expecta-

tions equilibria (REE). Suppose agents make a ‘small’error in forming expectations

about variables relative to their values in a particular REE. Would the economy

converge to a REE, if agents form expectations using simple learning rules? If yes,

then we say the REE is stable-under-learning, or for short, learnable. From this

perspective, stability-under-learning is a necessary condition for an REE and the as-

sociated policy implications to be empirically interesting. REE equilibria that aren’t

learnable are best treated as mathematical curiosities.

We apply this stable-under-learning criterion to a standard fully non-linear NK

model with Calvo pricing frictions. Working with this model poses two interesting

challenges. First, unlike linearized NK models of the type considered by EW, the

4Indeed that is how Lucas viewed it: “... the model describe above ’assumes’that agents know a
great deal about the structure of the economy and perform some non-routine computations. It is in
order to ask, then: will an economy with agents armed with ‘sensible’rules-of-thumb, revising these
rules from time to time so as to claim observed rents, tend as time passes to behave as described...”
Lucas (1978)
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ZLB REE can’t be characterized by a set of numbers. Because there is an endogenous

state variable (past price dispersion), the ZLB REE is a set of functions. Second, we

must think about how agents might learn about these functions.

Our basic results can be summarized as follows. First, consistent with Mertens

and Ravn (2015) we find that there are multiple REE, including sunspot equilibria.

When we consider fundamental shocks that trigger ZLB episodes, we find two min-

imum state variable ZLB equilibria. These equilibria converge to different inflation

rates if the ZLB episode lasts forever. Second, like Mertens and Ravn (2015), we find

that impact of government consumption can be very different in the different ZLB

equilibria. For example, there exist both sunspot and minimum state ZLB REE in

which the government consumption multiplier is actually negative. Third, we argue

that there exists a unique interior ZLB equilibrium in the non-linear Calvo model

that is stable-under-learning. Fourth, and most importantly, the controversial pre-

dictions of the linearized NK model about fiscal policy in the ZLB, including the

large size of the government consumption multiplier at the ZLB are satisfied at the

unique learnable ZLB REE. That equilibrium is the one that converges to a relatively

low ZLB deflation rate. Based on this analysis we conclude that the Calvo model

does not have a substantive uniqueness problem, as least for the analysis of fiscal

policy in the ZLB.

Many authors have used non-linear versions of the Rotemberg (1982) model of

nominal price rigidities to proxy for the Calvo model. In the Rotemberg model the

representative firm faces a quadratic cost of adjusting nominal prices. It is well

known that linear approximations to the Calvo and the Rotemberg models give rise

to the same set of equations whose solution defines an REE. In contrast, non-linear

versions of the model are potentially very different. As it turns out some of the

non-linear properties of the Rotemberg model are very sensitive to the details of how
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one formulates adjustment costs for prices. Specifically, we show that the number of

rational expectations ZLB equilibria and their stability properties depend on whether

and exactly how one scales adjustment costs for growth. Remarkably, we still always

find that there exists a unique ZLB REE that is stable-under-learning. Moreover,

all of the predictions of the log-linear NK for the impact of fiscal policy in the ZLB

hold at that equilibrium. Indeed, for our benchmark parametrizations, the value

of the government consumption multiplier in the linear and non-linear model are

remarkably similar.

As a by-product of our analysis, we use our non-linear model to assess the ro-

bustness of policy implications about fiscal policy at the ZLB that have been derived

using log linear approximations to the NK model. We find that linear approxima-

tions work quite well for assessing the size of the government spending multiplier and

the drop in GDP that occurs in the ZLB. Evidence that the quality of linear approx-

imations is poor rests on examples where output deviates by more than roughly 20

percent from its steady state, cases where no one would expect linear approximations

to work well. There is one interesting difference between the linear and non-linear

models. It is well know that for some parameters values, the multiplier in the linear

model shoots off to infinity, say as the expected length of the ZLB episode becomes

large or prices become very flexible (see for example CER (2011)). For the same

parameter values, these extreme results manifest themselves in a different way in the

non-linear Calvo model: a ZLB REE simply ceases to exist.

The Great Recession was a very unusual event. So the learning equilibrium

underlying our stability calculations are of interest as a way of modeling how agents

behaved in the wake of a shock that pushes the economy into a prolonged ZLB

episode. So we analyze the impact of an increase in government consumption along

the learning equilibrium that converges to the stable ZLB REE. Our findings here
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can be summarized as follows. First, the learning equilibrium is unique. Second,

the size of the multiplier is large in the learning equilibrium. The latter finding is

different than results reported in Mertens and Ravn (2015). As it turns out the main

reason for the difference in our results is that despite their backwards looking learning

rule, Mertens and Ravn change agents expectations about future consumption and

inflation when they change government consumption. We do not.

The remainder of this paper is organized as follows. In section 2 we discuss

multiplicity and learnability in the context of a standard flexible price model. We

do so in order to define learnability in a very simple environment and contrast it

with the notion of stability of a REE employed by Benhabib, Schmidt-Gorhe and

Uribe (2001). In section three we analyze ZLB REE in a nonlinear Calvo model. We

also assess the quality of linear approximations to the Calvo model in this section.

Section four contains our main results regarding stability-under-learning of different

ZLB REE. In section five we discuss learning equilibrium. Section six contains our

analysis of the non-linear Rotemberg model. Concluding remarks are contained in

section seven.

2. Fiscal Policy in the ZLB

In this section we derive the implications of the NK model for the effects of changes

in government purchases when the ZLB in binding. We conduct our analysis in a

non-linear version of the NK model in which firms face Calvo price-setting frictions.

Authors like Christiano and Eichenbaum (2012) and Braun, Boneva, andWaki (2015)

interpret the price frictions in their nonlinear analysis of the NK model as stemming

from Rotemberg (1982) type adjustment costs. This interpretation is interesting

because it implies the same linearized equations that EW study. The advantage
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of adopting Rotemberg adjustment costs is analytic simplicity. In contrast to the

Rotemberg approach, the Calvo approach implies the existence an endogenous state

variable (past price dispersion). However, as we show in Section 5, there are some

important pitfalls associated with using the Rotemberg model that arise from its

sensitivity to how the costs of adjusting prices is formulated.

2.1. Model Economy

A representative household maximizes

E0

∞∑
t=0

dt

[
log (Ct)−

χ

2
h2t

]
where Ct denotes consumption, ht denotes hours work, and

dt =
t∏

j=0

(
1

1 + rj−1

)
.

As in EW, we assume that rt can take on two values: r and r`, where r` < 0. The

stochastic process for rt is given by

Pr
[
rt+1 = r`|rt = r`

]
= p, Pr

[
rt+1 = r|rt = r`

]
= 1− p, Pr

[
rt+1 = r`|rt = r

]
= 0.

(2.1)

We assume that rt is known at time t. The household faces the budget constraint

PtCt +Bt ≤ (1 +Rt−1)Bt−1 +Wtht + Πt.

Here Pt is the price of the consumption good, Bt denotes the quantity of risk-free

bonds that the household owns, Rt−1 is the gross nominal interest rate paid on
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bonds held from period t− 1 to period t, Wt is the nominal wage, and Πt represents

lump-sum profits net of lump-sum government taxes. The two first order necessary

conditions associated with an interior solution to the household’s problem are:

χhtCt =
Wt

Pt
(2.2)

1

1 +Rt

=
1

1 + rt
Et

PtCt
Pt+1Ct+1

. (2.3)

A final homogeneous good, Yt, is produced by competitive and identical firms

using the technology:

Yt =

[∫ 1

0

(Yj,t)
ε

ε−1 dj

] ε−1
ε

, (2.4)

where ε > 1. The representative firm chooses inputs, Yj,t, to maximize profits:

PtYt −
∫ 1

0

Pj,tYj,tdj,

subject to the production function (2.4). The firm’s first order condition for the jth

input is:

Yj,t = (Pt/Pj,t)
−ε Yt. (2.5)

The jth input good in (2.4) is produced by firm j who is a monopolist in the prod-

uct market and is competitive in factor markets. Monopolist j has the production

function:

Yj,t = hj,t. (2.6)

Here hj,t is the quantity of labor used by the jth monopolist. The monopolist maxi-

mizes

Et

∞∑
k=0

βkλt+k ((1 + υ)Pj,t − Pt+kst+k)Yj,t+k (2.7)
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The jth monopolist sets its price, Pj,t, subject to the demand curve, (2.5), and the

following Calvo sticky price friction (2.8):

Pj,t =

 Pj,t−1 with probability θ

P̃j,t with probability 1− θ
. (2.8)

Here P̃j,t is the price chosen by the monopolist j in the event that he can re-optimize

his price. The variable υ is a subsidy designed to remove steady state distortions

stemming from monopoly power. The monopolist satisfies whatever demand occurs

at its posted price. The real marginal cost facing each monopolist is given by:

st ≡
Wt

Pt
= χhtCt. (2.9)

Since all monpolists face the same problem, P̃j,t is independent of j and we denote

its value by P̃t. The first order condition of monopolist j can be written as

p̃t =
P̃t
Pt−1

= πt
Kt

Ft

where

Kt =
Yt
Ct
st + θ

1

1 + rt
Etπ

ε
t+1Kt+1

and

Ft =
Yt
Ct

+ θ
1

1 + rt
Etπ

ε−1
t+1Ft+1.

Here πt denotes the gross rate of inflation.
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It is well known that aggregate output can be written as5

Yt = p∗tht (2.10)

where p∗t is a measure of price dispersion, which evolves according to

p∗t =

[
(1− θ)

[
1− θπε−1t

1− θ

] −ε
1−ε

+ θπεt(p
∗
t−1)

−1

]−1
.

The aggregate resource constraint is given by

Ct +Gt ≤ Yt. (2.11)

In equilibrium, this constraint is satisfied as an equality because households and gov-

ernment go to the boundary of their budget constraints. Government consumption

is an exogenous process discussed below.

Monetary policy rule is given by

Rt = max {1, 1 + r + α (πt − 1)} (2.12)

The max operator reflects the ZLB constraint on nominal interest rates and α is

assumed to be larger than 1 + r. As in BSGU, the latter assumption guarantees the

existence of two steady states.

We assume that the economy begins in steadt state. At time 0, there is a shock

to agents’discount rate so that r = r`. We consider two scenarios. In the first, the

government does not respond to the discount—rate shock. In the second, Gt increases

by one percent of steady state output as long as rt = r`.

5See for example Woodford (2003).
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2.2. Solving the Non-Linear Calvo Model

Other than the exogenous discount factor shock, the price dispersion term, p∗t−1 is

the only state variable in our system. It is convenient to collect the equilibrium

conditions of the model:

p∗t =

[
(1− θ)

[
1− θπε−1t

1− θ

] ε
ε−1

+ θπεt(p
∗
t−1)

−1

]−1
(2.13)

1

Yt −Gt

=
1

1 + rt
max (1, 1 + r + α (πt − 1))Et

1

Yt+1 −Gt+1

1

πt+1

Ft =
Yt

Yt −Gt

+ θ
1

1 + rt
Etπ

ε−1
t+1Ft+1

Ft

[
1− θπε−1t

1− θ

] 1
1−ε

=χ
Y 2
t

p∗t
+ θ

1

1 + rt
Etπ

ε
t+1Ft+1

[
1− θπε−1t+1

1− θ

] 1
1−ε

A solution to the model is a set of functions Y (p∗t−1, rt), π(p∗t−1, rt), F (p∗t−1, rt),

p∗(p∗t−1, rt) which satisfy the four equilibrium conditions (2.13).

We solve for the equilibrium in two stages. In the first stage, we solve for the

equilibrium functions that obtain when rt = r, i.e. after the economy has exited the

ZLB. As in Bizer and Judd (1989) we begin with a conjectured set of equilibrium

functions, Ỹ (p∗t−1, r), π̃(p∗t−1, r), F̃ (p∗t−1, r), p̃
∗ (p∗t−1, r), for the time t + 1 variables

that appear in (2.13). The equilibrium conditions give us a mapping

[
Y
(
p∗t−1, r

)
, π

(
p∗t−1, r

)
, F

(
p∗t−1, r

)
, p∗

(
p∗t−1, r

)]
= T

[
Ỹ (p∗t , r), π̃(p∗t , r), F̃ (p∗t , r), p̃

∗ (p∗t , r)
]
.
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In a rational expectations equilibrium

[
Y
(
p∗t−1, r

)
, π

(
p∗t−1, r

)
, F

(
p∗t−1, r

)
, p∗

(
p∗t−1, r

)]
= T

[
Y (p∗t , r) , π (p∗t , r) , F (p∗t , r) , p∗ (p∗t , r)

]
.

We approximate these functions using finite elements methods on a grid defined

over p∗t−1 (see the Appendix for details). Given a value of p
∗
t−1, and the conjectured

set of equilibrium functions, (2.13) reduces to a systems of four equations in four

unknowns, Yt, πt, Ft and p∗t . We solve these equations for all of the values of p
∗
t−1

in the grid. In this way we construct a function from the state variable, p∗t−1 to the

equilibrium quantities. If the resulting functions are the same as the conjectured

equilibrium functions, then we have found an equilibrium. If they aren’t the same,

then we use the newly computed functions as conjectured equilibrium functions and

repeat the process until the approximating functions converge.

In the second stage, we solve for the equilibrium functions that obtain when rt is

equal to r`. It is convenient to define

Y`(p
∗
t−1) = Y (p∗t−1, r`), p

∗
`(p
∗
t−1) = p∗(p∗t−1, r`),

F`(p
∗
t−1) = F (p∗t−1, r`), π`(p

∗
t−1) = π(p∗t−1, r`).

In the ZLB, we can write (2.13) as

p∗`(p
∗
t−1) =

[
(1− θ)

[
1− θπ`(p∗t−1)ε−1

1− θ

] ε
ε−1

+ θ
π`(p

∗
t−1)

ε

p∗t−1

]−1
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1

Y`(p∗t−1)−G`

=
1

1 + rl
max

(
1 + r + α

(
π`(p

∗
t−1)− 1

)
, 1
) [
p

1

Y`(p∗t )−G`

1

π`(p∗t )

(2.14)

+ (1− p) 1

Y (p∗t )−G
1

π(p∗t )

]

F`(p
∗
t−1) =

Y`(p
∗
t−1)

Y`(p∗t−1)−G`

+ θ
1

1 + rl
[
pπ`(p

∗
t )
ε−1F`(p

∗
t ) + pπ(p∗t )

ε−1F (p∗t )
]

F`(p
∗
t−1)

[
1− θπ`(p∗t−1)ε−1

1− θ

] 1
1−ε

=χY`(p
∗
t−1)(Y`(p

∗
t−1)/p

∗
`(p
∗
t−1))

+ θ
1

1 + rl
pπ`(p

∗
t )
−εF`(p

∗
t )

[
1− θπ`(p∗t )ε−1

1− θ

] 1
1−ε

+ θ
1

1 + rl
(1− p)π(p∗t )

−εF (p∗t )

[
1− θπ(p∗t )

ε−1

1− θ

] 1
1−ε

We solve for the equilibrium functions Y`(p∗t−1), π`(p
∗
t−1), F`(p

∗
t−1) and p

∗
`(p
∗
t−1) using

the same algorithm used in the first stage. Note that our solution recovers minimum

state variable equilibria. We comment on sunspot equilibria.

Define a steady-state ZLB equilibrium as the equilibrium prices and quantities

of the economy if rt = r` in the limit as t goes to infinity. It is easy to verify that

if a steady state equilibrium exists, then p∗t converges to p̂. Then (2.14) collapses

to a system of four equations in four unknowns, π`(p̂), Y`(p̂), p∗`(p̂),and F`(p̂).We

compute the steady-state ZLB equilibrium as follows. Conjecture a guess for π`(p̂).

Then calculate the implied value of p̂ from the first equation of (2.14), calculate

C`(p̂) from the second equation of (2.14) and compute F`(p̂) from the third equation

of (2.14). Then check if the final equation of (2.14) holds with equality. If it holds,

π`(p̂) is a steady-state ZLB equilibrium value of inflation. If it doesn’t hold, search
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for another π`(p̂).

Employing the previous algorithm, we reduce the equations defining an interior

steady-state ZLB equilibrium into one equation one unknown

f(π`) = 0. (2.15)

In a slight abuse of notation we have dropped the explicit dependence of π` on p̂. If

this condition doesn’t hold, then π` can’t be the steady-state ZLB equilibrium value

of inflation. So, a necessary condition for the ZLB equilibrium to be unique is that

there is a unique solution to (2.15).

In our experiments we use following baseline parameterization of the model:

ε = 7.0, β = 0.99, α = 2.0, p = 0.75, (2.16)

r` = −0.02/4, θ = 0.85, ηg = 0.2.

Steady state output is normalized to 1 by setting χ = 1.25. The appendix contains a

sensitivity analysis of all our key results to perturbations of the benchmark parameter

values.

2.3. Baseline RE Equilibria Results

Recall that the equation defining an interior steady-state ZLB equilibrium is given

by (2.15). Figure 2.1, displays f(π`) as a function of π`. The solid line is calculated

assuming that G is equal to its steady state value, 0.20. Note that f (π`) has an

inverted U shape. It follows that there are either two interior steady-state ZLB

equilibria or none. Given our assumed parameter values, there are in act two such

equilibria. We refer to them as the high and low inflation steady state ZLB equilibria.
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Figure 2.1: Steady State ZLB Equilibrium Function
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Figure 2.2: RE Equilibrium Paths In ZLB
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In practice we find that the number of ZLB equilibria coincides with the number of

steady state ZLB equilibria. To be clear, this is a numerical result, not a theorem.

The dotted lines of the panels of Figure 2.2 displays the dynamic response of

inflation and consumption, respectively, to the discount rate shock as the economy

converges to the high and low inflation steady-state ZLB equilibrium. We refer to

these paths as the high and low inflation ZLB equilibria, respectively. A number

of features are worth noting. First, along the high inflation ZLB equilibrium path,

quarterly inflation and consumption drop in the impact period of the shock by 1.5 and

6.35 percentage points, respectively. After about 5 quarters these declines stabilize

at 1.3 and 6.3 percentage points, respectively. Second, along the low inflation ZLB

equilibrium path, quarterly inflation and consumption drop in the impact period of

the shock by 7.25 and 23.5 percentage points, respectively. After about 5 quarters

these declines stabilize at 6.0 and 23.3 percentage points, respectively. Third, the

dynamics induced by the evolving state variable p∗t are larger in magnitude for the low

inflation ZLB equilibrium. But event for that case, the system effectively converges
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Figure 2.3: RE Multiplier In ZLB
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after one year.

To derive values for the government spending multiplier we assume that G` =

1.05 × Gh, i.e. when the economy is in the ZLB, G rises by 1 percentage of steady

state output. We define the multiplier in the first period to be

G`

(C`(p∗t−1) +G`)

∆
(
C`(p∗t−1) +G`

)
∆G`

.

We compute this ratio assuming that if the economy is in the high inflation (low

inflation) ZLB equilibrium for a low value of G, it is in the high inflation (low

inflation) ZLB equilibrium for the high value of G.6 The two panels of Figure 2.3

display the multiplier in the high inflation and low inflation ZLB equilibrium as a

function of time. Notice that the multiplier in the high inflation ZLB equilibrium

is large, exceeding two over the time period displayed. In contrast, the multiplier

is actually negative in the low inflation ZLB equilibrium. This change in sign is

6This assumption is non-trivial because one can easily construct examples in which G serves as
a sunspot inducing a switch from one equilibrium to the other. As in Mertens and Raven (2015),
we abstract from this issue.
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a dramatic illustration of the basic result in Mertens and Raven (2011) where the

multiplier is much lower in the analog to our low inflation ZLB equilibrium. To

understand why the sign of the multiplier depends on which equilibrium we are in,

note an increase in G` shifts f upwards (see Figure 2.1). This shift implies that the

effect of an increase in G depends on which equilibrium we focus on.

The size of the multiplier in the high-inflation ZLB equilibrium increases as p rises

or θ falls, i.e. as the expected duration of the ZLB rises or as prices become more

flexible. These results are consistent with the intuition in CER (2011) and EW. In

contrast, the size of the multiplier associated with the low-inflation ZLB equilibrium

become more negative as the multiplier increases as p rises or θ falls.

2.3.1. Comparisons to linearized version of the model

Table 2.1 summarizes our results regarding the impact of changes in G for the non-

linear and linear versions of the Calvo model. We report the response of inflation,

output and the multiplier in the impact period of a shock to the discount rate accom-

panied by a rise in G. Notice that the equilibrium behavior of the linearized model

is similar to that of the non-linear model in the high-inflation ZLB equilibrium. For

example, the impact multiplier in the linear model is 1.63 while it is 2.24 in the high-

inflation ZLB equilibrium. While the magnitudes of the two multipliers are different,

both deserve the adjective, ‘large’. The initial percent drop in GDP in the linear

and high-inflation ZLB equilibrium model is 2.18% and 2.84%,respectively. Again,

while the numbers are different, the decline in output is large in both cases. In stark

contrast, the properties of the non-linear model in the low-inflation ZLB equilibrium

are very different than those of the linear model. For example the impact multiplier

is −0.35% and the initial drop in GDP is 17.87%.
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Table 2.1: Comparing the Linear and Non-linear Models

Model Output Inflation Multiplier
Linear -2.18 -0.0066 1.63
Nonlinear, high-inflation -2.84 -0.0093 2.24
Nonlinear, low-inflation -17.87 -0.0734 -0.35

The multiplier in the linear model is inversely related

∆ = (1− p)(1− θp)− p(2− ηg)
(1− θ)(1− βθ)

θ
.

It is evident that the multiplier is strictly increasing in p and θ. See CER (2015)

for the intuition underlying this result. As noted above, a similar result obtains for

the high-inflation ZLB equilibria of the non linear model. There is one interesting

difference between the linear and non- linear models. Carlstrom, Fuerst and Paustian

(2014) prove that the linear model does not have an interior equilibrium when ∆ is

negative. Before ∆ turns negative, the multiplier can be arbitrarily large. We found

that increases in p and declines in θ which reduce the value of ∆,have the effect of

shifting the f(π`) function down. At some point f(π`) is not equal to zero for any π` ,

i.e. an interior equilibrium non longer exists. So non-existence leads to an effective

bound on the multiplier in the non-linear model. In practice we found that the upper

and lower bounds associated with high and low inflation ZLB equilibria were 4.3 and

−2.5 percent respectively.

To summarize, the basic qualitative results reported in CER using a log-linear

approximation obtain when we consider the nonlinear solution as long as we focus

attention on the high-inflation ZLB equilibrium.
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2.4. Sunspot Equilibria

In the analysis above, we assumed that the ZLB becomes a binding because of a

shock to the household’s discount rate. We now consider a scenario in which the

ZLB binds because of a non-fundamental shock. This case is the one considered by

Mertens and Ravn (2015). Suppose that at t = 0, before any agent has made a

decision, the economy is in the high-inflation steady state equilibrium. Each firms

observes a sunspot. Conditional on the sunspot firms can either believe that other

firms behave as in they did in the high inflation steady state or they will set their

prices suffi ciently low to make the ZLB bind. With probability p firms continue to

hold this belief. With probability (1− p), firms believe that other firms will set their

prices suffi ciently high to make the ZLB non-binding and behave as they did in high

inflation steady state. The latter belief is an absorbing state.

Figure 2.4 displays the f(π`) function for the case under consideration. Notice

that there are two steady ZLB equilibria corresponding a low and high inflation rate,

respectively.

As stressed in Mertens and Ravn (2015), the sunspot equilibrium can be charac-

terized as a situation in which the shock driving the economy into a binding ZLB is

a loss in confidence. The basic intuition is as follows. Suppose that agents antici-

pate deflation, creating the perception that the real interest rate is high. Households

respond to the high real interest rate by reducing expenditures, thus drive the econ-

omy into a recession. The lower level of output leads to a fall in real wages and

marginal cost. The latter effect leads to sustained downward pressure on the price

level because of price-setting frictions. So the initial fear of deflation is self-fulfilling.

Mertens and Ravn (2015) propose this non-fundamental ‘loss of confidence’shock as

an alternative to a fundamental shock that drives the economy into the ZLB.
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Figure 2.4: Steady State Sunspot Equilibrium Function
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Figure 2.5: Sunspot Multipliers
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Now consider the effect of a rise in G when the sunspot occurs. Depending on

beliefs, the economy will either be in the high or low inflation equilibrium. Note that

the ZLB is only binding in the low inflation equilibrium. We compute the multiplier

assuming that the economy is initially in the high inflation steady state and agents

think the economy will go back there when the ZLB ends. Figure 2.5 displays the

multiplier as a function of time for the case where the economy is in the ZLB and the

case where the economy remains in the high inflation steady state equilibrium after

the sunspot is operative. As it turns out, the multiplier at the ZLB can be larger

or smaller than in the steady state, depending on parameter values. But the robust

result is that the multiplier is quite small: (0.56) in the ZLB and (0.79) at the steady

state. The steady state multiplier is small when the ZLB is not binding because

an increase in government spending leads to inflation. Monetary policy responds by

rasing the real interest which crowds private consumption. In the other equilibrium,

the real interest is also high because the ZLB binds and there is deflation. So again

consumption falls, leading to a relatively small multiplier.

3. Stability Under Learning at the ZLB

In this section we investigate stability under learning of the high and low inflation

ZLB equilibria. In order to determine what happens when agents don’t have rational

expectations, we must make assumptions about how their beliefs evolve over time.

3.1. The benchmark case

In the rational expectations version of the Calvo model, intermediate good firms

choose their price level, P̃j,t, based in part on the value of the aggregate price level,

Pt. But, the later is a function of firms’collective price decisions. So firms cannot
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actually observe Pt when they choose P̃j,t. The standard assumption is that these

firms form a ‘belief’about Pt when they make their decision. In a rational expec-

tations equilibrium that belief is correct. In a world where firms don’t necessarily

have rational expectations it is not natural to assume that firms actually see Pt at

the time they chooseP̃j,t. Note that if they don’t see Pt they also don’t know what

the demand for their output (Ct) will be.

At time t firms make their decisions given the state variable p∗t−1 and views about

the equilibrium functions for current and future values of Pt and Ct.We assume

that firms believe they are in a stationary environment, i.e. firms think that the

equilibrium functions won’t change over time. Denote by xe,f` (p∗t−1, t− 1) the typical

firm’s belief, formed using information up to time t−1, about the equilibrium function

for x`. The only argument of the function is the state variable p∗t−1. While the

firm knows the actual value of p∗t−1, we must attribute to it beliefs about the entire

equilibrium function for x`. The reason is that the firm’s first order conditions involve

objects like xe,f` (p∗t−1, t − 1) and xe,f` (p∗t+j, t − 1) for j ≥ 0. The fact that all these

functions have time t− 1 as an argument summarizes the standard assumption that

firms think they are in a stationary environment, i.e. they don’t expect that their

beliefs about the functions will change in the future (see Evans and Honkapohja

(2003)).

Given new information, firms’beliefs evolve over time according to

xe,f` (p∗t , t) = ωx`(p
∗
t−1, t− 1) + (1− ω)xe,f` (p∗t−1, t− 1). (3.1)

For ω > 0, this formulation assumes that at time t, agents know the time t − 1

equilibrium function for x`. This assumption is clearly heroic. So we also investigate

what happens when firms just assume that the value of the variables that they have
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to forecast are equal to their current value. (See the appendix for details). As an

aside, it is worth noting that in Rotemberg model, discussed in Section 5, there

are no state variables in the ZLB. So we can replace (3.1) with the assumption that

agents’expectations about the values of future variables evolve according to a simple

constant gain algorithm.

When households make their time t consumption decisions, firms’actions have

already determined the aggregate price level. Given this information, the households

can compute the time t equilibrium function for inflation.7 Denote by πe,h` (p∗t−1, t)

households’belief, at time t, about the equilibrium function for inflation, π`. House-

holds think they are in a stationary environment, i.e. they don’t expect that their

beliefs about this function will change in the future Given new information, house-

holds beliefs evolve according to

πe,h` (p∗t , t+ 1) = ωπ`(p
∗
t−1, t) + (1− ω)πe,h` (p∗t−1, t). (3.2)

The first-order condition of the firm when rt = r` can be written as

P̃`,t
Pt−1

=
Pt
Pt−1

Ke,f
`,t

F e,f
`,t

(3.3)

where

Ke,f
`,t = χ

(Y e,f
`,t )2

p∗t
+ θ

1

1 + r`
(πe,f`,t+1)

ε
[
pKe,f

`,t+1 + (1− p)Ke,f
n,t+1

]
(3.4)

and

F e,f
`,t =

Y e,f
`,t

Ce,f
`,t

+ θ
1

1 + r`
(πe,f`,t+1)

ε−1
[
pF e,f

`,t+1 + (1− p)F e,f
n,t+1

]
. (3.5)

7They can do so under the further heroic assumption that they can solve the problem that the
firm just solved.
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Here, F e,f
`,t , K

e,f
`,t , Y

e,f
`,t , C

e,f
`,t , and π

e,f
`,t denote firms’beliefs about Ft, Kt, Yt, Ct,

and πt when rt = r`. Similarly, F
e,f
n,t , K

e,f
n,t , Y

e,f
n,t , C

e,f
n,t , and π

e,f
n,t denote firms’beliefs

about Ft, Kt, Yt, Ct, and πt when rt = r. Here, the superscript, ’e’, indicates the

typical firms’belief about the value of the corresponding variable. Note that the

beliefs F e,f
`,t , K

e,f
`,t , and Y

e,f
`,t are derived from the beliefs Ce,f

`,t , and π
e,f
`,t which evolve

according to (3.1).

The first-order conditions of the household when rt = r` can be written

χC`,th`,t =
W`,t

P`,t
, (3.6)

and

1

C`,t
=

1

1 + r`
max {1, 1 + r + α(π`,t − 1)}

[
p

Ce,h
`,t+1π

e,h
`,t+1

+
1− p

Ce,h
n,t+1π

e,h
n,t+1

]
. (3.7)

Here C`,t, h`,t, R`,t, and
W`,t

P`,t
are the time t realized values of consumption, labor

supply, the nominal interest rate, and the real wage. Household beliefs about future

inflation evolve according to (3.2).

Definition 1. A learning ZLB equilibrium is a sequence of functions π`,t(·), C`,t(·),

h`,t(·), W`,t

Pt
(·), P̃t

Pt−1
(·), and R`,t(·) that satisfy the resource constraint, the monetary

policy rule, and the household and firm optimality conditions for all t, given an

initial set of beliefs πe,f` (·, 0), Ce,f
` (·, 0), and πe,h` (·, 0) that evolve according to (3.1)

and (3.2).

Here we have assumed that households and firms know the equilibrium functions

when rt = r, i.e. they have rational expectations about the economy when it’s not

in the ZLB.
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Our selection criterion for a rational expectations equilibrium (REE) is based on

the following notion of stability.

Definition 2. Suppose that in a neighborhood of a ZLB REE, either xe,f` (·, t− 1) is

not equal to x`(·) or πe,h` (·, t) is not equal to π`(·). Here π`(·) and x`(·) are the ZLB

REE functions for x` and π` . A ZLB REE is said to be stable-under learning if a

learning equilibrium converges back to the ZLB REE.

If the economy stays in the ZLB forever, it will converge to a steady state ZLB

REE. The learning equilibrium must also approach the same steady state if the initial

ZLB REE is stable under learning. This fact is very useful because it allows us to

eliminate all of the ZLB REE equilibria that lead to the low inflation ZLB steady

state REE as not being stable-under-learning.

We now establish this numerically and provide the underlying intuition. To this

end, suppose that a firm incorrectly believes that the steady state inflation rate is

πe,f` and that the economy is in the corresponding steady state. Also, assume that

p∗t−1 is consistent with this belief. Since the belief π
e,f
` is not a rational expectations

belief, f(πe,f` ) is not equal to zero. Note that there is an equivalence between the

belief πe,f` and the value of p̃e,f` that will be chosen by firms who can update their

price. So we use the function f(πe,f` ) to define a new function f̃ (p̃e`) that must be

equal to zero at a steady state ZLB REE.

Combining (3.3)-(3.5), using the aggregate resource (2.11) and the household

Euler equation (3.7) we represent the first order condition of the firm under consid-

eration as

F̃
(
p̃`, p̃

e,f
`

)
= 0. (3.8)
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Define the best-response function

p̃` = g(p̃e,f` ). (3.9a)

This function has the property,

F̃
(
g(p̃e,f` ), p̃e,f`

)
= 0, (3.10)

i.e. for arbitrary p̃e,f` , equation (3.8) is satisfied. In a steady state ZLB REE

p̃` = p̃e,f` . (3.11)

The typical firm’s belief about the current aggregate inflation, is given by

πe,f` =
(
θ + (1− θ)(p̃e,f` )1−ε

) 1
1−ε

. (3.12)

In an REE,

π` = πe,f` (3.13)

Figure 3.1 plots the typical firm’s best response function (3.9a), i.e. p̃` as a

function of p̃e,f` . The two steady state ZLB REE equilibria correspond to the two

points where the best response function intersects the 45 degree line. Notice that

given any belief, p̃e,f` , between the steady state REE ZLB beliefs, the best response

g(p̃e,f` ) is greater than p̃e,f` . It follows that realized inflation will exceed beliefs about

inflation. So the learning equilibrium will move towards the high inflation ZLB REE

steady state. Now consider any belief, p̃e,f` , that exceeds its value in the high inflation
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Figure 3.1: Best Response Function

0.75 0.80 0.85 0.90 0.95 1.00

p̃
e, f
`

0.75

0.80

0.85

0.90

0.95

1.00

g(
p̃
e,
f

`
)

29



steady state REE. Here the best response function g(p̃e,f` ) is less than p̃e,f` . So realized

inflation will be lower than beliefs about inflation and the learning equilibrium will

move towards the high inflation ZLB REE steady state. Finally, consider any belief,

p̃e,f` , that is less than its value in the low inflation ZLB REE steady state. Here the

best response function g(p̃e,f` ) is less than p̃e,f` . It follows that realized inflation will

be lower than beliefs about inflation. So the learning equilibrium will move away

from the low inflation RE steady state.

The basic intuition for the previous results is as follows. Consider a firm whose

expectations p̃e,f` aren’t equal to an REE value. Associated with p̃e,f` is an expectation

about aggregate consumption and the wage rate. In the ZLB, a low value of p̃e,f`

implies a low expected value of inflation and a high value of the real interest rate.

From the household’s Euler equation (2.14), we see that a high real rate means that

aggregate consumption will be low. The production function and the household’s

first-order condition imply that aggregate employment and the real wage will also

be low. It follows that a low value of p̃e,f` is associated with a low expected value

of marginal cost. Since the firm’s price is an increasing function of marginal cost, a

low value of p̃e,f` will be associated with a low value of p̃`. This result is shows up in

Figure 3.1 since the best response function is an increasing function of p̃` when the

ZLB binds.

We now show that a small change in p̃e,f` is associated with a smaller movement

in marginal cost when we start from the high inflation ZLB REE (point B in Figure

3.2) than when we start from the low inflation ZLB REE (point A in Figure 3.2).

As it turns out the basic force driving the result is that the consumption response to

changes in inflation are much larger when inflation is low (near point A) than when

inflation is high (near point B).

Consider the change in the expected real wage associated with a change in p̃e,f` :
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Figure 3.2: Expected Changes in Marginal Cost
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dwe,ft

dp̃e,f`
=
d
(
χ
(Ge,f` +Ce,f` )Ce,f`

p∗`

)
dp̃e,f`

= χ

(
Ge,f
` + 2Ce,f

`

p∗`

)
dCe,f

`

dπe,f`

dπe,f`
dp̃e,f`

−χ
(

(Ge,f
` + Ce,f

` )Ce,f
`

(p∗`)
2

)
dp∗`
dp̃e,f`

.

(3.14)

Figure 3.2 displays the behavior of this derivative as a function of p̃e,f` . As it turns out,

the key determinant of this derivative is the first group of terms on the right hand

side of the equation. That term captures the effect of p̃e,f` on aggregate consumption,

hours worked, and the real wage that operate through the real interest rate. To

analyze this effect, we re-write the household’s Euler Equation when the ZLB binds

as

1 =
1

1 + r`

[
p

π`
+

(1− p)C`
C(p∗`)π(p∗`)

]
. (3.15)

When π` is near 1, there is a negative relationship between C` and π` that is roughly

linear. For values of π` that are relatively far from 1, C` is more sensitive to changes

in π`. This increased sensitivity reflects the convexity of the term p/π` which appears

in the household’s Euler equation. Since dπe,f`
dp̃e,f`

is roughly a constant, this convexity

implies that the derivative of wages with respect to p̃e,f` is much larger at point A

than at point B.

Next, consider the second term in 3.14 that involves dp∗`
dp̃e,f`

. This term captures the

impact of changes in p∗` on marginal cost induced by a change in p̃
e,f
` . Equation (2.10)

implies that the amount of labor required to produce a given Yt depends negatively

on p∗t . At the steady state ZLB REE , an increase in p̃
e,f
` leads a rise in inflation and

a higher value of p∗` . So less labor is needed to produce the same amount of output.

Other things equal this effect induces a decline in hours worked, the real wage rate

and marginal cost.
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Figure 3.2 displays dp∗`
dp̃e,f`

as a function p̃e,f` .
8 Note that at point B, p∗` is near one

and dp∗`
dp̃e,f`

is near zero. In contrast, at point A, p∗` is roughly 0.9 and dp∗`
dp̃e,f`

is greater

than zero. So other things equal, a firm contemplating a decrease in p̃e,f` thinks that

marginal costs are falling more if its initial expectations are near point A rather than

point B. But this effect is small relative to the impact of the first term in 3.14.

Critically, dw
e,f
t

dp̃e,f`
is bigger at point A than at point B. So at point A a firm will

increases its price by more than it would at point B. Critically, at point A the firm

increases its price by more than one-for-one with an increase in p̃`. In sharp contrast,

a firm at point B will increase its price by less than one-for-one with expected increase

in p̃`. This result is precisely why the low-inflation steady state ZLB REE is not stable

under learning and the high-inflation steady state ZLB REE is stable under learning.

The previous discussion focused on the limiting point of the ZLB REE. To be

stable-under-learning, the functions defining a learning equilibrium must converge

point wise to the functions defining a ZLB REE for every possible value of p∗t . The

previous discussion establishes that any ZLB REE that converges to the low inflation

ZLB REE steady state does not satisfy this condition, and is therefor not stable-

under-learning. It does not establish that a ZLB REE equilibrium that converges to

the high inflation steady state ZLB REE is stable-under-learning. We now establish,

numerically, the stability-under-learning of such an equilibrium.

Recall that we parameterize the ZLB REE functions with a finite number of

parameters, zt. The learning algorithm specified above defines a mapping from the

current values of those parameters to the values that they take in the subsequent

period

zt+1 = s (zt) . (3.16)

8We compute this term using the fact that p∗t =
[
(1− θ)p̃t + θπεt (p

∗
t−1)

−1]−1 .
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Define

S(z̃) =

[
dsi (z)

dzj

]
|z̃, (3.17)

for all i, j < N where N is the number of parameters. When we evaluate S for the

parameters of the high inflation ZLB REE, we find that the maximum eigenvalue is

less than one in absolute value. Consider a learning equilibrium. The previous result

establishes that, locally, beliefs in the neighborhood of the high inflation ZLB REE

will converge to REE beliefs. By contrast, when we evaluate S for the parameters

of the low inflation ZLB REE, we find that the maximum eigenvalue is greater than

one in absolute value. This result implies that beliefs in the neighborhood of the

low-inflation ZLB REE will diverge from the REE beliefs.

To illustrate the process of convergence and divergence, suppose that at time −1

the economy is in the high inflation steady state ZLB REE where p∗−1 = p`. Then

at time 0, for reasons unexplained, (i) xe,f` (p∗−1,−1) = x`(p
∗
−1) + x̄`,where x̄` is a

positive constant, and (ii) all agents think that if the ZLB ends, the economy will

be in a REE that converges to the high inflation steady state.9 For simplicity we

assume that the parameter ω in (3.1) and (3.2) is equal to one.

The first panel of Figure 3.3 displays the evolution of realized inflation for x̄`=

(-.02,-.01, 0, 0.01, 0.02). The red line corresponding to x̄` = 0.0 is the inflation

rate in the high inflation steady state ZLB REE. Regardless of the value of x̄`,

inflation converges to the high inflation steady state ZLB REE. The second panel

is the analog to the first, where we begin from the low inflation steady state ZLB

REE. Here inflation diverges from that equilibrium in the learning equilibrium. For

positive values of x̄`, inflation converges to the high inflation steady state ZLB RE

equilibrium. Interestingly for x̄` < 0, there does not exist an interior ZLB learning

9We obtain virtually identical results regardless of whether x̄` is applied to firms’beliefs about
only inflation, only consumption or both.
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Figure 3.3: Learning Equilibria Near Steady State ZLB
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equilibrium.

Until now we supposed that agents believe that once the ZLB is not binding, the

economy will go to an REE that converges to the high inflation steady state. It’s

natural to ask what happens if agents believe that the economy will converge to the

low inflation steady state. Figure 3.4 is the analog to Figure 2.1 for this alternative

assumption. Notice that the curve is shifted to the left, meaning that there are two

steady state ZLB REE, and their inflation rates are lower than under our previous

assumptions. The reason that the curve is shifted to the left is that agents expect a

lower rate of inflation after the ZLB is over. This effect means that the real interest

in the ZLB is higher which leads to lower consumption.

It is still the case that REE which converge to the low inflation steady state are

not stable-under-learning while those which converge to the high inflation steady

state are stable-under-learning. So regardless of which assumption we make about

agents beliefs about the post ZLB period the high inflation ZLB RE equilibrium is

stable-under-learning and the low inflation ZLB RE equilibrium is not.
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Figure 3.4: Steady State ZLB Equilibrium Function, Alternative SS Expectations
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We conclude by noting, that there may be multiple RE ZLB equilibria that con-

verge to the high inflation steady state ZLB equilibrium. But as a practical matter

we could find not any of those equilibria. As it turns out, this potential ambiguity

is resolved once we redo the analysis using consider the Rotemberg model.

4. Fiscal Policy in the Learning Equilibrium

In this section we analyze the value of government spending multipliers in the learning

equilibrium. The effect of learning dynamics on fiscal policy is interesting because the

Great Recession was such an unusual event and the rational expectations assumption

is of questionable validity.

4.1. Fiscal policy under benchmark learning scheme

We initially assume that agents think that when the ZLB episode is over, the economy

reverts to the REE that converges to the high inflation steady state. Later we assess

the robustness of our results to this assumption.

Assume that the economy begins in the steady state of the high inflation REE.

At time 0, p∗−1 = 1, r falls to r` and evolves according to (2.1). Firms and households

beliefs about equilibrium functions evolve according to (3.1) and (3.2).

Figure 4.1 displays the paths of consumption, inflation, and the government

spending multiplier in the learning equilibrium (the blue lines), as well as the high-

inflation ZLB REE paths (the green lines). The paths for inflation and consumption

are computed holding government consumption at its steady state value (0.20). No-

tice that consumption and inflation converge to the high inflation steady state ZLB

REE from above. The reason is that agents initially have expectations about inflation

and consumption that are higher than warranted after the shock to r. Expectations
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Figure 4.1: Learning Equilibrium, Starting from Steady State
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Figure 4.2: Learning Equilibrium, Starting Near Low-Inflation RE ZLB Equilibrium
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about higher future inflation and consumption spur demand in the present. As ex-

pectations adjust downward in response to the ongoing binding ZLB, inflation and

consumption decline further. The value of the multiplier is initially low because the

ZLB isn’t binding in the first few periods. Once the ZLB starts to bind, the multiplier

quickly rises above 1.

Now imagine that after the shock to rt, firms and household have beliefs near

the low-inflation ZLB REE. Figure 4.2 displays the paths of consumption, inflation,

and the government spending multiplier in the learning equilibrium (the blue lines),

as well as the high-inflation ZLB REE paths (the green lines). As before, the paths

for inflation and consumption are computed holding government consumption at
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its steady state value (0.20). Notice that consumption and inflation converge to

the high inflation steady state ZLB REE from below. The reason is that agents

initially expect future inflation and consumption to be low. These expectations

current consumption and inflation. The multiplier has an initial value of about

1 and then rises. The reason the multiplier rises is that the fiscal expansion helps

quickly move expectations toward those associated with the high-inflation ZLB REE.

Notably, the multiplier continues to rise for some time. After many periods, the

multiplier eventually approaches the high-inflation RE ZLB steady-state equilibrium

value.

We conclude that in both scenarios the multiplier is large and eventually to its

value in the ZLB REE.

4.2. Reconciling with Mertens and Ravn (2015)

Mertens and Ravn (2015) report that the fiscal multiplier is small when they analyze

a learning equilibrium near the low inflation steady state ZLB REE. This result con-

trasts sharply with our result that the multiplier is very large when we begin near

the same equilibrium. There are four differences our analysis and theirs’. First, they

work with a linearized Calvo model when they study the learning equilibrium,. Sec-

ond, they assume that firms who choose prices at time t, see the time t aggregate price

level when they choose prices. Third, they model household learning behavior about

future consumption as in Evans and Honkapohja (2001). In contrast we suppose that

households believe that the function mapping the state p∗t−1 to the household con-

sumption decision is the same in the subsequent period. Fourth, the experiment that

underlies their multiplier calculation is subtly but very significantly different than

ours. When we calculate the multiplier we initially consider an economy in which
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agents initial expectations about inflation differ by επ from the low inflation steady

state ZLB REE. We then consider a separate economy with shocks that set r to r`

and a shock to G. Agents’expectations about inflation and consumption start in the

same place for the two economies. We then use the difference in output between the

two economies to calculate the multiplier. Mertens and Ravn (2015) proceed in the

same way with one crucial difference.When G increases, the rate of inflation in the

steady state low inflation ZLB REE falls by ε′π. When Mertens and Ravn raise G in

the learning equilibrium, they also decrease agents’expectations about inflation by

ε′π. As discussed above, this fall in inflation expections would in and of itself reduce

output in the ZLB.

In the Appendix we show that first three differences between our analysis and

Mertens and Ravn (2015) do not have a large impact on the mutliplierIn contrast the

fourth difference is very important. Figure 4.3 displays the multiplier as a function of

time if we adopt the assumption of Mertens and Ravn (2015) about how expectations

about inflation change when G increases. Notice that we obtain a negative multiplier

that persists for roughly 10 years. This results reflects that, in this example, the

change in expectations is quantitatively much more important than the increase in

G. From our perspective, the Mertens and Ravn experiment confounds the effects

of two shocks.

5. The Rotemberg Model

A number of authors have studied the behavior of the economy in the ZLB inter-

preting the price frictions in the EW analysis as stemming from adjustment costs

as proposed by Rotemberg (1982). A prominent example in this literature is Braun,

Boneva and Waki (2015) who study the accuracy of linear approximations to the
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Figure 4.3: Multiplier with Shock to Expectations
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model.10 This model is interesting because it implies the same linearized equations

that EW study. In this section we highlight an important potential shortcoming

of using Rotemberg adjustment costs when studying multiplicity and learnability

issues.

With once exception, the Rotemberg model is identical to the Calvo model dis-

cussed above. The exception is that instead of (2.7) - (2.8) we assume that the

monopolist who produces the jth good has the following objective:

Et

∞∑
k=0

βkλt+k[(1 + ν)
Pj,t+k
Pt+k

Yj,t+k − st+kYj,t+k − Φt+k

(
Pj,t+k
Pj,t+k−1

− 1

)2
]. (5.1)

The variable Φt denotes a potentially state dependent function that scales the firm’s

costs of adjusting prices. In the classic Rotemberg model,

Φt = φ (5.2)

To accommodate growth, Christiano and Eichenbaum (2012) assume

Φt =
φ

2
(Ct +Gt). (5.3)

In contrast, authors like Braun et. al. (2015) and Gust, Herbst, Lopez-Salido and

Smith (2015), assume

Φt =
φ

2
Yt. (5.4)

As it turns out, existence and learnability of equilibria in the Rotemberg model

depend on exactly which specification of Φt one adopt.

10Braun, Boneva, and Waki (2015) paper was first written in 2012. As best as we can tell, it
is the first paper to analyze the accuracy of the linearized EW model of the ZLB relative to the
underlying nonlinear model.
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It is well known that an interior minimum state variable equilibrium for all three

versions of the Rotemberg model is a set of eight numbers:

π,C,R, h, π`, C`, R`, h`,

that, when rt = r`, satisfy:

R` = max

{
1,

1

β
+ α (π` − 1)

}
(5.5)

1

R`

=
1

1 + r`

[
p
C`
π`C`

+ (1− p) C`
πC

]
(5.6)

h` = C` +G` + Φ` (π` − 1)2 (5.7)

(π` − 1) π` =
1

2Φ`

ε (χh`C` − 1)
[
C` +G` + Φ` (π` − 1)2

]
(5.8)

+
1

1 + r`

[
p (π` − 1)π` + (1− p) (π − 1)π

C`
C

Φ

Φ`

]

Subscript ` denotes the value of a variable when rt = r` and no subscript denotes

the value of a variable after rt = r.11

The equations defining a RE equilibrium collapse into one equation in one un-

known, π`,

f(π`) = 0. (5.9)

This equation is analogous (2.15) in the Calvo model. The key difference is that the

latter is an equation that determines the steady state ZLB REE. Since there is no

state variable in the Rotemberg model, (5.9) determines the ZLB equilibrium values

so long as rt = r`.

11We formally derive these equations in the appendix and describe the way we solve for an
equilibrium.
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Figure 5.1: f(π`) in Rotemberg Model
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The two panels of Figure 5.1 plot f(π`) for Φt given by (5.2) and (5.3). In all

cases we use the benchmark parameters given in (2.16). The parameter φ is chosen

so that the log-linearized model implies the same system of equations implied by the

log-linearized Calvo model, respectively.12 The domain of admissible values of π` is

restricted by the conditions that C` > 0 and Y` > 0.

Two features of the figures are worth noting. First, the plots of f(π`) are very

similar when Φt is given by (5.2) or (5.3). Second, there are two ZLB equilibria, both

of which feature deflation. Note that the curve looks very similar to the analogous

curve that determines the two steady state ZLB REE in the non-linear Calvo model.

The two panels of Figure 5.1 display f(π`) for different specifications for Φt. The

first and second panel correspond to the case where Φt is given by (5.2) and (5.3),

respectively. Both specification give rise to f(π`) functions that are similar to each

other and to (2.15). The level of inflation in that equilibrium is similar to the level

of inflation in the stable - under-learning ZLB REE of the Calvo model.

12Given our normalization that steady state output is one, this requirement implies that φ satisfies
(ε− 1)φ = (1−θ)(1−βθ)

θ .
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Figure 5.2: f(π`) in Rotemberg Model

0.90 0.95 1.00 1.05 1.10

π`

0.04

0.02

0.00

0.02

0.04

f (
π
`
)

Φt = (φ/2)Yt

0.90 0.95 1.00 1.05 1.10

π`

0.04

0.02

0.00

0.02

0.04

f (
π
`
)

Φt = (φ/2)Yt, Alternative Parameters

Figure (5.2) displays f(π`) for the case where Φt is given by (5.4) and our bench-

mark parameter values. Notice that there are two equilibria when rt = r`. In one

case the ZLB binds and that equilibrium is stable under learning. In the other case

the ZLB doesn’t bind. As it turns out with this specification of Φt it is possible to

generate more exotic equilibria. The second panel of Figure 5.2 is the analog to the

first except that model’s parameters are given by:

ε = 7.0, β = 0.99, α = 2.0, p = 0.83,

r` = −0.0001, φ = 200, ηg = 0.2, g` = 0.23

Strikingly when rt = r` there are now two equilibria where the ZLB binds and

two equilibria where the ZLB isn’t binding. This example is consistent with results

in Braun et. al. (2015). Note that in both panels of Figure 5.2 f(π`) has asymptotes,

at quarterly rates of deflation and inflation of 10%. At these rates of inflation, the

costs of adjustment consume all of output so that consumption can no longer be

non-negative.

46



It is easy to characterize which ZLB equilibria are stable under learning for the

Rotemberg model. Going from left to right in the plots, whenever f(π`) crosses from

above, the equilibrium is stable under learning. From figure 5.1, we see that when Φt

is given by (5.2) or (5.3) there is a unique equilibrium that is stable under learning.

That equilibrium is the one with less deflation. When Φt is given by (5.4) and we

work with the benchmark parameter values there is only one ZLB equilibrium and

it is stable under learning. Notably, the non-ZLB equilibrium is not stable when

adjustment costs are given by (5.4). Even with two ZLB equilibria, as in the second

panel of 5.2, there is only one that is stable under learning. Interestingly, that

equilibrium is the one that has more deflation. So our key conclusion from Calvo for

the Rotemberg model: there is a unique ZLB REE that is stable under learning.

Unlike the Calvo model, the multiplier in the ZLB for the Rotemberg model is

constant. Table 5.1 summarizes the values of the multiplier for the equilibria in

Figures 5.1 and 5.2 that are stable. Notice that these multipliers are remarkably

similar to each other and to the multiplier in the linear Calvo model (1.63). Viewed

as a whole our results strongly support the view that once we focus on learnable

equilibria, the implications of the NK model for multipliers in the ZLB are very

robust: the multiplier is large and increasing the more binding is the ZLB.13

6. Conclusion

In this paper we analyze whether the non-uniqueness of equilibria in NKmodels poses

a substantive challenge to the key conclusions in the literature about the effi cacy of

13When adjustment costs are scaled by (5.2) or (5.3), we are able to find sunspot equilibria similar
to the equilibria studied by Mertens and Ravn (2015). However, when adjustment costs are scaled
by (5.4), there is no such ZLB equilibrium under our benchmark parameterization. Instead, the
sunspot equilibrium exhibits high inflation. Again, we find that the sunspot equilibrium is not
stable under learning.
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Table 5.1: Multipliers in the Rotemberg Model

Adj. Cost Stable Equilibrium Unstable Equilibrium
Φt = φ

2
1.56 0.98

Φt = φ
2

(Ct +Gt) 1.70 0.36
Φt = φ

2
Yt 1.65 1.07

fiscal policy in ZLB episodes. We argue that it does not. This conclusion rests on our

view that if an REE is not stable-under learning, then it is simply too fragile to be

taken seriously as a description of the data. We make our argument using particular

models of learning. While we have explored alternative learning mechanisms, it is

certainly possible that there exist alternative learning models for which our results

do not go through. Still we believe our results are very supportive of the view

that the key properties of linearized NK models regarding the impact of changes in

government consumption in the ZLB are robust and should be taken seriously.
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