©Kiminori Matsuyama,	HMF and	Trade Between	Rich & Poo

The Home Market Effect and Patterns of Trade Between Rich and Poor Countries

Kiminori Matsuyama Northwestern University

December 2015

Introduction

- Empirically rich (poor) countries tend to export high (low) income elastic products
- Standard trade models assume *homothetic preferences* to focus on the supply side determinants of the patterns of trade
- Just adding *nonhomothetic preferences* in the standard models would, *ceteris paribus*, make rich countries *import* high income elastic goods
- *Virtually* all models of trade with nonhomothetic preferences *assume* that the rich have CA in high income elastic goods.
 - ✓ Ricardian: Flam-Helpman (1987), Stokey (1991), Matsuyama (2000), Fieler (2011)
 - ✓ Factor endowment: Markusen (1986), Caron-Fally-Markusen (2014)

These models suggest that the rich export high income elastic goods *despite* they demand relatively more of them.

• Here, we explain *why* the rich have CA in high income elastic goods based on *Home Market Effect*, suggesting that the rich export high income elastic goods *because* they demand relatively more of them.

Home Market Effect (HME): Krugman's (1980) example

- Two Dixit-Stiglitz monopolistic competitive sectors, $\alpha \& \beta$, with iceberg trade costs
- One factor of production (labor)
- Two countries of equal size, A & B, mirror-images of each other
 - \circ A is a nation of α-lovers; with the minority of β-lovers.
 - \circ B is a nation of β-lovers, with the minority of α-lovers.

In equilibrium,

- Under autarky, proportionately large share of firms in A operates in sector α .
- Under trade, disproportionately large share of firms in A operates in sector α .
- A becomes a net-exporter in α ; B a net exporter in β .

Key Insight: With scale economies and positive but finite trade costs, a relatively larger domestic market is a source of comparative advantage.

Notes: In Krugman (1980),

- Demand composition differs across countries due to *exogenous variations in taste*
- The mirror image setup obscures crucial factors of HME. Also restricts comparative static exercises

This Paper: Krugman-type HME model with demand composition difference due to nonhomothetic preferences. Also dispenses with the mirror-images setup.

- Continuum of Dixit-Stiglitz monopolistic competitive sectors with iceberg trade costs
- Two countries; may differ only in per capita labor endowment and population size.
- Preferences across sectors: Implicitly Additively Separable Nonhomothetic CES
 - o Sectors indexed such that their income elasticity is increasing in the index.
 - o The Rich has relatively larger domestic market than the Poor in the higher indexed

Under Trade Equilibrium, HME implies

- The Rich's share of firms are disproportionately larger in higher-indexed sectors
- The Rich run trade surpluses (deficits) in higher (lower)-indexed sectors.

Comparative Statics: *Due to endogenous demand compositions*, uniform productivity improvement and a trade cost reduction cause

- *Product cycles:* The Rich switches from a net exporter to a net importer in the middle
- Welfare gaps to widen (narrow), when different sectors produce substitutes (complements)
- When two countries differ in size, a trade cost reduction has additional effects due to the ToT change; *Leapfrogging* and *Reversal of the patterns of trade*

Explicitly vs. Implicitly Additive Separability: Hanoch (1975)

Explicit Additivity:
$$u = \int_{0}^{1} f_{s}(c_{s}) ds;$$
 CES if $u = \int_{0}^{1} \omega_{s}(c_{s})^{1-1/\eta} ds$

Pigou's Law: Income Elasticity of Good s = constant

Price Elasticity of Good s

Two Problems:

- i) Empirically false (Deaton 1974 and others)
- ii) Conceptually impossible to disentangle the effects of income elasticity differences from those of price elasticity differences

Implicit Additivity:
$$\int_{0}^{1} f_{s}(u, c_{s}) ds = 1;$$
 CES if
$$\int_{0}^{1} \omega_{s}(u) (c_{s})^{1-1/\eta} ds = 1$$

- i) Price elasticities & income elasticities can be separate parameters.
- ii) Nonhomothetic CES if $\frac{\partial \log \omega_s(u)}{\partial u}$ varies with s. When we can index s to make it

monotone increasing in s,
$$\frac{\partial^2 \log \omega_s(u)}{\partial s \partial u} > 0$$
, \log -supermodularity

Fajgelbaum-Grossman-Helpman (2011); FGH

- A monopolistic competitive sector producing indivisible products with trade costs, with two segments, H&L, across which products are *vertically* differentiated.
- A competitive outside sector producing the divisible numeraire to pin down the ToT
- Each household consumes one unit of a particular product from either H or L.
 - o A discrete choice model a la McFadden, a nested-logit demand structure
 - o The rich consumers more likely to choose an H-product if marginal utility of the numeraire is higher when combined with an H-product
- The Rich (Poor) becomes a net-exporter of high-quality H (low-quality L) products.

FGH focuses on specialization along the quality dimension within a single industry. Our model focuses on specialization across a broader range of industries.

Some Advantages of Our Framework

- A minimum departure from the standard HME models
- Parsimonious and yet flexible
 - o Comparative statics with any number of sectors and the ToT effect
 - o Income elasticities are separate parameters from price elasticities
 - o Different sectors may produce substitutes, as in Flam-Helpman (1987), Stokey (1991), and FGH (2011), or complements, as in Matsuyama (2000)

Organization of the Paper

- 1. Introduction
- 2. HME with Nonhomothetic Preferences
 - 2.1 The Model
 - 2.2 Autarky Equilibrium
 - 2.3 Trade Equilibrium and Patterns of Trade
 - 2.4 Ranking the Countries
 - 2.5 Comparative Statics
 - 2.5.1 A Uniform Productivity Improvement
 - 2.5.2 A Trade Cost Reduction without ToT change
 - 2.5.3 A Trade Cost Reduction with ToT Change
- 3. HME with Exogenous Taste Variations: A Comparison
- 4. Adding an Outside Goods Sector
- 5. Concluding Remarks

Appendix: Two Lemmas

Home Market Effect with Nonhomothetic Preferences

One Nontradeable Factor (Labor)

Two Countries: (j or k = 1 or 2)

 N^{j} identical households with labor endowment h^{j} , supplied inelastically at w^{j} .

- $w^{j}h^{j} = E^{j}$: Household Income (and Expenditure)
- $L^{j} = h^{j} N^{j}$; Total Labor Supply in j

 N^{j} and h^{j} are the only possible sources of heterogeneity across the two countries.

Tradeable Goods:

- A continuum of monopolistically competitive sectors, $s \in [0,1]$,
- Each sector produces a continuum of tradable differentiated goods, $v \in \Omega_s = \Omega_s^1 + \Omega_s^2$,

 Ω_s^j : Disjoint sets of differentiated goods in sector s produced in country j in equilibrium

Household Preferences: Two-Tier structure

Lower-level, usual Dixit-Stiglitz aggregator (Homothetic within each sector)

$$\widetilde{C}_s^k \equiv \left[\int_{\Omega_s} \left(c_s^k(v) \right)^{1 - \frac{1}{\sigma}} dv \right]^{\frac{\sigma}{\sigma - 1}}; \ \sigma > 1, \quad s \in [0, 1]$$

Upper-level, $\widetilde{U}^k = U(\widetilde{C}_s^k, s \in [0,1])$, implicitly given by

$$\int_0^1 (\beta_s)^{\frac{1}{\eta}} \left(\widetilde{U}^k \right)^{\frac{\varepsilon(s) - \eta}{\eta}} \left(\widetilde{C}_s^k \right)^{\frac{\eta - 1}{\eta}} ds \equiv 1; \ \beta_s > 0 \ \text{and} \ \sigma > \eta \neq 1$$

- $(\varepsilon(s) \eta)/(1 \eta) > 0$ for global monotonicity & quasi-concavity
- $\int_0^1 \varepsilon(s) ds = 1$, without loss of generality.
- If $\varepsilon(s) = 1$ for all $s \in [0,1]$, standard homothetic CES
- If $\varepsilon(s) \neq 1$, nonhomothetic. Index sectors so that $\varepsilon(s)$ is increasing in $s \in [0,1]$. Then,

$$\omega(s, \widetilde{U}^k) \equiv (\beta_s)^{\frac{1}{\eta}} (\widetilde{U}^k)^{\frac{\varepsilon(s)-\eta}{\eta}}$$
 is **log-supermodular** in s and \widetilde{U}^k .

Lemma 1: For a positive value function, $\hat{g}(\bullet;x)$: $[0,1] \rightarrow \mathbb{R}_+$, with a parameter x, define

$$g(s;x) = \frac{\hat{g}(s;x)}{\int\limits_{0}^{1} \hat{g}(t;x)dt} \text{ (a density function) and } G(s;x) = \int\limits_{0}^{s} g(t;x)dt = \int\limits_{0}^{s} \hat{g}(t;x)dt = \int\limits_{0}^{s} \hat{g}(t;x)dt$$
 (its

cumulative distribution function).

If $\hat{g}(s;x)$ is **log-supermodular** in s and x, i.e. $\frac{\partial^2 \log \hat{g}(s;x)}{\partial s \partial x} > 0$,

- i) $\frac{g(s;x)}{g(s;x')}$ is decreasing in s for x < x'; Monotone Likelihood Ratio (MLR)
- ii) G(s;x) > G(s;x') for x < x'. First-Order Stochastic Dominance (FSD)

The happier households put more weights on the higher-indexed goods.

Household Maximization: Two-Stage Budgeting

1st **Stage** (**Lower-level**) **Problem:** Chooses $c_s^k(v)$ for $v \in \Omega_s$ to:

Max
$$\widetilde{C}_s^k \equiv \left[\int_{\Omega_s} (c_s^k(v))^{1-\frac{1}{\sigma}} dv \right]^{\frac{\sigma}{\sigma-1}}$$
, subject to $\int_{\Omega_s} p_s^k(v) c_s^k(v) dv \leq E_s^k$,

 $p_s^k(v)$ & $c_s^k(v)$: the unit consumer price and consumption of variety $v \in \Omega_s$;

 E_s^k : Expenditure allocated to sector-s, taken as given.

Solution:

$$c_s^k(v) = \left(\frac{p_s^k(v)}{P_s^k}\right)^{-\sigma} C_s^k = \frac{\left(p_s^k(v)\right)^{-\sigma}}{\left(P_s^k\right)^{1-\sigma}} E_s^k, \text{ where } P_s^k \equiv \left[\int_{\Omega_s} \left(p_s^k(v)\right)^{1-\sigma} dv\right]^{\frac{1}{1-\sigma}}$$

 C_s^k : the maximized value of \widetilde{C}_s^k , satisfying $E_s^k = P_s^k C_s^k$.

2nd stage (Upper Level) Problem: Choose $E_s^k = P_s^k C_s^k$ to:

Max
$$\widetilde{U}^k$$
, subject to $\int_0^1 (\beta_s)^{\frac{1}{\eta}} (\widetilde{U}^k)^{\frac{\varepsilon(s)-\eta}{\eta}} (C_s^k)^{\frac{\eta-1}{\eta}} ds \equiv 1$ and $\int_0^1 P_s^k C_s^k ds = \int_0^1 E_s^k ds \leq E^k$.

Solution: the share of sector-s in k's expenditure, m_s^k

$$m_s^k \equiv \frac{E_s^k}{E^k} \equiv \frac{P_s^k C_s^k}{E^k} = \frac{\beta_s \left(U^k\right)^{\varepsilon(s)-\eta} \left(P_s^k\right)^{1-\eta}}{\int\limits_0^1 \beta_t \left(U^k\right)^{\varepsilon(t)-\eta} \left(P_t^k\right)^{1-\eta} dt},$$

where U^k is the maximized value of \tilde{U}^k , given implicitly by:

$$(E^k)^{1-\eta} = \int_0^1 \beta_s (U^k)^{\varepsilon(s)-\eta} (P_s^k)^{1-\eta} ds.$$
 (*U*^k is strictly increasing in *E*^k.)

Notes:

- $\partial \log(m_s^k/m_{s'}^k)/\partial \log(U^k) = \varepsilon(s) \varepsilon(s')$. Higher-indexed more income elastic; Income elasticity differences are constant across different per capita income levels.
- $\beta_s(U^k)^{\varepsilon(s)-\eta}(P_s^k)^{1-\eta}$ is log-supermodular in s and U^k . From **Lemma 1**, for fixed prices, a higher E^k (and U^k) shifts the expenditure share towards higher-indexed.

The Rest of the model: Deliberately kept the same with Krugman (1980).

Iceberg Trade Costs: Only $1/\tau < 1$ fraction of exports survives shipping, reducing the export revenue to its fraction, $\rho \equiv (\tau)^{1-\sigma} < 1$

CES Demand for each good; $D_s(v) = A_s^j(p_s^j(v))^{-\sigma}, v \in \Omega_s^j$, where

 $A_s^j \equiv b_s^j + \rho b_s^k \ (k \neq j)$: Aggregate demand shifter for the producers in j in s

$$b_s^k \equiv \beta_s (E^k)^{\eta} (U^k)^{\varepsilon(s)-\eta} N^k (P_s^k)^{\sigma-\eta}$$
; k's demand shifter for sector s

Standard CES demand curve, but U^k affects b_s^k and hence A_s^j differently across s.

Constant Mark-Up: ψ_s units of labor to produce one unit of each variety in sector-s

$$p_s^j(v) = \frac{w^j \psi_s}{1 - 1/\sigma} \equiv p_s^j \text{ for } v \in \Omega_s^j$$

Free Entry (Zero-Profit) Condition: ϕ_s units of labor per variety to set up in sector-s.

Labor Market Equilibrium: $\int_{0}^{1} f_{s}^{j} ds = 1$, f_{s}^{j} : sectoral share in employment (and value-added) and, if appropriately normalized, in the measure of firms (and varieties).

Autarky Equilibrium ($\rho = 0$):

Standard-of-Living: $U_0^k = u(x_0^k)$ where $x_0^k \equiv (h^k)^{\sigma} N^k = (h^k)^{\sigma-1} L^k$ where u(x) is defined implicitly by $(x)^{\left(\frac{1-\eta}{\sigma-\eta}\right)} \equiv \int_0^1 (\beta_s(u(x))^{(\varepsilon(s)-\eta)})^{\left(\frac{\sigma-1}{\sigma-\eta}\right)} ds$.

- $U_0^k = u(x_0^k)$ is increasing both in h^k and in N^k . Aggregate increasing returns
- Even if $h^1 > h^2$, $U_0^1 < U_0^2$ holds when $L^1 / L^2 < (h^1 / h^2)^{1-\sigma} < 1$.

Market Size (and Firm) Distributions:
$$f_s^k = m_s^k = \frac{\left(\beta_s \left(u(x_0^k)\right)^{(\varepsilon(s)-\eta)}\right)^{\frac{\delta-1}{\sigma-\eta}}}{\int_0^1 \left(\beta_t \left(u(x_0^k)\right)^{(\varepsilon(t)-\eta)}\right)^{\frac{\sigma-1}{\sigma-\eta}} dt}$$

Notes:

- In autarky, firms (and labor) are distributed proportionately with market sizes.
- $\left(\beta_s\left(u(x_0^k)\right)^{(\varepsilon(s)-\eta)}\right)^{\frac{\sigma-1}{\sigma-\eta}}$ is log-supermodular in s and x_0^k . From **Lemma 1**, With a higher $x_0^k \equiv \left(h^k\right)^{\sigma} N^k$, the household becomes happier and spends relatively more on higher-indexed goods in equilibrium.

• Compare
$$m_s^k = \frac{\left(\beta_s \left(u(x_0^k)\right)^{(\varepsilon(s)-\eta)}\right)^{\frac{\sigma-1}{\sigma-\eta}}}{\int_0^1 \left(\beta_t \left(u(x_0^k)\right)^{(\varepsilon(t)-\eta)}\right)^{\frac{\sigma-1}{\sigma-\eta}} dt}$$
 & $m_s^k = \frac{\beta_s \left(U^k\right)^{\varepsilon(s)-\eta} \left(P_s^k\right)^{1-\eta}}{\int_0^1 \beta_t \left(U^k\right)^{\varepsilon(t)-\eta} \left(P_t^k\right)^{1-\eta} dt}$ and

notice
$$\frac{\sigma - 1}{\sigma - \eta} > 1$$
 iff $\eta > 1$.

Given price indices, $U \uparrow$ shifts the expenditure toward the higher-indexed.

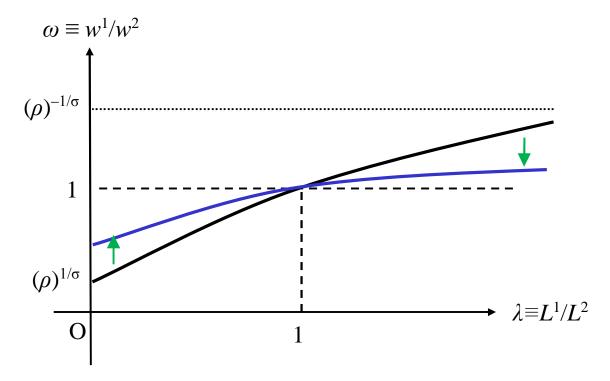
In equilibrium, this causes entries (exits) and hence more (less) varieties in the higher (lower)-indexed sectors, reducing the effective relative prices of higher-indexed goods, which amplifies (moderates) the shift if $\eta > (<)$ 1.

- $\frac{d \log u(\lambda x)}{d \log \lambda} = \frac{\lambda x u'(\lambda x)}{u(\lambda x)} = \zeta(\lambda x)$ is increasing (decreasing) in x, if $\eta > (<)$ 1. Hence,
 - i) If $\eta < 1$, gains from a percentage increase in x is lower at a higher x.
 - ii) If $\eta > 1$, gains from a percentage increase in x is higher at a higher x.

Trade Equilibrium and Patterns of Trade

Figure 1: (Factor) Terms of Trade Determination

$$\frac{L^{1}}{L^{2}} = \Lambda(\omega; \rho) \equiv (\omega)^{2\sigma-1} \frac{1 - \rho(\omega)^{-\sigma}}{1 - \rho(\omega)^{\sigma}}, \text{ where } \omega \equiv \frac{w^{1}}{w^{2}}.$$



- The factor price lower in the smaller economy (Aggregate increasing returns)
- Globalization ($\tau \downarrow$ or $\rho \uparrow$) reduces the smaller country's disadvantage and hence the factor price differences.

Standard-of-Living: summarized by a single index, x_{ρ}^{k}

$$U_{\rho}^{1} = u(x_{\rho}^{1})$$
, where $x_{\rho}^{1} \equiv \frac{(1-\rho^{2})x_{0}^{1}}{1-\rho(\omega)^{-\sigma}} > x_{0}^{1}$; $U_{\rho}^{2} = u(x_{\rho}^{2})$, where $x_{\rho}^{2} \equiv \frac{(1-\rho^{2})x_{0}^{2}}{1-\rho(\omega)^{\sigma}} > x_{0}^{2}$

u(x), defined as before. Gains from trade

Market Size Distributions:
$$m_s^k = \frac{\left(\beta_s \left(u(x_\rho^k)\right)^{(\varepsilon(s)-\eta)}\right)^{\frac{\sigma-1}{\sigma-\eta}}}{\left(x_\rho^k\right)^{\left(\frac{1-\eta}{\sigma-\eta}\right)}} = \frac{\left(\beta_s \left(u(x_\rho^k)\right)^{(\varepsilon(s)-\eta)}\right)^{\frac{\sigma-1}{\sigma-\eta}}}{\int\limits_0^1 \left(\beta_t \left(u(x_\rho^k)\right)^{(\varepsilon(t)-\eta)}\right)^{\frac{\sigma-1}{\sigma-\eta}} dt}$$

 $\left(\beta_s\left(u(x_\rho^k)\right)^{(\varepsilon(s)-\eta)}\right)^{\frac{\sigma-1}{\sigma-\eta}}$ is log-supermodular in $s \& x_\rho^k$. From **Lemma 1**, if $u(x_\rho^1) < u(x_\rho^2)$

i) MLR:
$$\frac{m_s^1}{m_s^2} = \left(\frac{x_\rho^1}{x_\rho^2}\right)^{\left(\frac{\eta-1}{\sigma-\eta}\right)} \left(\frac{u(x_\rho^1)}{u(x_\rho^2)}\right)^{(\varepsilon(s)-\eta)\left(\frac{\sigma-1}{\sigma-\eta}\right)}$$
 is strictly decreasing in s:

ii) FSD:
$$\int_{0}^{1} m_{t}^{1} dt > \int_{0}^{1} m_{t}^{2} dt$$

The Rich (Poor) has relatively larger domestic markets in higher(lower)-indexed sectors.

$$f_s^1 = \frac{m_s^1 - \rho(\omega)^{-\sigma} m_s^2}{1 - \rho(\omega)^{-\sigma}}; \qquad f_s^2 = \frac{m_s^2 - \rho(\omega)^{\sigma} m_s^1}{1 - \rho(\omega)^{\sigma}}$$

$$f_s^2 = \frac{m_s^2 - \rho(\omega)^{\sigma} m_s^1}{1 - \rho(\omega)^{\sigma}}$$

HME;
$$\frac{f_s^1}{f_s^2} > \frac{m_s^1}{m_s^2} > 1$$
; $\frac{f_s^1}{f_s^2} = \frac{m_s^1}{m_s^2} = 1$; or $\frac{f_s^1}{f_s^2} < \frac{m_s^1}{m_s^2} < 1$.

$$\frac{f_s^1}{f_s^2} = \frac{m_s^1}{m_s^2} = 1;$$

or
$$\frac{f_s^1}{f_s^2} < \frac{m_s^1}{m_s^2} < 1$$
.

Sectoral Trade Balances: From $NX_s^1 = -NX_s^2 \equiv V_s^1 \rho b_s^2 (w^1)^{1-\sigma} - V_s^2 \rho b_s^1 (w^2)^{1-\sigma}$,

$$NX_{s}^{1} = -NX_{s}^{2} = \frac{\rho w^{2} L^{2}}{(\omega)^{-\sigma} - \rho} (m_{s}^{1} - m_{s}^{2}) = \frac{\rho w^{1} L^{1}}{(\omega)^{\sigma} - \rho} (m_{s}^{1} - m_{s}^{2}) \propto (m_{s}^{1} - m_{s}^{2}).$$

Determined by the difference in *the Demand Composition*, not in the Market Size.

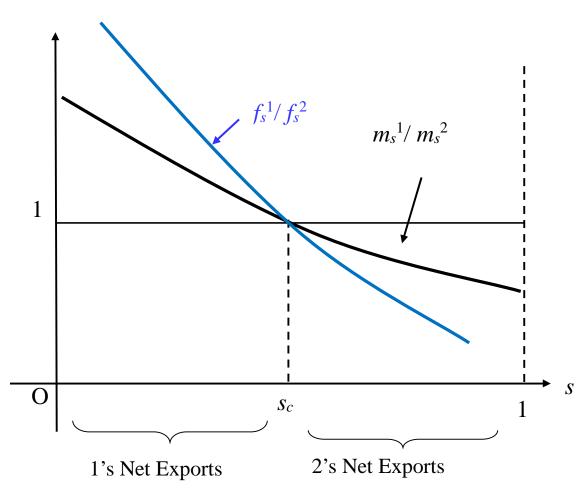
$$U_{\rho}^{1} = u(x_{\rho}^{1}) < U_{\rho}^{2} = u(x_{\rho}^{2}) \rightarrow m_{s}^{1} / m_{s}^{2}$$
 is strictly decreasing in $s \rightarrow$

a unique cutoff sector, $s_c \in (0,1)$, such that

$$NX_{s}^{1} = -NX_{s}^{2} > 0$$
 for $s < s_{c}$; $NX_{s}^{1} = -NX_{s}^{2} < 0$ for $s > s_{c}$.

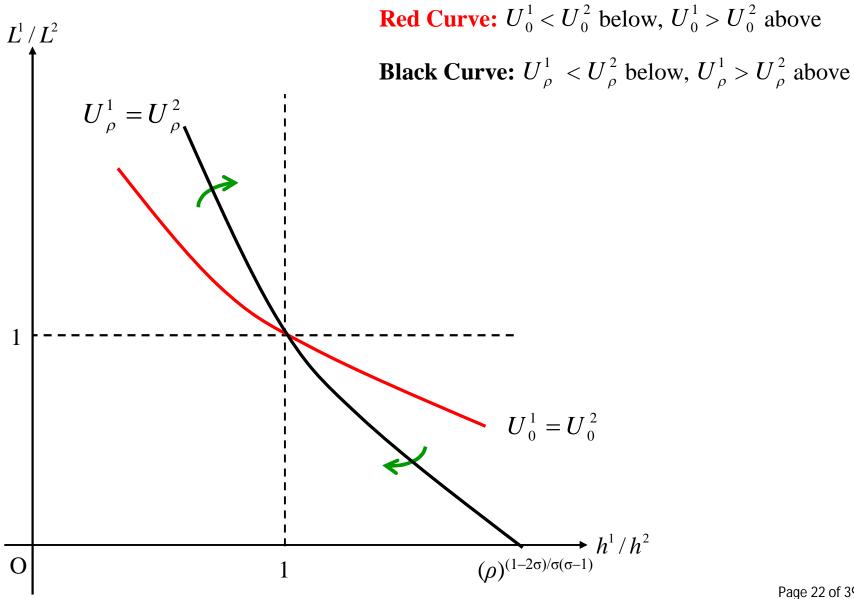
Figure 2: Home Market Effect and Patterns of Sectoral Trade Balances:

For
$$U_{\rho}^{1} = u(x_{\rho}^{1}) < U_{\rho}^{2} = u(x_{\rho}^{2})$$



The Rich (Poor) runs surpluses in the higher-(lower-) indexed sectors, which produce with higher (lower) income elastic goods.

Figure 3: Ranking the Countries



Comparative Statics

Uniform Productivity Improvement: $(\partial \log(h^1) = \partial \log(h^2) \equiv \partial \log(h) > 0)$

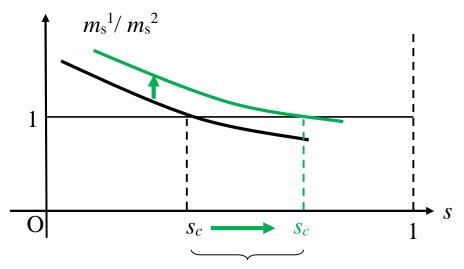
 h^{1}/h^{2} , L^{1}/L^{2} , $\omega = w^{1}/w^{2}$, x_{0}^{1}/x_{0}^{2} , $x_{\rho}^{1}/x_{\rho}^{2}$ all unchanged, with $\partial \log(x_{\rho}^{1}) = \partial \log(x_{\rho}^{2}) = \sigma \partial \log(h) > 0$.

- Both $U_{\rho}^{1} = u(x_{\rho}^{1})$ and $U_{\rho}^{2} = u(x_{\rho}^{2})$ go up. Since $(\beta_{s}(u(x_{\rho}^{k}))^{(\varepsilon(s)-\eta)})^{\frac{\sigma-1}{\sigma-\eta}}$ is \log supermodular in s and x_{ρ}^{k} , from **Lemma 1**, the market size distributions shift toward higher-indexed sectors in both countries, in the sense of MLR and FSD.
- $\operatorname{sgn} \frac{\partial \log(U_{\rho}^{1}/U_{\rho}^{2})}{\partial \log(h)} = \operatorname{sgn}(\eta 1)\operatorname{sgn}(x_{\rho}^{1} x_{\rho}^{2})$, from **Lemma 2.**

Welfare gaps widen (narrow) if sectors produce substitutes (complements).

•
$$\operatorname{sgn} \frac{\partial \log(m_s^1/m_s^2)}{\partial \log(h)} = \operatorname{sgn}(x_\rho^2 - x_\rho^1) \rightarrow s_c \text{ goes up.}$$

Figure 4: Product Cycles Due to Uniform Productivity Improvement



Rich's Sectoral Trade Balances switch from Surpluses to Deficits

- As everyone becomes more productive, they shift their spending towards the higher-indexed.
- The relative weights of the sectors in which the Rich runs surpluses go up.
- To keep the overall trade account between the two countries in balance, the Rich's trade account in each sector must deteriorate.
- The Rich switches from being the net-exporter to the net-importer in middle sectors.

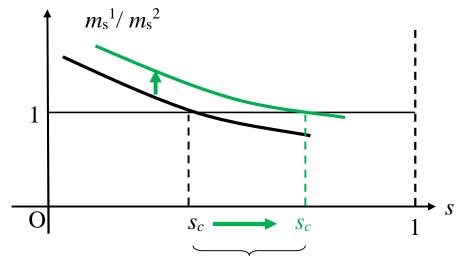
Globalization, a higher $\rho = (\tau)^{1-\sigma}$, when two countries are equal in size: $L^1 = L^2 = L$

$$\omega = 1 \rightarrow x_{\rho}^{k} = (1+\rho)x_{0}^{k} = (1+\rho)(h^{k})^{\sigma} N^{k} = (1+\rho)(h^{k})^{\sigma-1} L$$

The relative factor price fixed at $\omega = 1$ and independent of ρ . No ToT change

- The country with higher per capita labor endowment is richer.
- a higher $1+\rho$ is isomorphic to a uniform increase in h^k .

Figure 4: Product Cycles Due to Globalization



Rich's Sectoral Trade Balances switch from Surpluses to Deficits

Globalization, a higher $\rho = (\tau)^{1-\sigma}$, when two countries are unequal in size:

Leapfrogging and Reversal of the Patterns of Trade

For $h^1/h^2 > 1$ and below the Red curve,

 $U_{\rho}^{1} < U_{\rho}^{2}$ at a low ρ ,

Closer to autarky, Country 1 is poorer due to its disadvantage of being smaller, running surpluses in lower-indexed.

 $U_{\rho}^{1} > U_{\rho}^{2}$ at a high ρ ,

Globalization leads to a factor price convergence, which makes the smaller but smarter 1 richer, running surpluses in higherindexed.

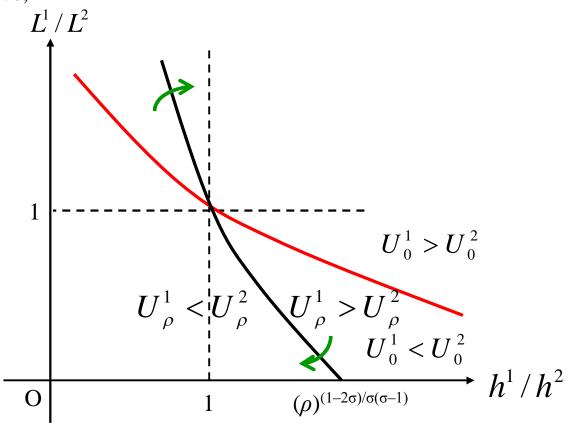


Figure 5

HME with Exogenous Taste Variations: A Comparison

An Extension of Krugman (1980):

Keep the same structure, except the upper-level preferences are homothetic CES,

$$\widetilde{U}^{k} \equiv \left[\int_{0}^{1} (\beta_{s}^{k})^{\frac{1}{\eta}} (\widetilde{C}_{s}^{k})^{1-\frac{1}{\eta}} ds \right]^{\frac{\eta}{\eta-1}}, \quad \text{normalized to } \int_{0}^{1} (\beta_{s}^{k})^{\frac{\sigma-1}{\sigma-\eta}} ds = 1$$

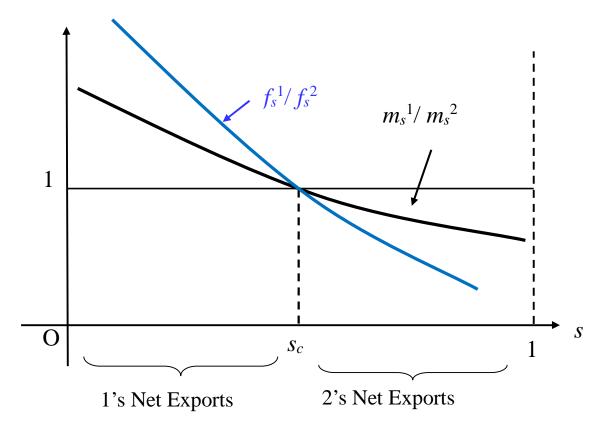
with different weights β_s^k , and β_s^1/β_s^2 strictly decreasing in s.

Then,

Standard-of-living: $U_{\rho}^{k} = (x_{\rho}^{k})^{\frac{1}{\sigma-1}}$

Market Size Distribution: $m_s^k = \left(\beta_s^k\right)^{\left(\frac{\sigma-1}{\sigma-\eta}\right)} \rightarrow m_s^1 / m_s^2 = \left(\beta_s^1 / \beta_s^2\right)^{\left(\frac{\sigma-1}{\sigma-\eta}\right)}$ strictly decreasing in s.

Otherwise, the same



Notes:

- m_s^1/m_s^2 depends solely on the exogenous preferences parameters. Independent of ρ and h^k . Effects on s_c in the previous model are entirely due to nonhomotheticity.
- Uniform productivity growth cannot change the welfare gap.
- Leapfrogging can occur; Reversal of Patterns of Trade cannot.
- Krugman (1980), a special case with $\eta = 1$, $L^1 = L^2$, and $\beta_s^1 / \beta_s^2 = \gamma > 1$ for $0 \le s < 1/2$; $\beta_s^1 / \beta_s^2 = 1/\gamma < 1$ for $1/2 < s \le 1$.

Adding An Outside Goods Sector

An Extension of the Helpman and Krugman (1985) Home Market Effect Model

The same structure as before, except

Homogeneous Good (Numeraire): competitive, CRS (1-to-1), zero trade cost

Household Preferences: Three-Tier structure

Lower-level,
$$\widetilde{C}_s^k \equiv \left[\int_{\Omega_s} \left(c_s^k(v) \right)^{1-\frac{1}{\sigma}} dv \right]^{\frac{\sigma}{\sigma-1}}; \ \sigma > 1, \ s \in [0,1]$$

Middle-level,
$$\int_0^1 (\beta_s)^{\frac{1}{\eta}} \left(\widetilde{U}^k \right)^{\frac{\varepsilon(s) - \eta}{\eta}} \left(\widetilde{C}_s^k \right)^{\frac{\eta - 1}{\eta}} ds \equiv 1; \ \beta_s > 0 \ \text{and} \ \sigma > \eta \neq 1,$$

Upper-level,
$$\widetilde{W}^k = (1-\alpha)\log \widetilde{C}_O^k + \alpha \log(\widetilde{U}^k)$$

 \widetilde{C}_{O}^{k} : Household consumption of the numeraire

 α : (Fixed) expenditure share of differentiated goods

With a sufficiently small α , both countries produce the numeraire.

- $L^{j} \int_{0}^{1} V_{s}^{j} ds > 0$; a positive employment in the numeraire sector.
- $w^{j} = 1$; (Factor) Terms of Trade uniquely pinned down and independent of ρ .
- Each household earns h^k and spends $E^k = \alpha h^k$ on differentiated goods.

The Equilibrium Conditions would be the same otherwise.

Autarky Equilibrium

Standard-of-Living: $W_0^k = (1-\alpha)\log((1-\alpha)h^k) + \alpha\log(u(x_0^k))$,

with
$$x_0^k \equiv (\alpha h^k)^{\sigma} N^k = \alpha (\alpha h^k)^{\sigma-1} L^k$$

Market Size Distributions:
$$m_s^k = \frac{\left(\beta_s \left(u(x_0^k)\right)^{(\varepsilon(s)-\eta)}\right)^{\frac{\sigma-1}{\sigma-\eta}}}{\int\limits_0^1 \left(\beta_t \left(u(x_0^k)\right)^{(\varepsilon(t)-\eta)}\right)^{\frac{\sigma-1}{\sigma-\eta}} dt}$$

Trade Equilibrium:

Standard-of-Living:
$$W_{\rho}^{k} = (1-\alpha)\log((1-\alpha)h^{k}) + \alpha\log(u(x_{\rho}^{k}))$$
,

where
$$x_{\rho}^{k} \equiv (1+\rho)(\alpha h^{k})^{\sigma} N^{k} = (1+\rho)x_{0}^{k}$$

Market Size Distributions:
$$m_s^k = \frac{\left(\beta_s \left(u(x_\rho^k)\right)^{(\varepsilon(s)-\eta)}\right)^{\left(\frac{\sigma-1}{\sigma-\eta}\right)}}{\int\limits_0^1 \left(\beta_t \left(u(x_\rho^k)\right)^{(\varepsilon(t)-\eta)}\right)^{\left(\frac{\sigma-1}{\sigma-\eta}\right)} dt}$$

Firms Distributions:

From
$$V_s^1 = \frac{m_s^1(\alpha L^1) - \rho m_s^2(\alpha L^2)}{1 - \rho} > 0;$$
 $V_s^2 = \frac{m_s^2(\alpha L^2) - \rho m_s^2(\alpha L^2)}{1 - \rho} > 0,$
$$f_s^1 = \frac{m_s^1 L^1 - \rho m_s^2 L^2}{L^1 - \rho L^2} > 0;$$
 $f_s^2 = \frac{m_s^2 L^2 - \rho m_s^1 L^1}{L^2 - \rho L^1} > 0$ for $\rho < \frac{m_s^1 L^1}{m_s^2 L^2} < \frac{1}{\rho}$.

Sectoral Trade Balances:

$$NX_{s}^{1} = -NX_{s}^{2} \equiv V_{s}^{1} \rho b_{s}^{2} - V_{s}^{2} \rho b_{s}^{1} = \frac{\rho}{1+\rho} (V_{s}^{1} - V_{s}^{2}) = \frac{\alpha \rho}{1-\rho} (m_{s}^{1} L^{1} - m_{s}^{2} L^{2}) \propto (m_{s}^{1} L^{1} - m_{s}^{2} L^{2})$$

What matters is the cross-country difference in the market size in each sector itself.

Trade Balances in Differ. Goods Sectors:
$$\int_{0}^{1} NX_{s}^{1} ds = -\int_{0}^{1} NX_{s}^{2} ds = \frac{\alpha \rho}{1-\rho} (L^{1} - L^{2})$$

Instead of having a higher factor price, the larger country runs an overall surplus in the differentiated goods sectors, with a deficit in the outside good sector.

Factor Price Equalization Condition;
$$\alpha < Min \left\langle \frac{(1-\rho)L^1}{L^1-\rho L^2}, \frac{(1-\rho)L^2}{L^2-\rho L^1} \right\rangle$$

Patterns of Trade: Home Market Effect

- m_s^1/m_s^2 is strictly decreasing in s, for $x_0^1 < x_0^2 \iff L^1/L^2 < (h^1/h^2)^{1-\sigma}$
- When L^1 and L^2 are not too different, a **unique cutoff sector**, $s_c \in (0,1)$ such that

$$NX_s^1 = -NX_s^2 = \frac{\alpha \rho L}{1 - \rho} (m_s^1 L^1 - m_s^2 L^2) > 0 \text{ for } s < s_c; < 0 \text{ for } s > s_c.$$

Comparative Statics: With a uniform productivity improvement and globalization,

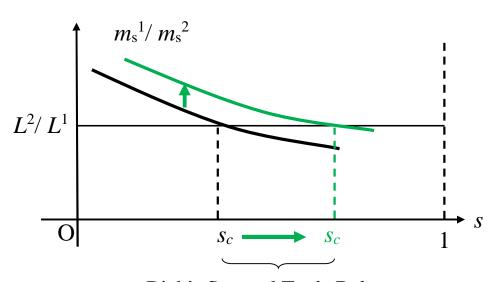
• m_s^k shifts towards the higher-indexed in the sense of MLR and FSD.

•
$$\operatorname{sgn} \frac{\partial \log(U_{\rho}^{1}/U_{\rho}^{2})}{\partial \log(h)} = \operatorname{sgn} \frac{\partial \log(U_{\rho}^{1}/U_{\rho}^{2})}{\partial \log(1+\rho)}$$

$$= \operatorname{sgn}(\eta - 1)\operatorname{sgn}(x_{\rho}^{1} - x_{\rho}^{2}).$$

•
$$\operatorname{sgn} \frac{\partial \log(m_s^1/m_s^2)}{\partial \log(h)} = \operatorname{sgn} \frac{\partial \log(m_s^1/m_s^2)}{\partial \log(1+\rho)}$$

$$= \operatorname{sgn}(x_{\rho}^2 - x_{\rho}^1) \rightarrow s_c \in (0,1) \text{ moves up.}$$



Rich's Sectoral Trade Balances switch from Surplus Pto Deficits

In Summary:

- With the ToT pinned down by the numeraire good, a higher ρ does not change ToT change, even when the country sizes are different.
- With no ToT change, the effect of a higher ρ is isomorphic to the effects of uniform productivity improvement (an equi-proportional increase in h^k), as in the $L^1 = L^2$ case of the previous model.
- With no ToT change, Leapfrogging and A Reversal of Patterns of Trade cannot occur.

Two Caveats: Unlike in the $L^1 = L^2$ case of the previous model, $L^1 \neq L^2$ generates the possibility:

- $U_{\rho}^{1} < U_{\rho}^{2} \iff L^{1}/L^{2} < (h^{1}/h^{2})^{1-\sigma}$ may occur, even if $h^{1} > h^{2}$.
- If L^1 and L^2 are too different, the larger country may run a surplus in all s.

Concluding Remarks

- Empirically, goods differ widely in their income elasticities; rich (poor) countries tend to export goods with high (low) income elasticities.
- We aim to explain why the rich (poor) have CA in high (low) income elastic goods with two ingredients, Nonhomothetic Preferences & Home Market Effect
- Simple intuition
 - ✓ Demand composition of the Rich (Poor) more skewed towards high (low) income elastic goods
 - ✓ With scale economies and positive but finite trade costs, such cross-country differences in the demand composition become a source of comparative advantage.
- No previous studies capture this intuition in a setup flexible and yet tractable enough to allow for a variety of comparative static exercises, because GE models with *imperfect* competition, scale economies, positive but finite trade costs, and nonhomotheticity would be intractable
 - ✓ Explicitly additively separable nonhomothetic preferences, such as Stone-Geary or CRIE, are too restrictive and too intractable
- Implicitly additively separable nonhomothetic preferences enables us to overcome this difficulty