"Capital Supply Channel through Venture Capitals: Evidence from Matched Data"

Prepared for CIGS Workshop Nov. 30th 2015

Daisuke Miyakawa (Hitotsubashi) Miho Takizawa (Toyo)

1. Introduction & Motivation

- Capital (i.e., fund) provision of Venture capital firms' (VCs')
 What kinds of VCs provide larger capitals? VC cycle
 How this pattern interacted with exogenous shocks?
 - Gompers et al. (JFE 2008)
 <u>Experienced VCs</u> provide "more" funds <u>under market upturn</u>
 No control for fund demand
 Identification problem?

<u>This paper</u>

- □ Take advantage of multiple relations b/w companies & VCs
- Apply the within-"venture company" estimator to the data
 - Khawaja & Mian (AER 2008), Jimenez et al. (AER 2012), Hosono & Miyakawa (RIETI 2014) in banking study

VC Investment Flows in Japan

2. Key Findings

Controlling for...

="Time Variant"

Company-level: TV unobservable factors

 \Leftrightarrow E.g., fund demand (\bigstar)

="Time Invariant"

- VC-level: Observable characteristics/TIV unobserved factors
- Company-VC match-level: TV unobservable factors

⇔ E.g., assortative matching

We find...

Gompers et al. (2008)

- □ More <u>experienced</u> VCs tend to provide more funds
- This is <u>magnified</u> (mitigated) under market <u>downturn</u> (upturn)
 - Experienced VCs provide "less" funds <u>under market turn</u>
- Missing the control for venture company-level TIV factors leads to substantial <u>overestimation</u> of these effects (=Gompers et al. 2008)

3. Literature (1): VC's Characteristics

In the context of VC characteristics potentially affecting their capital provision,

□ Sorensen (2008) discussed the mechanism that VCs can

• Learning-by-investment

□ Kanniainen & Keuschnigg (2004), Fulghieri & Sevilir (2009)

- Size of VCs' portfolio and the fundamental conditions
- Under economic downturn where the risk associated with startups become higher, VCs with larger portfolio could provide mode funds since they can more easily diversify

Our paper: Incorporate these ideas into the study of investment

3. Literature (2): VC's Investment

Gompers et al. (2008)

□ Investment records of U.S. venture capitals between 1975-98

□ Regressing the VC investment measured in each VC-level on...

- Tobin's Q measured for nine industry categories, Each VC's investment experience, Industry-level fixed effect, and year-fixed effect
- Found...
 - Under market upturn (downturn), more experience VCs increase (decrease) more than less experienced VCs.
 - Not identifying the demand and supply factor

Our paper: Using within-firm estimator to control for demand

Gompers et al. (2008)

Dependent variable	(1) FirmIndustryInvestment(>0)	(2) FirmIndustryInvestment(>0)	
PM Measure	Q	Q	
PM Measure	0.1432 [<i>10.94</i>]***	0.1473 [<i>11.57</i>]***	Market matters (industry Q)
EXPERIENCE	0.0151 [0.92]		
INDEXP		-0.0018 [0.10]	
NONINDEXP			
SPECIALIZATION			
EXPERIENCE * PM Measure	0.0248		Experience magnifies the impact of Q
INDEXP * PM Measure NONINDEXP * PM Measure SPECIALIZATION * PM Measure	3.13	0.0409 [<i>4.92</i>]***	
Lagged Firm Ind. Invest Lagged Firm Nonindustry Invest.	0.2727 [26.82]***	0.2403 [<i>23.21</i>]***	
Fixed Effects:	Industry Year	Industry Year	
Adj. R-squared	33.28%	33.82%	
Ν	14,795	14,795	7/26

3. Data (1): Match & VCs

JVR data: Company-VC match-level unbalanced panel data in Japan from 1991FY to 2012FY including...

Company-VC <u>match-specific</u> fund provision in year *t*

 \Box <u>VC</u>'s characteristics

- Age (VC_AGE), location, type (e.g., bank-dependent), name of executives, capital (TIV), #Employees (TIV)
- Cumulative investment amounts prior to the current round (VC_PRE_INV)

Use this as a proxy for experience

 Cumulative number of VCs with which the VC collaborate in past (VC_PRE_COLL)

3. Data (2): Aggregate Variables

Stock index growth rates (STOCK)	FY	Growth Rate of JASDAQ Index (%)	Growth Rate of TOPIX (%)
	1991	n.a.	-3.6
	1992	n.a.	-26.4
	1993	n.a.	2.9
	1994	22.7	13.2
	1995	-16.2	0.7
	1996	-10.6	-2.6
	1997	-45.8	-21.2
	1998	0.5	-9.3
	1999	213.1	36.8
	2000	-45.3	-27.2
Large fluctuation	2001	-8.4	-23.5
	2002	-12.9	-18.6
	2003	42.9	24.5
	2004	22.6	7.6
	2005	54.9	40.2
	2006	-21.0	6.9
	2007	-18.6	-11.1
	2008	-36.9	-42.1
	2009	7.8	19.0
	2010	6.6	-3.0
	2011	-6.0	-17.3
	2012	19.8	22.9
	2013	45.3	56.7
	2014	15.1	6.6

Variable		Definition	Obs.	Mean	Std. Dev.	Min.	Max.
INV		Amount of funds invested by VC-i to Company-j in yeat t (log value)	6,135	9.90	1.64	0.00	17.40
VC_AGE	(i) Computed over	Each year minus VC-i's established year	5,560	15.41	11.88	-12	83
VC_PRE_INV	all company-VC matches and years	Accumulated amount of funds invested by VC-i prior to year t (log value)	6,160	14.13	2.01	4.61	17.84
VC_PRE_COLL		Accumulated number of collaborated VCs for VC-i prior to year t (log value)	6,161	3.88	1.77	0.00	6.86
VC_AGE ×STOCK(t)	(ii) Computed over	VC_AGE times the growth rate of JASDAQ index	5,553	246.99	1214.75	-2,344.00	7,672.00
VC_PRE_INV ×STOCK(t)	the matches with JASDAQ Index data	VC_PRE_INV times the growth rate of JASDAQ index	6,153	191.69	882.16	-745.00	3,521.00
VC_PRE_COLL ×STOCK(t)	available	VC_PRE_COLL times the growth rate of JASDAQ index	6,154	49.38	244.82	-263.00	1,104.00
VC_AGE ×STOCK(t)	(iii) Computed over	VC_AGE times the growth rate of TOPIX	5,560	30.25	508.60	-1,896.00	1,690.00
VC_PRE_INV ×STOCK(t)	the matches with MOTHERS Index	VC_PRE_INV times the growth rate of TOPIX	6,160	0.93	371.50	-748.00	708.00
VC_PRE_COLL ×STOCK(t)	data available	VC_PRE_COLL times the growth rate of TOPIX	6,161	1.31	111.14	-286.00	266.00

+YEAR(t) $+ \varepsilon(i, j, t)$

Able to account for, e.g., assortative matching up to some extent

5. Empirical Analyses (1)

Two hypotheses

Hypothesis 1:

VCs with a higher VC_PRE_INV provide larger amounts of capitals

Hypothesis 2:

- (i) The positive marginal impact of VC_PRE_INV becomes larger (smaller) when STOCK is lower (higher) <u>if less experienced VCs'</u> <u>finance is adversely affected by macroeconomic condition</u>.
- (ii) The positive marginal impact of VC_PRE_INV becomes smaller (larger) when STOCK is lower (higher) <u>if more experienced VCs</u> <u>crowd out less experienced VCs</u>.

5. Empirical Analyses (2-1): Baseline

All Sample with respect to Growth Rate of JASDAQ Index								
STOCK = Growth Rate of JASDAQ Index								
Dependent Variable:		(i)		(ii)		(iii)		
INV(t)	Coef.	SD	Coef.	SD	Coef.	SD	=	
VC_AGE(t)	-0.0002	0.0018	-0.0018	0.0025	-0.0038	0.0028		
VC_PRE_INV(t)	0.5425	0.0267 ***	0.5337	0.0335 ***	0.5824	0.0396 ***		
VC_PRE_COLL(t)	-0.5836	0.0310 ***	-0.5789	0.0407 ***	-0.6506	0.0482 ***		
First part of	f H2 sup	ported				H1 su	oported	
VC_AGE \times STOCK(t)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
VC_PRE_INV×STOCK(t)	-0.0007	0.0004 *	-0.0009	0.0004 **	-0.0012	0.0005 **		
VC_PRE_COLL \times STOCK(t)	0.0007	0.0005	0.0011	0.0006 *	0.0014	0.0006 **		
CONSTANT	0.2510	0.1565	2.0759	5.0220	3.0257	11.8345	_	
Number of Obs.			5,	158			-	
F-Value	76	5.51	2	.07	0.87			
Prob > F	0.0	0000	0.0	0000	0.9985			
R-Squared	0.0)818	0.1	1413	0	.1943	-	
Year Effect	<u> </u>	(es	<u> </u>	Yes		Yes		
Company Time-Variant FE		(es	<u> </u>	les		Yes		
VC-Level Time-Invariant FE		No	Ŋ	les		Yes	13 /26	
Match-Level Time-Invariant FE	1	No]	No		Yes		

5. <u>Empirical Analysis (2-2): Economic Impacts</u>

- $\beta(VC_{PRE}|NV) = 0.5824 \& \beta(VC_{PRE}|NV × STOCK) = -0.0012.$
- Hypothetical past investment experience of VC i for venture company j increases by one standard deviation (i.e., 2.01) in year t

Stock market it in zero growth in year *t*

- INV(i, j, t) will increase by 0.5824 × (2.01) = 1.17 than in the case that VC experience stays in a same level as before
 Standard deviation of INV(i, j, t) is 1.64,
- Suppose that the stock market is in boom (i.e., *STOCK*=213.1 as in 1999)
 - INV(i, j, t) will increase by $0.5824 \times (2.01) + (-0.0012) \times (2.01) \times (213.1) = 0.66$
 - Around half when stock market is in boom

5. Empirical Analyses (3): Robustness to TOPIX

All Sample with respect to Growth Rate of TOPIX										
		STO	OCK = Grow	th Rate of TO	PIX					
Dependent Variable:		(i)	(ii)	(iii)				
INV(t)	Coef.	SD	Coef.	SD	Coef.	SD				
VC_AGE(t)	0.0003	0.0017	-0.0014	0.0025	-0.0034	0.0028				
VC_PRE_INV(t)	0.5332	0.0260 ***	0.5207	0.0327 ***	0.5641	0.0386 ***				
VC_PRE_COLL(t)	-0.5760	0.0302 ***	-0.5664	0.0401 ***	-0.6316	0.0472 ***				
VC_AGE×STOCK(t)	0.0000	0.0001	0.0000	0.0001	0.0000	0.0001				
VC_PRE_INV×STOCK(t)	-0.0023	0.0010 **	-0.0021	0.0011 *	-0.0032	0.0013 **				
VC_PRE_COLL \times STOCK(t)	0.0022	0.0012 *	0.0024	0.0013 *	0.0034	0.0015 **				
CONSTANT	0.2589	0.1563 *	2.0444	5.0208	3.0257	11.8279				
Number of Obs.			5,	,167						
F-Value	7	76.1	2.	.06	0.86					
Prob > F	0.	0000	0.0	0000	0.9	9987				
R-Squared	0.	0813	0.1	404	0.1	1936				
Year Effect		Yes	Y	Yes		les				
Company Time-Variant FE		Yes	Y	<i>Yes</i>	Y	les				
VC-Level Time-Invariant FE		No	Y	les	Y	les				
Match-Level Time-Invariant FE		No	Ν	No	Yes					

5. Empirical Analyses (4): Time-Split Estimation

5. Empirical Analyses (5): Industry Features

	Panel A: All Sample with respect to Growth Rate of JASDAQ Index									
			STOC	K = Growth R	ate of JASI	DAQ Index				
Dependent Variable:	(i) In	nternet	(ii) F	Financial	(iii) El	lectronics	(iv) pharr	naceutical		
INV(t)	Coef.	SD	Coef.	SD	Coef.	SD	Coef.	SD		
VC_AGE(t)	-0.0002	0.0032	-0.0178	0.0146	-0.0076	0.0055	-0.0119	0.0070 *		
VC_PRE_INV(t)	0.6381	0.0519 ***	0.4927	0.1727 ***	0.4772	0.0914 ***	0.5288	0.0912 ***		
VC_PRE_COLL(t)	-0.6826	0.0599 ***	-0.4729	0.2104 **	-0.5104	0.0968 ***	-0.5013	0.1016 ***		
$VC_AGE \times STOCK(t)$	0.0000	0.0000	0.0007	0.0004	0.0001	0.0001 *	0.0001	0.0001		
VC_PRE_INV \times STOCK(t)	-0.0013	0.0006 **	-0.0075	0.0046	-0.0017	0.0018	-0.0025	0.0013 *		
VC_PRE_COLL \times STOCK(t)	0.0014	0.0008 *	0.0086	0.0057	0.0025	0.0022	0.0015	0.0019		
CONSTANT	0.0727	0 2959	0 7779	0 8610	0 5130	0 4980	0.0607	0.6013		
Number of Obs	1	761	0.1117	182	0.0100	264	10.0007	0.0015		
F-Value	2	7 81		182 2 88	-	7 22	491			
Prob > F	0.0	2000	0	0107	0	0000	0.21			
R-Squared	0.0)869	0.0898		0.1443		0.0924			
Tr Squared	Panel B: All Sample with respect to Growth Rate of TOPIX									
Dopondont Variable:	(i) I	ntornot	(ii) E	i OCK = GIOW	(iii) Fl	loctronics	(iv) pharm	nacoutical		
INV(t)	(I) II Coef	SD	Coef	SD	(III) Li Coef	SD		SD		
	0.0002	0.0024	0.0002	0.0129	0.0049	0.0054	0.0110	0.00(0.*		
VC_AGE(t)	0.0003	0.0034	-0.0093	0.0128	-0.0048	0.0054	-0.0119	0.0069		
VC_PRE_INV(I)	0.0109	0.0511	0.4743	0.1750	0.4900	0.0917	0.5139	0.0933		
VC_PRE_COLL(l)	-0.0331	0.0005	-0.4642	0.2112	-0.3291	0.0985	-0.4946	0.0989		
VC AGE \times STOCK(t)	0.0000	0.0001	0.0007	0.0006	-0.0001	0.0002	0.0002	0.0003		
VC PRE INV \times STOCK(t)	-0.0014	0.0019	-0.0136	0.0073 *	0.0010	0.0043	-0.0049	0.0032		
VC_PRE_COLL × STOCK(t)	0.0018	0.0022	0.0151	0.0090 *	0.0003	0.0043	0.0037	0.0033		
CONSTANT	0.0880	0.2955	0.8083	0.8629	0.5727	0.5017	0.0623	0.6022		
Number of Obs.	1,	767		182		264	49	91		
F-Value	20	5.79	2	2.72	6	5.42	7.	97		
Prob > F	0.0	0000	0	.015	0.	0000	0.0	000		
R-Squared	0.0	0837	0.	0853	0.	1303	0.0)90		
Year Effect	Y	les		Yes		Yes	Y	es		
Company Time-Variant FE	Y Y	les		Yes		Yes	Y	es		
VC-Level Time-Invariant FE]]	No		No		No	N	lo		
Match-Level Time-Invariant FE]]	No		No	No		No			

17 _{/26}

5. Empirical Analyses (6-1): Round Features

Panel A: All Sample with respect to Growth Rate of JASDAQ Index

	STOCK = Growth Rate of JASDAQ Index							
Dependent Variable:	(i) Invest	Round <= 3	(ii) Invest	t Round > 3				
INV(t)	Coef.	SD	Coef.	SD				
VC_AGE(t)	-0.0009	0.0019	0.0003	0.0033				
VC_PRE_INV(t)	0.5446	0.0321 ***	0.5444	0.0437 ***				
VC_PRE_COLL(t)	-0.6353	0.0369 ***	-0.5390	0.0518 ***				
VC_AGE \times STOCK(t)	0.0000	0.0000	0.0001	0.0001 *				
VC_PRE_INV×STOCK(t)	-0.0013	0.0004 ***	0.0009	0.0008				
VC_PRE_COLL \times STOCK(t)	0.0015	0.0005 ***	-0.0009	0.0010				
CONSTANT	0.6563	0.1777 ***	-0.1957	0.2718				
Number of Obs.	2	,854	2,304					
F-Value	5	8.04	29.77					
Prob > F	0.	0000	0.	0000				
R-Squared	0.	1090	0.	0721				

5. Empirical Analyses (6-2): Round Features

	STOCK = Growth Rate of TOPIX							
Dependent Variable:	(i) Invest	Round <= 3	(ii) Inves	t Round > 3				
INV(t)	Coef.	SD	Coef.	SD				
VC_AGE(t)	-0.0005	0.0018	0.0011	0.0033				
VC_PRE_INV(t)	0.5225	0.0308 ***	0.5529	0.0430 ***				
VC_PRE_COLL(t)	-0.6110	0.0357 ***	-0.5513	0.0508 ***				
VC_AGE \times STOCK(t)	-0.0001	0.0001	0.0001	0.0001				
VC_PRE_INV×STOCK(t)	-0.0044	0.0012 ***	0.0008	0.0017				
VC_PRE_COLL \times STOCK(t)	0.0043	0.0014 ***	-0.0007	0.0019				
CONSTANT	0.6615	0.1772 ***	-0.1897	0.2718				
Number of Obs.	2	,862	2	,305				
F-Value	5	8.29	29.16					
Prob > F	0.	0000	0.0000					
R-Squared	0.	1091	0.0708					
Year Effect		Yes	Yes					
Company Time-Variant FE		Yes	Yes					
VC-Level Time-Invariant FE		No		No				
Match-Level Time-Invariant FE		No		No				

5. Empirical Analyses (7-1): Endogeneity Bias

All Sample with respect to Growth Rate of JASDAQ Index									
			STO	CK = Growth	Rate of JAS	SDAQ Index			
		W	ithout cont	rolling form ti	ne-variant f	irm individual	effect		
Dependent Variable:		(i)		(ii)	(iii)		(iv)		
INV(t)	Coef.	SD	Coef.	SD	Coef.	SD	Coef.	SD	
VC_AGE(t)	0.0020	0.0022	0.0000	0.0021	-0.0021	0.0196	-0.0044	0.0242	
VC_PRE_INV(t)	0.6838	0.0280 ***	0.5656	0.0294 ***	1.0048	0.0808 ***	1.0284	0.0956 ***	
VC_PRE_COLL(t)	-0.7292	0.0346 ***	-0.5741	0.0351 ***	-1.2021	0.1103 ***	-1.1906	0.1325 ***	
VC_AGE \times STOCK(t)	0.0001	0.0000 *	0.0001	0.0000 *	0.0001	0.0000 *	0.0001	0.0000	
VC_PRE_INV \times STOCK(t)	0.0005	0.0004	0.0000	0.0004	0.0008	0.0005	0.0008	0.0005	
VC_PRE_COLL \times STOCK(t)	-0.0005	0.0006	0.0000	0.0005	-0.0006	0.0006	-0.0006	0.0007	
CONSTANT	1.3995	0.8902	4.1342	0.8786 ***	-0.6094	1.0607	-2.4314	1.6123	
Number of Obs.				4	5,523				
F-Value	4	6.26	6.47		4.93		1.62		
Prob > F	0.	0000	0.	0000	0.0	0000	0.0	0000	
R-Squared	0.	1619	0.	5177	0.2	2074	0.2	2711	
Year Effect		Yes		Yes	J	Yes		Yes	
Company Time-Invariant FE		No		Yes]	No	Y	les	
VC-Level Time-Invariant FE		No		No	Y	les	λ	^{les} 20 _{/26}	
Match-Level Time-Invariant FE		No		No]	No	Yes		

5. Empirical Analysis (7-2): Endogeneity Bias

 \blacksquare β(*VC_PRE_INV*) becomes around double to the baseline case

□ Such overestimation could be the case if...

• β("omitted" fund demand) > 0

Corr(fund demand, VC_PRE_INV) > 0

⇔More experienced VCs can more easily access to deal flows than VCs with smaller experience due to, for example, their broader network (Hochberg et al. 2007)

5. Empirical Analysis (7-3): Endogeneity Bias

β(VC_PRE_INV × STOCK) is not significant (baseline<0)</p>

□ Such overestimation could be the case if...

• β("omitted" fund demand) > 0

• Corr(fund demand, VC_PRE_INV × STOCK) > 0

⇔ The tendency of more experienced VCs easily accessing to venture companies with larger fund demand becomes higher during the boom in stock market (Gompers et al. 2008)

5. Empirical Analysis (7-4): Endogeneity Bias

- Although venture companies with higher fund demand are likely to be funded by more experienced VCs when stock market is in boom, <u>VCs with less investment experience in fact increase their</u> <u>fund supply more than VCs with more experience</u>
- Presumably, higher funding availability faced by low experienced VCs generates the latter result
 - These results provide a complemental view to that in Gompers et al. (2008): Under the boom in stock market...
 - Not only the experienced VCs increase their fund provision due to the larger deal flows
 - But also the less experienced VCs increase fund provision due to less financial constraint
 - Both of which lead to the observed high volatility in the aggregated venture capital investments

6. Policy Implication

- Fostering more experienced VCs could lead to more stable VC investments.
 - Decline of investment by more experienced VCs under market downturn is not the consequence of financial friction but natural reaction to smaller fund demand
 - It is less experienced VCs which magnify the investment fluctuation under market upturn and downturn
 - Also, inducing more experienced VCs to provide larger amount of funds under market downturn could generate substantial resource misallocation
- It could be effective from policy perspective to provide some sort of supports to less experienced VCs under market downturn

7. <u>Summary</u>

- VCs' characteristics matter in systematic way
- Experience matters not only in statistical but economic sense
- Sizable endogeneity bias (could flip the implication)

Future studies

□ Interaction with firms' characteristics

□ Firm level studies on firm dynamics (IPO etc.)

Descriptive explanation for the evolution of VC industry

□ Sorting pattern b/w company & VC

Dynamics of VC composition over rounds

Thank you and comments are welcome!

<Contact Information>

Daisuke Miyakawa:

Associate Professor

Graduate School of International Corporate Strategy (ICS), Hitotsubashi University

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8439 Japan

E-mail: dmiyakawa@ics.hit-u.ac.jp

Web: https://sites.google.com/site/daisukemiyakawaphd/

<u>Miho Takizawa</u>:

Associate Professor

Department of Economics,

Toyo University

5-28-20 Hakusan, Bunkyo-ku, Tokyo, 1112-8686 Japan

E-mail: <u>takizawa@toyo.jp</u>

Web: <u>http://www2.toyo.ac.jp/~takizawa/</u>