How Much Do Official Price Indexes Tell Us About Inflation?

Jessie Handbury University of Pennsylvania Tsutomu Watanabe University of Tokyo

David Weinstein Columbia University and NBER

October 16, 2015

Introduction

Data and Index Comparison

Simple Inference Theory

Results

Non-linear relationship between true inflation and the CPI Microstructure behind the non-linearity

Extensions

Are the results due to dataset differences? Are other price index methodologies superior?

Introduction

Data and Index Comparison

Simple Inference Theory

Results

Non-linear relationship between true inflation and the CPI Microstructure behind the non-linearity

Extensions

Are the results due to dataset differences? Are other price index methodologies superior?

Introduction

- The BOJ uses the Japanese Consumer Price Index (CPI) as an indicator of inflation.
- The CPI is an imperfect measure of cost-of-living inflation:
 - ► Formula Errors: Formulas used are not theoretically motivated
 - Sampling Errors: Samples may not be representative
- If these errors move around, the CPI is also a "noisy" indicator.
 - Svensson and Woodford [2003, 2004], Aoki [2003]
- Key Question: What is the relationship between the CPI and true inflation?
 - We want to know, conditional on the observed CPI, what should you think inflation has been.

This Paper

- We use sales price and quantity data from over 200 Japanese grocery stores to measure cost-of-living inflation from 1988 to 2010 using a superlative Törnqvist index.
- What is the difference between this index and the grocery component of the Japanese CPI?
 - ► A CPI inflation rate of 1.6 percent corresponds to a true inflation rate of 0, implying that 2 percent inflation target is approximately price stability.
 - CPI errors varied dramatically between 1988 and 2010 with a standard deviation of 0.96 percent.
 - ► A lot of people have talked about the average difference, we're going to focus more on how the difference varies over time.
- What does this noise mean for inflation inference based on the CPI?
 - The CPI is a good predictor of true inflation when in high inflation regimes but poor when CPI inflation is below 2.4 percent

Signal-to-Noise Ratio

- The conditional expectation depends on the signal-to-noise ratio in the CPI.
 - If the signal-to-noise ratio is high, most CPI movements are due to actual inflation changes and one should expect true inflation to move close to one-to-one with the CPI.
 - If the signal-to-noise ratio is low, most CPI movements will be due to noise, and one should not expect true inflation to move around much when the CPI changes.
- While much focus has been on eliminating CPI biases, our paper suggests that the second moment, *i.e.*, the variance of measurement error, also matters a lot for inflation inference.
 - See the surveys on CPI biases by Hausman [2003], Lebow and Rudd [2003], and Reinsdorf and Triplett [2009].

Intuition

- Finding #1: High inflation regimes tend to have high inflation volatility.
 - In our data, the variance of inflation increases by 470 percent as inflation rises above 2.4 percent.
 - See, *e.g.*, Okun [1971], Friedman [1977], Taylor [1981], Ball et al [1988].
- Finding #2: CPI noise rises with inflation because lower-level substitution bias rises with inflation.
 - See, *e.g.*, Vining and Elwertowski [1976], Parks [1978], Fischer [1981], Stockton [1988], Cecchetti [1997], Shapiro and Wilcox [1996]
 - However, we show the variance of this noise does not rise much with inflation.
- The rapid rise in inflation variance but not in noise means that signal-to-noise ratio is high in high inflation regimes but not in low ones, and the CPI becomes more reliable when inflation is high.
 - Same intuition for why a bathroom scale for measuring a person's weight but not a mouse's weight.

Introduction

Data and Index Comparison

Simple Inference Theory

Results

Non-linear relationship between true inflation and the CPI Microstructure behind the non-linearity

Extensions

Are the results due to dataset differences? Are other price index methodologies superior?

Japanese CPI

- Methodology
 - Japan's CPI conforms to the International Labor Organization (ILO) standard.
 - "Inflation" refers to the inflation rate in a given month relative to the same month in the previous year.
- Sample
 - We work with grocery items, accounting for 17 percent of the CPI.
 - These products have barcodes so price measurement is easy.
 - 30-day price change of a 300 mL can of Coca Cola sold in a certain store is much easier to determine than major expenditure items like imputed rent or recreational services.
 - Thus, our paper may understate the magnitude of the overall CPI error.

Grocery CPI is Quite Similar to Overall CPI

Nikkei Point of Sale Data

- Unit of observation is quantity of a barcoded good purchased in a store on a day, and the sales revenue for that barcode on that day.
- A typical month includes price and quantity observations of:
 - Nearly a quarter million different grocery items.
 - ► Sold at hundreds of grocery and convenience stores throughout Japan.
- Amazing time dimension: 1987–2010
- Grocery CPI is based on about 0.01 billion price observations and quantity observations (upper-level expenditure weights updated every 5 years).
 - Nikkei POS has 4.8 billion observations.

What is our Preferred Measure of Inflation?

- Follow standard price measurement theory and define "true" inflation by the Törnqvist index.
 - The Törnqvist is a second order approximation to *any* twice-differentiable homothetic expenditure function.
 - As close as we can come to computing an exact inflation index without actually specifying preferences.

Törnqvist vs. CPI

CPI error is not constant but flying around

Bias Statistics

Index Bias	$\pi^{\rm CPI}-\pi^T$
Annualized Total Bias	0.625
Standard Deviation of Bias	0.961
Annualized Total Bias (Post-93)	0.762
Standard Deviation of Bias (Post-93)	0.763

- The mean bias is 0.62 percent, but the standard deviation of the bias is 0.96 percentage points.
- If the official inflation rate is one percent per year, the 95 percent confidence interval for the true inflation rate is between -1.68 and 2.28 percent. Thus, a one percent measured inflation rate would not be sufficient information for a central bank to know if the economy is in inflation or deflation. Similar result is reported by Broda and Weinstein [2010] for US.

Introduction

Data and Index Comparison

Simple Inference Theory

Results

Non-linear relationship between true inflation and the CPI Microstructure behind the non-linearity

Extensions

Are the results due to dataset differences? Are other price index methodologies superior?

What has the price measurement literature focused on?

- The price measurement literature asks, "how well does the CPI measure the truth?"
 - If we denote CPI inflation by π_t^{CPI} , true inflation by π_t^T , and measurement error by ϕ_t , price measurement papers examine

$$\pi_t^{CPI} = \pi_t^T + \phi_t \tag{1}$$

- Prior work on price measurement has focused on the link between true and measured inflation by estimating π^{CPI}_t = π^T_t + α + ε_t, where E [ε_t] = 0, and φ_t = α + ε_t.
- But many economists want to know what is the expectation of true inflation conditional on the CPI, i.e. $E\left[\pi_t^T | \pi_t^{CPI}\right]$.

What is the relationship between the truth and the CPI?

• Under some conditions,

$$E\left(\pi_t^T | \pi_t^{CPI}\right) = E\left(\pi_t^T\right) + \frac{Cov\left(\pi_t^T, \pi_t^{CPI}\right)}{Var\left(\pi_t^{CPI}\right)} \left[\pi_t^{CPI} - E\left(\pi_t^{CPI}\right)\right]$$
(2)

 We can rewrite equation 2 in terms of a regression coefficient, β, obtained from regressing π^T_t on π^{CPI}_t:

$$\beta \equiv \frac{Cov\left(\pi_t^T, \pi_t^{CPI}\right)}{Var\left(\pi_t^{CPI}\right)} = \frac{Var\left(\pi_t^T\right) + Cov\left(\pi_t^T, \phi_t\right)}{Var\left(\pi_t^T\right) + Var\left(\phi_t\right) + 2Cov\left(\pi_t^T, \phi_t\right)}$$
(3)

• If no variance in measurement error, $\beta = 1$, but otherwise one cannot express true inflation as measured inflation plus a constant.

β is smaller than one, and depends on the SNR

• If
$$Cov\left(\pi_{t}^{T},\phi_{t}\right) = 0$$
, $Cov\left(\pi_{t}^{T},\pi_{t}^{CPI}\right) = Var\left(\pi_{t}^{T}\right)$, and

$$\beta = \frac{Var\left(\pi_{t}^{T}\right)}{Var\left(\pi_{t}^{T}\right) + Var\left(\phi_{t}\right)} = \frac{Var\left(\pi_{t}^{T}\right)/Var\left(\phi_{t}\right)}{Var\left(\pi_{t}^{T}\right)/Var\left(\phi_{t}\right) + 1} \leq 1$$

$$Var\left(\pi_{t}^{T}\right)$$
(4)

• The $\frac{Var(\pi_t^1)}{Var(\phi_t)}$ is the signal-to-noise ratio.

• If the CPI Noise is classical β will vary with $Var\left(\pi_t^T\right)$.

Introduction

Data and Index Comparison

Simple Inference Theory

Results

Non-linear relationship between true inflation and the CPI Microstructure behind the non-linearity

Extensions

Are the results due to dataset differences? Are other price index methodologies superior?

Introduction

Data and Index Comparison

Simple Inference Theory

Results

Non-linear relationship between true inflation and the CPI

Microstructure behind the non-linearity

Extensions

Are the results due to dataset differences? Are other price index methodologies superior?

Plotting the Data: Törnqvist vs. CPI Inflation

Formally Testing the Non-Linearity

	Dependent Variable: Törnqvist			
Grocery CPI	0.832***	0.553***		
	(0.148)	(0.151)		
Grocery CPI ²		0.119**		
		(0.049)		
Knot			1%	2.385%
Grocery CPI (≤Knot)			0.398**	0.505***
			(0.189)	(0.165)
Grocery CPI (>Knot)			1.257***	1.843***
			(0.241)	(0.446)
Constant	-0.584***	-0.908***	-0.894***	-0.775***
	(0.173)	(0.224)	(0.216)	(0.183)
Observations	262	262	262	262
Adjusted R^2	0.668	0.717	0.713	0.739

Lag-11 Newey West standard errors in parentheses; * (p<0.10), ** (p<0.05), *** (p<0.01)

Implications of Non-Linearity

- How should we interpret a move in Japanese CPI inflation from 2% to 5%?
 - From the symmetric spline regression, we can infer that an increase in CPI from 2% to 5% corresponds to an increase in true inflation from 0.2% to 3.4%. Close to one-to-one relationship.
- However, when CPI inflation is close to zero, a move in CPI inflation implies a much smaller change in true inflation.
 - ▶ For example, an increase in inflation from -1% to 2% corresponds to an increase in true inflation from -1.2% to 0.2%. A 1 percentage point increase in the CPI corresponds to a 0.5 percent increase in true inflation.
 - Central banks should pay much more attention to inflationary changes when inflation is high than when it is close to zero. A central bank that deems a movement in CPI inflation from -1 to 2 percent as the same as a movement from 2 to 5 percent is liable to dramatically overreact to inflation when it is low and and underreact when it is high.

What Have We Learned So Far?

- Non-linear relationship between true inflation and CPI.
- This relationship crucially depends on the variance of true inflation rising with inflation.
- Assuming CPI errors are uncorrelated with true inflation and/or constant does not change the result.
- Next step: Understand the micro structure of these results.

Introduction

Data and Index Comparison

Simple Inference Theory

Results

Non-linear relationship between true inflation and the CPI Microstructure behind the non-linearity

Extensions

Are the results due to dataset differences? Are other price index methodologies superior?

Micro-Structure Behind Non-Linearity Result

• For:

•
$$\pi_{it} = \mu_t + \nu_{it}$$
,
• $\pi_t^T = \sum_{i=1}^n w_{it} \pi_{it}$, and
• $\pi_t^{CPI} = \pi_t^T + \phi_t = \sum_{i=1}^n (w_{it} + \epsilon_{it}) (\pi_{it} + \delta_{it})$

• We have that:

$$\beta = \frac{Var\left(\pi_{t}^{T}\right)}{Var\left(\pi_{t}^{T}\right) + Var\left(\phi_{t}\right)}$$

$$= \frac{\sigma_{\mu_{t}}^{2} + \sigma_{\nu_{t}}^{2}\sum_{i=1}^{n}s_{it-1}^{2} + n\left[\sigma_{\nu_{t}}^{2}\gamma^{2}/4\right]}{Var\left(\pi_{t}^{T}\right) + \sigma_{\delta_{t}}^{2}\sum_{i=1}^{n}s_{it-1}^{2} + n\left[\sigma_{\epsilon_{t}}^{2}\sigma_{\nu_{t}}^{2} + \sigma_{\epsilon_{t}}^{2}\sigma_{\delta_{t}}^{2} + \frac{\gamma^{2}}{4}\left(\sigma_{\delta_{t}}^{2}\sigma_{\nu_{t}}^{2}\right)\right]}_{\text{``CPI Noise''>0}}$$

Decomposing β into Micro-Components

	Full	Ratio in High vs. Low Inflation Samples		
	Sample	1% Knot	2% Knot	2.4% Knot
$eta(\pi^{ ext{CPI}},\pi^T)$	0.833	2.56	3.42	3.65
$\sigma^2_{\pi^T}$	3.18e-04	10.41	8.01	5.68
Var of idiosyncratic component: σ_{ν}^2	3.49	2.46	2.55	2.34
Var of aggregate component: σ_{μ}^2	0.79	7.45	5.77	4.16
Var of upper-level weighting errors: σ_{ε}^2	0.32	1.14	1.19	1.35
Var of lower-level measurement errors: σ_{δ}^2	2.83	1.57	1.60	1.62
Var of "CPI Noise"	0.20	2.36	2.49	2.56
γ_t	-0.68			

Entries for σ_{ν}^2 , σ_{μ}^2 , σ_{ε}^2 , σ_{δ}^2 , and the CPI Noise are divided by the entry for $\sigma_{\pi^T}^2$.

 $\sigma_{\nu}^2, \sigma_{\epsilon}^2, \sigma_{\delta}^2$ reports the mean of these variances across items.

Lower vs. Upper-Level Errors

- How much of the variance in the CPI noise would fall if we eliminated upper-level errors by setting $\sigma_{\epsilon_t}^2 = 0$?
 - Eliminating upper-level weighting errors would only reduce the variance in CPI noise by 22%.
 - Eliminating lower-level measurement errors, i.e. setting $\sigma_{\delta_t}^2 = 0$, would reduce the variance in CPI noise by 88%.
- Major problem in the CPI is the existence of substantial formula biases and other measurement errors at the lower level.

Introduction

Data and Index Comparison

Simple Inference Theory

Results

Non-linear relationship between true inflation and the CPI Microstructure behind the non-linearity

Extensions

Are the results due to dataset differences? Are other price index methodologies superior?

Extensions

- Do the errors arise because of differences between the Nikkei Data and the CPI Data?
 - No, if we replicate the CPI methodology using Nikkei Data we obtain the same pattern.
- Does the U.S. PCE Deflator Methodology Work Better?
 - Yes, similar knot but the bias is less.
- Is the problem sampling or formula errors?
 - If we replicate the U.S. CPI sampling procedures, but switch to a Törnqvist aggregation structure at the lower level, most of the bias and nonlinearity goes away.
 - Suggests the problem is the formula error at the lower level not the sampling error

Differences Between the CPI, PCE-D, and the Törnqvist

- Sampling
 - ► J-CPI uses purposive samples of prices and ignores sale prices.
 - ▶ PCE deflator (PCE-D) uses random sample of prices and includes sale prices.
- Formula
 - J-CPI: Dutot index nested in a Laspeyres index
 - PCE-D: Jevons index nested in a quasi Törnqvist Index
 - Dutot index is an arithmetic price average; Jevons is a geometric average.
- Weighting
 - Upper-level weights are historic (J-CPI) and based on long-time averages (J-CPI and PCE-D).
 - ► Neither index employs lower-level weighting.
 - Törnqvist weights change month to month and are correlated with price changes, while CPI and PCE-D lower-level weights are not.

Introduction

Data and Index Comparison

Simple Inference Theory

Results

Non-linear relationship between true inflation and the CPI Microstructure behind the non-linearity

Extensions

Are the results due to dataset differences?

Are other price index methodologies superior?

Replicating CPI Methodology Using Nikkei Data

	Dependent Variable: Törnqvist			
Replicated CPI	0.671***	0.608***		
	(0.095)	(0.061)		
Replicated CPI ²		0.119**		
		(0.049)		
Knot			1%	1.5%
Replicated CPI (≤Knot)			0.434**	0.464***
			(0.097)	(0.090)
Replicated CPI (>Knot)			1.075***	1.181***
			(0.094)	(0.124)
Constant	-0.622***	-0.849***	-0.852***	-0.804***
	(0.150)	(0.189)	(0.176)	(0.164)
Observations	113	113	113	113
Adjusted R^2	0.748	0.794	0.810	0.812

Lag-11 Newey West standard errors in parentheses; * (p<0.10), ** (p<0.05), *** (p<0.01) Note that this series covers 2000–2010

Introduction

Data and Index Comparison

Simple Inference Theory

Results

Non-linear relationship between true inflation and the CPI Microstructure behind the non-linearity

Extensions

Are the results due to dataset differences?

Are other price index methodologies superior?

Replicating US PCE-D Using Nikkei Data

	Dependent Variable: Törnqvist			
Replicated PCE	0.925***	0.789***		
	(0.079)	(0.048)		
Replicated PCE ²		0.064***		
		(0.012)		
Knot			1%	2.251%
Replicated PCE(\leq Knot)			0.668***	0.725***
			(0.062)	(0.066)
Replicated PCE (>Knot)			1.202***	1.454***
			(0.096)	(0.081)
Constant	-0.433***	-0.645***	-0.657***	-0.591***
	(0.088)	(0.095)	(0.099)	(0.091)
Observations	240	240	240	240
Adjusted R^2	0.898	0.923	0.921	0.925

Lag-11 Newey West standard errors in parentheses; * (p<0.10), ** (p<0.05), *** (p<0.01). This index starts in January 1991 because that is the first date by which we have 2 full calendar years' worth of data.

US PCE-D with Törnqvist Weighting at the Lower Level

	Dependent Variable: Törnqvist			
Törnqvist PCE	0.896*** (0.047)	0.818*** (0.021)		
Tornqvist PCE ²		0.042*** (0.004)		
Knot			1%	0.611%
Törnqvist PCE(\leq Knot)			0.710***	0.695***
			(0.034)	(0.032)
Törnqvist PCE (>Knot)			1.120***	1.087***
			(0.031)	(0.031)
Constant	-0.061	-0.261***	-0.286***	-0.311***
	(0.061)	(0.050)	(0.056)	(0.053)
Observations	262	262	262	262
Adjusted R^2	0.957	0.975	0.974	0.974

Lag-11 Newey West standard errors in parentheses; * (p<0.10), ** (p<0.05), *** (p<0.01)

Alternative Methodologies Compared

Introduction

Data and Index Comparison

Simple Inference Theory

Results

Non-linear relationship between true inflation and the CPI Microstructure behind the non-linearity

Extensions

Are the results due to dataset differences? Are other price index methodologies superior?

- We show the informativeness of the CPI rises with inflation.
 - When measured inflation is low (under 2.4 percent), a one percentage point increase in the CPI is only associated with at 0.5 percent increase in true inflation.
 - Outside this range, a one percentage point increase in the CPI is associated with a 2 percent increase in inflation.
- The Japanese CPI bias is not constant but depends on the level of inflation.
 - ▶ When CPI inflation is 0, the upward bias is 0.8, but when CPI inflation is 2 percent the bias rises to 1.8 percent!
 - So, a 2 percent CPI inflation target is close to a price stability target when using annual data.
- PCE-D is superior to Japanese CPI but even this methodology is problematic in low inflation regimes.