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Summary

The paper uses hedonic regression techniques in order to decompose the price of a
house into land and structure components using real estate sales data for Tokyo. In
order to get sensible results, a nonlinear regression model using data that covered mul-
tiple time periods was used. Collinearity between the amount of land and structure in
each residential property leads to inaccurate estimates for the land and structure value
of a property. This collinearity problem was solved by using exogenous information on
the rate of growth of construction costs in Tokyo in order to get useful constant quality
subindexes for the price of land and structures separately.
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1 Introduction

In this paper, we will use hedonic regression techniques in order to construct a quarterly
constant quality price index for the sales of residential properties in Tokyo for the years 2000-
2010 (44 quarters in all). The usual application of a time dummy hedonic regression model to
sales of houses does not lead to a decomposition of the sale price into a structure component
and a land component. But such a decomposition is required for many purposes. Our paper
will attempt to use hedonic regression techniques in order to provide such a decomposition
for Tokyo house prices. Instead of entering characteristics into our regressions in a linear
fashion, we enter them as piece-wise linear functions or spline functions to achieve greater
flexibility.

The Tokyo house price data that we use will be described in section 2.
In section 3, we will outline our basic (nonlinear) regression model which requires infor-

mation on the selling price of the property V along with the following basic characteristics
of the property:
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• The land area of the property (L);
• The livable floor space area of the structure (S);
• The age of the structure (A) and
• The location of the property.
Using only information on these 4 characteristics plus the use of an exogenous residential

house construction price index for Tokyo, we are able to explain 0.8168 percent of the
variation in the sales data. Our basic nonlinear regression model is a variant of the builder’s
hedonic regression model introduced by Diewert, de Haan and Hendriks (2011a)(2011b).

In section 4, we introduced some additional parameters into the model without requiring
additional information on characteristics. Instead of assuming a single straight line depre-
ciation rate for the structure, we allowed the depreciation rate to follow a piecewise linear
structure. We also allowed the price of land per square meter for a property to follow a
piecewise linear structure. For the addition of 4 parameters over the model in section 3, the
R2 of our model increased from 0.8168 to 0.8206 and the log likelihood increased by 68.9.

In sections 5 and 6, we used information on some additional characteristics of the proper-
ties sold in each quarter. In section 5, we utilized information on the number of bedrooms
NB and the width of the lot W , adding an additional 6 parameters to our nonlinear re-
gression model. The R2 of our new model increased from 0.8206 to 0.8256 and the log
likelihood increased by 78.7. In section 6, we utilized information on the time it takes to
walk to the nearest subway TW and the time it takes to go from the nearest subway station
to downtown Tokyo TT , adding an additional 6 parameters to our regression model. The
R2 of our new model increased from 0.8256 for the section 5 model to 0.8417 and the log
likelihood increased by a very large 269.4.

In section 7, we divided the 22 wards in Tokyo that appear in our regression models into
expensive wards and inexpensive wards and we allow the movements in the price of land to
be different in these two classes of wards. This generalization of our earlier models added 45
parameters to be estimated. The R2 of our new model increased from 0.8417 for the section
6 model to 0.8476 and the log likelihood increased by 106.0. At this point, we stopped adding
additional characteristics to our model and judged the section 7 model to be satisfactory.

In section 8, we switch our attention from compiling land, structure and overall house
price indexes for sales of residential properties to the problems associated with constructing
the corresponding indexes for the stock of residential housing in Tokyo. We did not have
access to information on the total stock of residential houses in Tokyo over time but we
used the total number of houses transacted over our sample period as an approximation to
the total stock. The resulting approximate stock prices for selected models are listed in this
section.

In section 9, we take the model explained in section 7 but estimate the parameters over a
5 year rolling window period. We use the estimated indexes for the last two periods in each
rolling window regression to update our previous index. The resulting index is meant to
approximate a realistic house price index that could be implemented by a statistical agency.
We find little differences between the resulting Rolling Window estimates and the estimates
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obtained in section 7.1

In section 10, we compare our section 7 overall house price indexes that were constructed
using our nonlinear hedonic regression with two typical time dummy hedonic regression that
uses the log of selling prices as the dependent variable. This typical hedonic regression
approach cannot be used to generate realistic prices of land and structures but the overall
house price index generated by this typical approach can be compared with our overall house
price index. We find that the general pattern between the three overall indexes is much the
same but our section 7 time dummy index generates higher prices than the corresponding
indexes generated by the time dummy approach.

Section 11 concludes.

2 The Tokyo Housing Data

Our basic data set on V , L, S, A, the location of the property and some additional
characteristics to be explained below was obtained from a weekly magazine, Shukan Jutaku
Joho (Residential Information Weekly) published by Recruit Co., Ltd., one of the largest
vendors of residential listings information in Japan. The Recruit dataset covers the 23
special wards of Tokyo for the period 2000 to 2010, including the mini-bubble period in the
middle of 2000s and its later collapse caused by the Great Recession. Shukan Jutaku Joho
provides time series of housing prices from the week when it is first posted until the week
it is removed due to its sale. 2 We only use the price in the final week because this can be
safely regarded as sufficiently close to the contract price.3

There were a total of 5578 observations (after range deletions) in our sample of sales
of single family houses in the Tokyo area over the 44 quarters covering 2000-2010.4 The
definitions for the above variables and their units are as follows:

V = The value of the sale of the house in 10,000,000 Yen;
S = Structure area (floor space area) in units of 100 meters squared;
L = Lot area in units of 100 meters squared;
A = Approximate age of the structure in years;
NB = Number of bedrooms;
WI = Width of the lot in meters;

1Rolling Window time dummy hedonic regressions were used by Shimizu, Nishimura and Watanabe
(2010) and Shimizu, Takatsuji, Ono and Nishimura (2010). A special case of the Rolling Window method-
ology is the adjacent year time dummy hedonic regression introduced by Court (1939; 109-111).

2There are two reasons for the listing of a unit being removed from the magazine: a successful deal or
a withdrawal (i.e. the seller gives up looking for a buyer and thus withdraws the listing). We were allowed
access to information regarding which the two reasons applied for individual cases and we discarded those
transactions where the seller withdrew the listing.

3Recruit Co., Ltd. provided us with information on contract prices for about 24 percent of all listings.
Using this information, we were able to confirm that prices in the final week were almost always identical
with the contract prices; see Shimizu, Nishimura and Watanabe (2012).

4We deleted 9.2 per cent of the observations because they fell outside our range limits for the variables
V , L, S, A, NB and W . It is risky to estimate hedonic regression models over wide ranges when observations
are sparse at the beginning and end of the range of each variable. The a priori range limits for these variables
were as follows: 2 ≤ V ≤ 20; 0.5 ≤ S ≤ 2.5; 0.5 ≤ V ≤ 2.5; 1 ≤ A ≤ 50; 2 ≤ NB ≤ 8; 2.5 ≤ W ≤ 9.
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TW = Walking time in minutes to the nearest subway station;
TT = Subway running time in minutes to the Tokyo station from the nearest station
during the day (not early morning or night).
The basic descriptive statistics for the above variables are listed in Table 1 below.
Thus over the sample period, the sample average sale price was approximately 62.3 million

Yen, the average structure space was 110 m2, the average lot size was 103 m2, the average
age of the structure was 14.7 years, the average number of bedrooms in the houses that were
sold was 3.95, the average lot width was 4.7 meters, the average walking time to the nearest
subway station was 9.9 minutes and the average subway travelling time from the nearest
station to the Tokyo Central station was 31.7 minutes.

There were fairly high correlations between the V , S and L variables. The correlations of
the selling price V with structure and lot area S and L were 0.689 and 0.660 respectively and
the correlation between S and Lwas 0.668. Given the large amount of variability in the data
and the relatively high correlations between V , S and L, we can expect multicollinearity
problems in a simple linear regression of V on S and L.5

In order to eliminate the multicollinearity problem between the lot size L and floor space
area S for an individual house, we will assume that the value of a new structure in any
quarter is proportional to a Construction Cost Price Index for Tokyo.6

In addition to having the information listed in Table 1 on residential houses sold in Tokyo
over 2000-2010, we also had the address for each transaction. We used this information in
order to allocate each sale into one of 21 Wards for the Tokyo area. We constructed Ward
dummy variables and made use of these variables in most of our regressions as locational
explanatory variables.

3 The Basic Builder’s Model with Locational Dummy

Variables

The builder’s model for valuing a residential property postulates that the value of a res-
idential property is the sum of two components: the value of the land which the structure
sits on plus the value of the residential structure.

In order to justify the model, consider a property developer who builds a structure on
a particular property. The total cost of the property after the structure is completed will
be equal to the floor space area of the structure, say S square meters, times the building
cost per square meter, β say, plus the cost of the land, which will be equal to the cost per
square meter, α say, times the area of the land site, L. Now think of a sample of properties

5See Diewert, de Haan and Hendriks (2011a) (2011b) for evidence on this multicollinearity problem using
Dutch data.

6This index was constructed by the Construction Price Research Association which is now an independent
agency but prior to 2012 was part of the Ministry of Land, Infrastructure, Transport and Tourism (MLIT),
a ministry of the Government of Japan. The quarterly values for this index are listed in Table A2 in the
Appendix; see the listing for the variable PS1. The quarterly values were constructed from the Monthly
Residential Construction Cost index for Tokyo.
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of the same general type, which have prices or values Vtn in period t7 and structure areas
Stn and land areas Ltn for n = 1, ..., N(t) whereN(t) is the number of observations in period
t. Assume that these prices are equal to the sum of the land and structure costs plus error
terms ϵtn which we assume are independently normally distributed with zero means and
constant variances. This leads to the following hedonic regression model for period t where
the αt and βt are the parameters to be estimated in the regression:8

Vtn = αtLtn + βtStn + ϵtn; t = 1, ..., 44;n = 1, ..., N(t). (1)

Note that the two characteristics in our simple model are the quantities of land Ltn and
the quantities of structure floor space Stn associated with property n in period t and the two
constant quality prices in period t are the price of a square meter of land αt and the price
of a square meter of structure floor space βt. Finally, note that separate linear regressions
can be run of the form (1) for each period t in our sample.

The hedonic regression model defined by (1) applies to new structures. But it is likely
that a model that is similar to (1) applies to older structures as well. Older structures will
be worth less than newer structures due to the depreciation of the structure. Assuming that
we have information on the age of the structure n at time t, say Atn, and assuming a straight
line depreciation model, a more realistic hedonic regression model than that defined by (1)
above is the following basic builder’s model :9

Vtn = αtLtn + βt(1 − δtAtn)Stn + ϵtn; t = 1, ..., 44;n = 1, ..., N(t) (2)

where the parameter δt reflects the net depreciation rate as the structure ages one addi-
tional period. Thus if the age of the structure is measured in years, we would expect an
annual net depreciation rate to be between 0.25 and 2.5%. 10 Note that (2) is now a non-
linear regression model whereas (1) was a simple linear regression model. Both models (1)
and (2) can be run period by period; it is not necessary to run one big regression covering
all time periods in the data sample. The period t price of land will the estimated coefficient
for the parameter αt and the price of a unit of a newly built structure for period t will be
the estimate for βt. The period t quantity of land for property n is Ltn and the period

7The period index t runs from 1 to 44 where period 1 corresponds to Q1 of 2000 and period 44 corresponds
to Q4 of 2010.

8Other papers that have suggested hedonic regression models that lead to additive decompositions of
property values into land and structure components include Clapp (1980), Francke and Vos (2004), Gyourko
and Saiz (2004), Bostic, Longhofer and Redfearn (2007), Davis and Heathcote (2007), Francke (2008), Koev
and Santos Silva (2008), Statistics Portugal (2009), Diewert (2010) (2011), Rambaldi, McAllister, Collins
and Fletcher (2010) and Diewert, Haan and Hendriks (2011a) (2011b).

9This formulation follows that of Diewert (2010) (2011) and Diewert, Haan and Hendriks (2011a) (2011b).
It is a special case of Clapp’s (1980; 258) hedonic regression model.

10This estimate of depreciation is regarded as a net depreciation rate because it is equal to a “true” gross
structure depreciation rate less an average renovations appreciation rate. Since we do not have information
on renovations and additions to a structure, our age variable will only pick up average gross depreciation
less average real renovation expenditures. Note that we excluded sales of houses from our sample if the
age of the structure exceeded 50 years when sold. Very old houses tend to have larger than normal reno-
vation expenditures and thus their inclusion can bias the estimates of the net depreciation rate for younger
structures.
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t quantity of structure for property n, expressed in equivalent units of a new structure, is
(1 − δtAtn)Stn where Stn is the floor space area of property n in period t.

Note that the above model is a supply side model as opposed to the demand side model
of Muth (1971) and McMillen (2003). Basically, we are assuming competitive suppliers of
housing so that we are in Rosen’s (1974; 44) Case (a), where the hedonic surface identifies
the structure of supply. This assumption is justified for the case of newly built houses but
it is less well justified for sales of existing homes.11

As was mentioned in the previous section, we have 5578 observations on sales of houses in
Tokyo over the 44 quarters in years 2000-2010. Thus equations (2) above could be combined
into one big regression and a single depreciation rate δ = δt could be estimated along with
44 land prices αt and 44 new structure prices βt so that 89 parameters would have to
be estimated. However, experience has shown that it is usually not possible to estimate
sensible land and structure prices in a hedonic regression like that defined by (2) due to
the multicollinearity between lot size and structure size.12 Thus in order to deal with the
multicollinearity problem, we draw on exogenous information on new house building costs
from the Japanese Ministry of Land, Infrastructure, Transport and Tourism (MLIT) and we
assume that the price of new structures is proportional to this index of residential building
costs. Thus our new builder’s model that uses exogenous information on structure prices is
the following one:

Vtn = αtLtn + βpCt(1 − δAtn)Stn + ϵtn; t = 1, ..., 44;n = 1, ..., N(t) (3)

where all variables have been defined above except that pCt is the MLIT house construction
cost index for Tokyo for quarter t. Thus we have 5578 degrees of freedom to estimate 44
land price parameters αt, one structure price parameter β that determines the level of prices
over our sample period and one annual straight line depreciation rate parameter δ, a total
of 46 parameters.

The R2 for the resulting nonlinear regression model was only 0.5704, 13which is not very
satisfactory. Thus the simple Builder’s Model defined by (3) was not as satisfactory as was
the corresponding Builder’s Model for the small town of “A” in the Netherlands where the
R2 was 0.8703 using the same information on characteristics of the house and lot. However,
in the case of the town of “A”, the structures were all much the same and all houses in the
town had access to basically the same amenities. The situation in the huge city of Tokyo is
very different: different neighborhoods have access to very different amenities and Tokyo is

11Thorsnes (1997; 101) assumed that a related supply side model held instead of equation (2). He assumed
that housing was produced by a CES production function H(L, K) ≡ [αLρ + βKρ]1/ρ where K is structure
quantity and ρ ̸= 0 ; α > 0 ; β > 0 and α + β = 1. He assumed that property value Vnt is equal to
ptH(Lnt, Knt) where pt, ρ, α and β are parameters to be estimated. However, our builder’s model assumes
that the production functions that produce structure space and that produce land are independent of each
other.

12See Schwann (1998) and Diewert, de Haan and Hendriks (2011a) and (2011b) on the multicollinearity
problem.

13All of the R2 reported in this paper are equal to the square of the correlation coefficient between the
dependent variable in the regression and the corresponding predicted variable. The estimated net annual
straight line depreciation rate was δ = 1.25%, with a T statistic of 17.3. Due to the poor fit of the model,
we will not report the other estimated parameters.
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not situated on a flat, featureless plain and so we would expect substantial variations in the
price of land across the various neighborhoods.

In order to take into account possible neighbourhood effects on the price of land, we
introduced ward dummy variables, DW,tn,j , into the hedonic regression (3). These 21 dummy
variables are defined as follows: for t = 1, ..., 44; n = 1, ..., N(t); j = 1, ..., 21:14

DW,tn,j ≡ 1 if observation n in period t is in Ward j of Tokyo; (4)

≡ 0 if observation n in period t is not in Ward j of Tokyo.

We now modify the model defined by (3) to allow the level of land prices to differ across
the 21 Wards of Tokyo. The new nonlinear regression model is the following one:

Vtn = αt(
21∑

j=1

ϖjDW,tn,j)Ltn + βpCt(1 − δAtn)Stn + εtn; t = 1, ..., 44;n = 1, ..., N(t). (5)

Comparing the models defined by equations (3) and (5), it can be seen that we have added
an additional 21 ward relative land value parameters, ϖ1,...,ϖ21, to the model defined by
(3). However, looking at (5), it can be seen that the 44 land time parameters (the αt) and
the 21 ward parameters (the ϖj) cannot all be identified. Thus we need to impose at least
one identifying normalization on these parameters. We chose the following normalization:

ϖ10 ≡ 1. (6)

We will call the hedonic regression model defined by (5) and (6) Model 1. The tenth
ward, Setagay, has the most transactions in our sample (1158 transactions over the sample
period) and thus the level of land prices in this Ward should be fairly accurately determined.
Hence the remaining ϖj represent the level of land prices in Ward j relative to the level in
Ward 10 so if say ϖ1 > 1, this means that on average, the price of land in Ward 1 is higher
than the average price of land in Ward 10. Taking into account the normalization (6), it
can be seen that Model 1 has 44 unknown land price parameters αt, 20 ward relative land
price parameters ϖj , one structure price level parameter β and one annual net depreciation
parameter δ that need to be estimated. We estimated these parameters using the nonlinear
regression option in Shazam; see White (2004). The detailed parameter estimates are listed
in the Appendix in Table A1.15 The R2 for this model turned out to be 0.8168 and the log
likelihood (LL) was -9233.0, a huge increase of 2270.6 over the LL of the model defined by
(3). Thus the Ward variables are very significant determinants of Tokyo house prices.

14The 21 Wards of Tokyo that had at least one transaction during our sample period (with the total
number of transactions for that Ward in brackets) are as follows: 1: Minato (69); 2: Shinjuku (136); 3:
Bunkyo (82); 4: Taito (15); 5: Sumida (32); 6: Koto (38); 7: Shinagawa (144); 8: Meguro (349); 9: Ota
(409); 10: Setagay (1158); 11: Shibuya (107); 12: Nakano (305); 13: Suginami (773); 14: Toshima (124); 15:
Kita (53); 16: Arakawa (34); 17: Itabashi (214); 18: Nerima (925); 19: Adachi (271); 20: Katsushika (143);
21: Edogawa (197). Note that for each observation tn, we have

∑21
j=1 DWtn,,j = 1; i.e., for each observation

tn, the 21 ward dummy variables sum to one. Recall that there are 5578 observations in our sample.
15We note that the annual net depreciation rate for Model 1 was estimated as δ = 1.39% with a T statistic

of 26.8.
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We regard Model 1 as a minimally satisfactory model. Note that we used only four
characteristics for each house sale: the land area L, the structure area S, the age of the
structure A and its Ward location.

We now address the problem of how exactly should the land, structure and overall house
price index be constructed? Our nonlinear regression model defined by (5) decomposes into
two terms: one which involves the land area Ltn of the house, αt

(∑21
j=1 ϖjDW,tn,j

)
Ltn,

and another which involves the structure area Stn of the house, βpCt(1 − δAtn)Stn. The
first term can be regarded as an estimate of the land value of house n that was sold in
quarter t while the second term is an estimate of the structure value of the house. Our
problem now is how exactly should these two value terms be decomposed into constant
quality price and quantity components? Our view is that a suitable constant quality land
price index for all houses sold in period t should be αt and for house n sold in period t,
the corresponding constant quality quantity should be

(∑21
j=1 ϖjDW,tn,j

)
Ltn which in turn

is equal to ϖjLtn if house n sold in period t is in Ward j.16 The basic idea here is that
we regard the term αt(

∑21
j=1 ϖjDW,tn,j)Ltn as a time dummy hedonic model for the land

component of the house with αt acting as the time dummy coefficient. Thus if we priced out
house n that sold in period t in period s, our hedonic imputation17 for the land component
of this “model” would be αs(

∑21
j=1 ϖjDW,tn,j)Ltn. Thus the quarterly time coefficients αt

act as proportional time shifters of the hedonic surface for the land component of the value
of each house in our sample and the relative period t to period s land price for each house
is αt/αs.

Similarly, a suitable constant quality structure price index for all houses sold in period
t is βpCt and for house n sold in period t, the corresponding constant quality quantity
should be approximately equal to the depreciated structure quantity (1 − δAtn)Stn. Thus
we regard the term βpCt(1 − δAtn)Stn as a time dummy hedonic model for the structure
component of the house with βpCt acting as the time dummy coefficient. The quarterly time
coefficients βpCt (or just the pCt) act as proportional time shifters of the hedonic surface
for the structure component of each house in our sample and the period t to period s land
price for each house in our sample turns out to be pCt/pCs.18

Thus the constant quality residential land price index for Tokyo for quarter t is defined to
be PL1t ≡ αt/α1 and the corresponding constant quality residential structures price index for
Tokyo for quarter t is defined to be PS1t ≡ pCt/pC1.19 These price indexes can be regarded

16An alternative way of viewing our land model is that land in each Ward can be regarded as a distinct
commodity with its own price and quantity. But since all Ward land prices move proportionally over time,
virtually all index number formulae will generate an overall land price series that is proportional to the αt.

17Hedonic imputation models and time dummy hedonic models are discussed in more detail in Diewert
(2003b), de Haan (2003), (2008) (2009), Diewert, Heravi and Silver (2009) and de Haan and Diewert (2011).

18Our method for aggregating over different house “models” that have varying amounts of constant
quality land and structures can be viewed as a hedonic imputation method but it can also be viewed as
an application of Hicks’ Aggregation Theorem; i.e., if the prices in a group of commodities vary in strict
proportion over time, then the factor of proportionality can be taken as the price of the group and the
deflated group expenditures will obey the usual properties of a microeconomic commodity. “Thus we have
demonstrated mathematically the very important principle, used extensively in the text, that if the prices
of a group of goods change in the same proportion, that group of goods behaves just as if it were a single
commodity.” J.R. Hicks (1946; 312-313).

19We have normalized the price indexes PL1t and PS1t to equal 1 in quarter 1, which is quarter 1 of the
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as quarter t price levels for land and structures respectively and the corresponding Model 1
quarter t constant quality quantity levels, QL1t and QS1t, are defined as the total quarter t

values of land and structures divided by the corresponding price levels for t = 1, ..., 44:

QL1t ≡
N(t)∑
L=1

 21∑
j=1

ϖjDW ,tn,j

 αtLtn/PL1t = α1

N(t)∑
n=1

(
21∑

j=1

ϖjDW,tn,j)Ltn; (7)

QS1t ≡
N(t)∑
n=1

βpCt(1 − δAtn)Stn/PS1t = β

N(t)∑
n=1

(1 − δAtn)Stn. (8)

The price and quantity series for land and structures need to be aggregated into an overall
Tokyo house price index. We use the Fisher (1922) ideal index to perform this aggregation.
Thus define the overall house price level for quarter t for Model 1, P1t, as the chained Fisher
price index of the land and structure series{PL1t, PS1t, QL1t, QS1t}.20

The overall Model 1 house price index P1t as well as the land and structure price indexes
PL1t and PS1t for Tokyo over the 44 quarters in the years 2000-2010 are graphed in Chart
1 below. We have also computed the quarterly mean and median house prices transacted in
each quarter and then normalized these averages to start at 1 in Quarter 1 of 2000. These
overall average price index series, PMean and PMedian are also graphed in Chart 1.21

The land price series PL1 is the top line in Chart 1, followed by the overall Model 1
house price index P1, followed by the structure price index PS1 (at the end of the sample
period). The mean and median price series track each other and our overall price series P1

reasonably well until 2004 but in the following years, the mean and median series fall well
below our overall quality adjusted house price series P1. 22Thus quality adjusting the sales
of residential housing in Tokyo makes a big difference to the resulting index.

In the following section, we will use our information on lot size and the age of the house in
a more flexible regression model and construct the resulting quality adjusted price indexes
and compare them with the Model 1 indexes.

year 2000.
20The Fisher chained index P1t is defined as follows. For t = 1, define P1t ≡ 1. For t > 1, define P1t in

terms of P1t−1 and PFt as P1t ≡ P1t−1PFt where PFt is the quarter t Fisher chain link index. The chain
link index for t ≥ 2 is defined as PFt ≡ [PLtPPt]

1/2 where the Laspeyres and Paasche chain link indexes
are defined as

PLt ≡ [PL1tQL1t−1 + PS1tQS1t−1]/[PL1t−1QL1t−1 + PS1t−1QS1t−1] and PPt ≡ [PL1tQL1t +
PS1QS1t]/[PL1t−1QS1t + PS1t−1QS1t]. Diewert (1976) (1992) showed that the Fisher formula had good
justifications from both the perspectives of the economic and axiomatic approaches to index number theory.

21The series PMean, PMedian, P1, PL1 and PS1 are also listed in Table A2 of the Appendix.
22The mean and median series cannot adjust properly for changes in the relative prices of land and

structures or for changes in the average age of the houses sold. Also our mean and median series are for
all sales of houses in Tokyo and thus these series were not adjusted for changes in the number of properties
sold in expensive wards and less expensive wards. We cannot expect the mean and median series to be very
accurate constant quality indexes of house prices; see de Haan and Diewert (2011).
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4 The Use of Splines on Lot Size and on the Age of the

Structure

In most countries, the price of a residential lot as a function of lot size does not grow
in a linear fashion as is predicted by our Model 1; i.e., typically, a larger lot sells for a
lower price per square meter than for a smaller lot. In this section, we will attempt to
determine whether this is true for land plots in Tokyo by allowing the cost of land to be
a piecewise linear function of the area of the land that the structure sits on. 23Another
possible limitation of our model is that the assumption of a straight line (net) depreciation
rate for all ages of a residential dwelling may not be true. Thus in this section, we will
attempt to increase the descriptive power of Model 1 by allowing the net depreciation of the
structure to be a piecewise linear function of the age of the structure.24

We first consider how to model possible nonlinearities in the price of residential land. We
divide up our 5578 observations into 3 roughly equal groups of observations based on their lot
sizes. Recall that we have restricted the range of the land variable to 0.5 ≤ Ltn ≤ 2.5. 25We
chose the land areas where there is a change in the marginal price of land to be L1 ≡ 0.77
and L2 ≡ 1.10. Using these land break points, we found that 1861 observations fell into
the interval 0.5 ≤ Ltn < 0.77, 1833 observations fell into the interval 0.77 ≤ Ltn < 1.10
and 1884 observations fell into the interval 1.1 ≤ Ltn ≤ 2.5. 26We label the three sets of
observations that fall into the above three groups as groups 1-3. For each observation n in
period t, we define the three land dummy variables, DL,tn,k, for k = 1, 2, 3 as follows:27

DL,tn,k ≡ 1 if observation tn has land area that belongs to group k; (9)

≡ 0 if observation tn has land area that does not belong to group k.

These dummy variables are used in the definition of the following piecewise linear function
of Ltn, fL(Ltn), defined as follows:

fL(Ltn) ≡ DL,tn,1λ1Ltn + DL,tn,2[λ1L1 + λ2(Ltn − L1)] (10)

+ DL,tn,3[λ1L1 + λ2(L2 − L1) + λ3(Ltn − L2)]

where the λk are unknown parameters and L1 ≡ 0.77 and L2 ≡ 1.10. The function
fL(Ltn) defines a relative valuation function for the land area of a house as a function of the

23For the town of “A” in the Netherlands, Diewert, de Haan and Hendriks (2011a) (2011b) found that
the marginal price of land rose for medium size lots and then fell for very large lots. These papers used the
linear spline model for lot size that we will use in this section.

24In the statistics literature, models that make the dependent variable in a regression model a piecewise
linear function of an exogenous variable are called linear spline models. Diewert (2003a; 328-329) proposed
the type of nonlinear hedonic regression model defined by (9) and discussed its flexibility properties.

25Recall that our units of measurement for land are in 100 meters squared so that Ltn = 1 means that
observation n in period t had a land area equal to 100 m2.

26Thus the sample probabilities for an observation to fall into the 3 land intervals are 0.33363, 0.32861
and 0.33776.

27Note that for each observation, the land dummy variables sum to one; i.e., for each tn, DL,tn,1 +
DL,tn,2 + DL,tn,3 = 1.
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plot area. Thus if 0.5 ≤ Ltn < 0.77, then the relative land value of observation n in period
t is fL(Ltn) = λ1Ltn; if 0.77 ≤ Ltn < 1.10, then the relative land value of observation n in
period t is fL(Ltn) = λ1L1 + λ2(Ltn − L1) and if 1.1 ≤ Ltn ≤ 2.5, then the relative land
value of observation n in period t is fL(Ltn) = λ1L1 + λ2(L2 − λL1) + λ3(Ltn − L2). If
observation n in period t is in Ward 10, then we will set the land value of this house equal
to αtfL(Ltn).

We turn our attention to modeling possible nonlinearities in the net depreciation rate.
We again attempt to divide up our 5578 observations into 3 roughly equal groups based on
the age of the structure. Recall that we have restricted the range of the age variable to
0 ≤ Atn ≤ 50. We chose the house ages where there is a change in the marginal depreciation
rate to be A1 ≡ 10 and A2 ≡ 20. Using these age break points, we found that 2085
observations fell into the interval 0 ≤ Atn < 10, 1996 observations fell into the interval
10 ≤ Atn < 20 and 1497 observations fell into the interval 20 ≤ Atn ≤ 50. 28We label
the three sets of observations that fall into the above three groups as groups 1-3. For each
observation n in period t, we define the three Age dummy variables, DA,tn,m, for m = 1, 2, 3
as follows:29

DA, tn, m ≡ 1 if observation tn has a structure whose age belongs to group m; (11)

≡ 0 if observation tn has a structure whose age is not in group m.

These dummy variables are used in the definition of the following piecewise linear function
of age Atn, gA(Atn), defined as follows:

gA(Atn) ≡ 1 − {DA,tn,1δ1Atn + DA,tn,2[δ1A1 + δ2(Atn − A1)] (12)

+ DA,tn,2[δ1A1 + δ2(A2 − A1) + δ3(Atn − A2)]}

where the δk are unknown parameters and A1 ≡ 10 and A2 ≡ 20. The function gA(Atn)
defines a (relative) depreciation schedule for a house structure as a function of the structure
age. Consider house n that sold in period t. If the age of the structure is 0 years so that it is
a new structure, then its relative value is set equal to 1. If 0 < Atn < 10, then its structure
value relative to a brand new structure is set equal to gA(Atn) ≡ 1−δ1Atn. If 10 ≤ Atn < 20,
then its relative structure value is set equal to gA(Atn) ≡ 1−δ1A1−δ2(Atn−A1). Finally, if
20 ≤ Atn ≤ 50, then its relative structure value is set equal to gA(Atn) ≡ 1−δ1A1−δ2(A2−
A1) − δ3(Atn − A2). Thus the depreciation schedule for a house is now a piecewise linear
schedule as opposed to the linear or straight line schedule that was used in the previous
section.30

28Thus the sample probabilities for an observation to fall into the 3 age intervals are 0.37379, 0.35783
and 0.26838.

29Note that for each observation, the Age dummy variables sum to one; i.e., for each tn, DA,tn,1 +
DA,tn,2 + DA,tn,3=1.

30Note that if δ1 = δ2 = δ3, then the present depreciation model reduces to straight line depreciation. If
in addition, λ1 = λ2 = λ3, then the nonlinear regression model in this section reduces to the model in the
previous section.
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Now we are ready to define our new nonlinear regression model that generalizes the model
defined by (5) and (6). For t = 1, ..., 44 and n = 1, ..., N(t):

Vtn = αt


21∑

j=1

ϖjDW,tn,j

 fL(Ltn) + βpCtgA(Atn)Stn + εtn (13)

where the functions fL and gA are defined above by (10) and (12) and εtn is an error
term. There are 44 unknown land price parameters αt, 1 structure price level parameter
β, 21 ward relative land price level parameters ϖj , 3 lot size parameters λk and three
depreciation parameters δm to estimate. However, as was the case with Model 1, not all
parameters in (11) can be identified. Hence we impose the following identifying restrictions
on the parameters:

ϖ10 = 1;λ1 = 1. (14)

Thus there are 44 + 1 + 20 + 2 + 3 = 70 unknown parameters to be estimated. The
nonlinear regression model defined by (13) and (14) is our Model 2.

As was the case with Model 1, we estimated the parameters for Model 2 using the nonlinear
regression option in Shazam.31 The detailed parameter estimates are listed in the Appendix
in Table A3.32 The R2 for this model turned out to be 0.8206 and the log likelihood was
-9164.1, an increase of 68.9 over the Model 1 log likelihood.33 Thus adding the 2 extra lot
size parameters and the 2 extra depreciation parameters is well justified.

Recall that we set λ1 equal to 1 and the estimated λ2 and λ3 turned out to be 0.7533 and
0.9486 respectively. The interpretation of these parameters runs as follows. If observation
n in period t had a land area Ltn which was less than L1 = .77 (which is 77 m2 since
we are measuring land area in units of 100 m2) and it was located in Ward 10, then its
estimated land value is αtλ1Ltn = αtLtn. However, if the land area was between L1 and L2

= 1.1(110m2), then its estimated land value is αt[L1 + λ2(Ltn −L1)]. Thus the relative (to
αt) marginal price of land shifts from λ1 = 1 until Ltn reaches the land level L1, and then
for amounts of land beyond this level (but less than the level defined by L2), the relative
marginal price of land is λ2 = 0.7533 according to our estimated coefficient. If the land
area of observation tn was greater than or equal to L2, then its estimated land value is
αt[L1 + λ2(L2 − L1) + λ3(Lnt − L2)]. Thus the relative marginal price of land shifts from
λ2 to λ3 for plot areas greater than or equal to L3 = 1.1 (110 m2). Our estimate for the
relative marginal price of land for large lots is λ3 = 0.9486. Note that these same relative

31Each of the four models that we propose in this paper subsequent to the first model is a generalization
of the previous model so we were able to use the final estimates of the previous model as starting values
for the parameters of each new model to facilitate convergence of the nonlinear estimation. No convergence
difficulties were encountered.

32We note that the annual net depreciation rate for Model 1 was estimated as δ = 1.39% with a T statistic
of 26.8.

33The sum of the residuals in this model was only -0.5, a negligible amount. Thus adding a constant term
to the regression would not add significantly to the fit of Model 2. We did not include a constant term in
the regression because we want to allocate the value of the sale to separate land and structure components
that add up to the total sale value. We note that the residual sum in Model 1 was 165.5 so Model 2 is much
better in this respect
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marginal valuations for land apply to all periods t; i.e., the period t land price parameter αt

shifts the entire schedule of land values as a function of land size in a proportional manner
for each period t. Thus normalizing on the price of land for small lots, we find that for
lots of medium size, the relative marginal price of land falls from 1 to 0.7533 for land areas
between L1 and L2 and for larger lots greater than L2, the relative marginal price of land
increases to 0.9486. Thus in any given period, the estimated value of the land component
of the housing sale is a continuous piecewise linear function of the lot size.

The estimated value of (net) depreciation also follows a piecewise linear schedule instead
of just being a linear function of age as in Model 1. Our estimated net depreciation rate
parameters for Model 2 were δ1 = 0.0247, δ2 = 0.0159 and δ3 = 0.0032. To explain the
meaning of these parameters, consider an observation n in period t that has house age equal
to Atn years. If 0 ≤ Ant < A1 ≡ 10 years, then our estimated net depreciation of the house in
terms of the period t price of a unit of new house construction, βpCt, is βpCtδ1Atn. Thus for
relatively new houses, we have a simple straight line depreciation model (in terms of current
structure prices) and the annual net depreciation rate for these relatively new houses is 2.47%
per year. However, if A1 ≡ 10 ≤ Atn < 20 ≡ A2 so that the age of the house is between 10
and 20 years old, then our estimate for the net depreciation of the house in current period
prices is βpCt[δ1A1 + δ2(Atn − A1)]. Thus for this age group of houses sold, the marginal
rate of net depreciation falls to 1.59% per year for ages Atn greater than 10 years. Finally,
if the age of the house is between A2 ≡ 20 and 50 years old, then our estimate for the net
depreciation of the house in current period prices is βpCt[δ1A1+δ2(A2−A1)+δ3(Atn−A2)].
Thus for this age group of houses sold, the marginal rate of net depreciation falls to 0.32%
per year for Atn greater than 20 years.34

Model 2 defined by (13) and (14) decomposes into two terms: one which involves the land
area Ltn of the house and another which involves the structure area Stn of the house. As
was the case with Model 1, the first term can be regarded as an estimate of the land value of
house n that was sold in quarter t while the second term is an estimate of the structure value
of the house. We follow the same strategy in decomposing the land and structure values
into price and quantity components as in Model 1. The quarterly time coefficients αt act as
proportional time shifters of the hedonic surface for the land component of each house in our
sample and the relative period t to period s land price for each house is αt/αs. As was the
case with Model 1, the quarterly time coefficients βpCt act as proportional time shifters of
the hedonic surface for the structure component of each house in our sample and the period
t to period s land price for each house in our sample again turns out to be pCt/pCs.

Thus the Model 2 constant quality residential land price index for Tokyo for quarter t is
defined to be PL2t ≡ αt/α1 and the corresponding constant quality residential structures
price index for Tokyo for quarter t is defined to be PS2t ≡ pCt/pC1.35 The corresponding
Model 2 quarter t constant quality quantity levels, QL2t and QS2t, are defined as the total

34We conjecture that the reason why the marginal net depreciation rate for houses older than 20 years
is so low is that houses that survive beyond 20 years of age have been extensively renovated or are heritage
houses. We are estimating net depreciation rates here because we have no information on the magnitude of
renovation expenditures.

35Note that PS1t = PS2t.
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quarter t values of land and structures divided by the corresponding price levels for t =
1, ..., 44:

QL2t ≡
N(t)∑
n=1

α1


21∑

j=1

ϖjDW,tn,j

 fL(Ltn); (15)

QS2t ≡
N(t)∑
n=1

βpCtgA(Atn)Stn. (16)

We again use the Fisher ideal index to aggregate the price and quantity components for
land and structures into a house price index. Thus define the overall house price level for
quarter t for Model 2, P2t, as the chained Fisher price index of the land and structure series
{PL2t, PS2t, QL2t, QS2t}.

The overall Model 2 house price index P2t as well as the land and structure price indexes
PL2t and PS2t for Tokyo over the 44 quarters in the years 2000-2010 are graphed in Chart
2 below.36

From Chart 2, it can be seen that there was a mini land price bubble during the years
2006-2008 for residential properties in Tokyo. Comparing Charts 1 and 2, it can be seen
that the structure price index is the same in both Models (by construction) and the land
and overall indexes are much the same in both Models.37

In the following section, we will generalize Model 2 by adding some additional explanatory
variables that are thought to be important in explaining house price movements in Tokyo.

5 Quality Adjustment for the Number of Bedrooms and

Lot Width

Many hedonic regression models that attempt to explain movements in house prices use
the number of rooms or bedrooms in the structure as an explanatory variable. We will use
the number of bedrooms, NBtn, for house n sold in period t as a quality adjusting variable
for the structure. In Japan, the width of the lot, WItn, is also thought to be an important
characteristic that explains the value of a residential property (a bigger width is thought to
more desirable).

We will treat the number of bedrooms variable in a manner that is similar to our treatment
of depreciation. We first need to break up our sample into three groups of observations:
houses with a low number of bedrooms, houses with a medium number and houses with a
high number of bedrooms. We find that there are 247 houses with 2 bedrooms, 1628 with 3
bedrooms, 2439 with 4 bedrooms and 1264 houses with 5-8 bedrooms. We will allocate the
2 and 3 bedroom houses to the low group, the 4 bedroom houses to the medium group and
the 5-8 bedroom houses to the high group. We transform the number of bedrooms variable,

36The series P2, PL2 and PS2 are also listed in Table A4 of the Appendix.
37The correlation coefficients between P1 and P2 and PL1 and PL2 were 0.99941 and 0.99946 respectively.
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NB, into the number of bedrooms less 2 variable B; i.e., for observation n in period t, define
the translated number of bedrooms variable Btn as follows:

Btn ≡ NBtn − 2; t = 1, ..., 44;n = 1, ..., N(t). (17)

Thus the B variable takes on integer values between 0 and 6. If Btn equals 0 or 1, then
observation tn falls into the low number of bedrooms group. If Btn = 2, then observation tn

falls into the medium number of bedrooms group. If Btn = 3 − 6, then observation tn falls
into the high number of bedrooms group. The break points for the B variable where there
is a change in the marginal value of extra bedrooms are chosen to be B1 ≡ 1 and B2 ≡ 2.
The bedroom dummy variables, DB,tn,k, are defined as follows:

DB,tn,1 ≡ 1 if Btn = 0 or 1;DB,tn,1 ≡ 0 if Btn > 1; (18)

DB,tn,2 ≡ 1 if Btn = 2; DB,tn,1 ≡ 0 if Btn ̸= 2;

DB,tn,1 ≡ 1 if Btn > 2; DB,tn,1 ≡ 0 if Btn ≤ 1.

Now consider the following piecewise linear function of Btn, gB(Btn), defined as follows:

gB(Btn) ≡ φ1 + DB,tn,1φ2Btn + DB,tn,2[φ2B1 + φ3(Btn − B1)] (19)

+ DB,tn,3[φ2B1 + φ3(B2 − B1) + φ4(Btn − B2)]

where the φk are unknown parameters and B1 ≡ 1 and B2 ≡ 2. Thus if Btn = 0 (so that
house n sold in period t has 2 bedrooms), then gB(Btn) = gB(0) = φ1. If Btn = 1 (so that
house n sold in period t has 3 bedrooms), then gB(Btn) = gB(1) = φ1 + φ2. If Btn = 2
(so that house n sold in period t has 4 bedrooms), then gB(Btn) = gB(2) = φ1 + φ2 + φ3.
Finally, if Btn = 3− 6 (so that house n sold in period t has 5-8 bedrooms), then gB(Btn) =
φ1 + φ2 + φ3 + φ4(Btn − 2). We will use the function gB to determine the relative value of
a house as a function of the number of bedrooms that it has, holding other characteristics
constant. It can be seen that this function is a linear spline function and is relatively flexible
in that it can describe a large number of structure valuations with different choices of the 4
φk parameters.38

We turn now to our parameterization of the relative value of the land area of a house as a
function of the lot width WI (or frontage). Recall that the width variable ranged between
2.5 and 9 meters. We transform the width variable to the width variable less 2.5; i.e., for
observation n in period t, define the translated frontage variable Ftn as follows:

Ftn − WItn − 2.5; t = 1, ..., 44;n = 1, ..., N(t). (20)

38We expect these parameters to be positive numbers.
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Thus the range of Ftn is 0 ≤ Ftn ≤ 6.5. We will use a relative valuation model for
lots of different widths similar to the above relative valuation model for the number of
bedrooms. We chose the frontage widths where there is a change in the marginal valuation
of translated width to be F1 ≡ 1.5 and F2 ≡ 2.5. Using these width break points, we found
that 1109 observations fell into the interval 0 ≤ Ftn < 1.5, 2352 observations fell into the
interval 1.5 ≤ Ftn < 2.5 and 2117 observations fell into the interval 2.5 ≤ Ftn ≤ 6.5.39 We
label the three sets of observations that fall into the above three groups as groups 1-3. For
each observation n in period t, we define the three frontage dummy variables, DF,tn,k, for
k = 1, 2, 3 as follows:40

group k.

DF,tn,k ≡ 1 if observation tn has translated frontage width that belongs to group k; (21)

≡ 0 if observation tn has translated frontage width that does not belong to group k

Now consider the following piecewise linear function of Ftn, fF (Ftn), defined as follows:

fF (Ftn) ≡ κ1 + DF,tn,1κ2Ftn + DF,tn,2[κ2F1 + κ3(Ftn − F1)] (22)

+ DF,tn,3[κ2F1 + κ3(F2 − F1) + κ4(Ftn − F2)]

where the κk are unknown parameters and F1 = 1.5 andF2 = 2.5. If Ftn < 1.5, then
fF (Ftn) = κ1 + κ2Ftn. If 1.5 ≤ Ftn < 2.5, then fF (Ftn) = κ1 + κ2F1 + κ3(Ftn − F1). If
2.5 ≤ Ftn, then fF (Ftn) = κ1 +κ2F1 +κ3(F2−F1)+κ4(Ftn−F2). We will use the piecewise
linear function fF to determine the relative value of the land area as a function of the width
of the lot, holding other characteristics constant.

Noting that the number of bedrooms is a characteristic that may affect the value of the
structure and the lot width is a characteristic that may affect the value of the land area
that the structure sits on, we multiply the land value term for observation n in period t in
Model 2 by fW (Wtn) and the corresponding structure value by gB(Btn). This leads to the
following nonlinear regression model for t = 1, ..., 44 and n = 1, ..., N(t):

Vtn = αt


21∑

j=1

ϖjDW,tn,j

 fL(Ltn)fF (Ftn) + βpCtgA(Atn)gB(Btn)Stn + εtn (23)

where the functions fL, gA, gB and fF are defined above by (10), (12), (19) and (22) re-
spectively. There are 44 unknown land price parameters αt, 1 structure price level parameter
β, 21 ward relative land price level parameters ϖj , 3 lot size parameters λk, three deprecia-
tion parameters δm, 4 number of bedroom parameters φk and 4 frontage width parameters
κk to estimate. However, as was the case with Models 1 and 2, not all parameters in (23)
can be identified. Hence we impose the following identifying restrictions on the parameters:

39Thus the sample probabilities for an observation to fall into the 3 lot width intervals are 0.19882, 0.42166
and 0.37953.

40Note that for each observation, the frontage width dummy variables sum to one; i.e., for each tn,
DF,tn,1 + DF,tn,2 + DF,tn,3 = 1.
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ϖ10 = 1;λ1 = 1;φ1 = 1 and κ1 = 1. (24)

Thus there are 44+1+20+2+3+3+3 = 76 unknown parameters to be estimated. The
nonlinear regression model defined by (23) and (24) is our Model 3.

We estimated the unknown parameters for Model 3 using the nonlinear regression option
in Shazam.41 The detailed parameter estimates are listed in the Appendix in Table A5. The
R2 for this model turned out to be 0.8256 and the log likelihood was -9085.3, an increase of
78.7 over the Model 2 log likelihood.42 Thus adding the 3 extra lot width parameters and
the 3 extra bedroom parameters is well justified.

The estimated lot width parameters were κ2=0.1038, κ3 = 0.0433 and κ4 = 0.0124. The
interpretation of these parameters runs as follows: for properties in the small lot frontage
width group, an extra meter of lot width adds 10.38% to the land value; for properties in
the medium lot with group, an extra meter of lot width adds 4.33% to the land value and
properties in the large lot width group, an extra meter of lot width adds 1.24% to the land
value of the property. Thus there are diminishing returns to lot width but extra lot width
(holding other characteristics constant) always adds to the land value of the property.

The estimated number of bedroom parameters were φ2 = 0.0277, φ3 = -0.0326 and φ4

=-0.0437.43 The economic interpretation of these parameters is as follows: holding all other
characteristics constant (including the size of the structure in meters squared), going from
2 bedrooms to 3 bedrooms adds 2.77% to the value of the structure; going from 3 bedrooms
to 4 bedrooms subtracts 3.26% from the value of the structure and for each bedroom beyond
4 bedrooms, subtract 4.37% from the value of the structure. These results are a bit hard to
interpret because they are conditional on the area of the structure. Now for small structures,
we would expect that the “optimal” number of bedrooms is small and for large structures,
we would expect that the “optimal” number of bedrooms is large. However, our very simple
model makes a bedroom value adjustment over all structure sizes and so our interpretation
of the above numerical results is that for a structure of average size in terms of its floor space
area, it is preferable to have 3 bedrooms over 2 but beyond 3 bedrooms, for an average sized
house, adding more bedrooms subtracts from the value of the property.44

41Each of the four models that we propose in this paper subsequent to the first model is a generalization
of the previous model so we were able to use the final estimates of the previous model as starting values
for the parameters of each new model to facilitate convergence of the nonlinear estimation. No convergence
difficulties were encountered.

42The sum of the residuals in this model was -20.8.
43The T statistics for these 3 parameters were 0.744, -2.227 and -6.051.
44Looking at the model defined by (23), it can be seen that we have assumed that the structure value

of the property n in period t, βpCtgA(Atn)gB(Btn)Stn, is basically the structure area Stn times a period
t structure price parameter βpCt, times some quality adjustment factors that depend on the age of the
structure, gA(Atn), and the number of bedrooms in the structure, gB(Btn). Thus we are assuming that
these quality adjustment factors act more or less independently of each other in a multiplicative fashion;
i.e., we have a kind of multiplicative separability (or statistical independence) assumption. This type of
model can provide a first order approximation to a more general hedonic surface in time, age, the number of
bedrooms and the floor space area. However, in order to capture adequately the interaction effects of Btn and
Stn, we would require a functional form that could provide a second order approximation. In this paper, we
did not venture beyond hedonic surface functional forms that can provide a first order approximation. First
and second order approximation properties of hedonic functional forms was discussed by Diewert (2003a;
329-334).
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Model 3 defined by (23) and (24) decomposes into two terms: one which involves the
land area Ltn of the house and another which involves the structure area Stn of the house.
As was the case with Models 1 and 2, the first term can be regarded as an estimate of
the land value of house n that was sold in quarter t while the second term is an estimate
of the structure value of the house. We follow the same strategy in decomposing the land
and structure values into price and quantity components as in the previous Models. The
quarterly time coefficients αt act as proportional time shifters of the hedonic surface for the
land component of each house in our sample and the relative period t to period s land price
for each house is αt/αs. As was the case with Model 1, the quarterly time coefficients βpCt

act as proportional time shifters of the hedonic surface for the structure component of each
house in our sample and the period t to period s land price for each house in our sample
again turns out to be pCt/pCs.

Thus the Model 3 constant quality residential land price index for Tokyo for quarter t

is defined to be PL3t ≡ αt/α1 and the corresponding constant quality residential structures
price index for Tokyo for quarter t is defined to be PS3t ≡ pCt/pC1. The corresponding Model
3 quarter t constant quality quantity levels, QL3t and QS3t, are defined as the total quarter
t values of land and structures divided by the corresponding price levels for t = 1, ..., 44:

QL3t ≡
N(t)∑
n=1

α1


21∑

j=1

ϖjDW,tn,j

 fL(Ltn)fF (Ftn); (25)

QS3t ≡
N(t)∑
n=1

βpCtgA(Atn)gB(Btn)Stn. (26)

We again use the Fisher ideal index to aggregate the price and quantity components for
land and structures into a house price index. Thus define the overall house price level for
quarter t for Model 3, P3t, as the chained Fisher price index of the land and structure series
{PL3t, PS3t, QL3t, QS3t}.

The overall Model 3 house price index P3t as well as the land and structure price indexes
PL3t and PS3t for Tokyo over the 44 quarters in the years 2000-2010 are graphed in Chart
3 below.45

Comparing Charts 1, 2 and 3, it can be seen that the structure price index is the same
in both Models (by construction) and the land and overall indexes are much the same in all
three Models.46

In the following section, we will generalize Model 3 by adding some additional explanatory
variables that are important in explaining house price movements in Tokyo.

45The series P3, PL3 and PS3 are also listed in Table A6 of the Appendix.
46The correlation coefficients between P3 and P1 and P2 were 0.99678 and 0.99811 respectively and PL3

and PL1 and PL2 were 0.99689 and 0.99806 respectively.
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6 Quality Adjustment for the Nearness to Subway Lines

and Subway Travel Time

Recall that in section 2, we noted that we constructed information on the variables TW

and TT for each house in our sample. TWtn is the time in minutes it takes to walk from
house n sold in period t to the nearest subway station while TTtn is the time in minutes
the train takes from the nearest subway station to the main Tokyo station. Recall that the
sample range of TW was 2 to 29 minutes while the sample range of TT was 4 to 48 minutes.

We transform the TW variable to the TW variable less 2; ; i.e., for observation n in
periodt, define the transformed walking time variable Mtn as follows:

Mtn ≡ TWtn − 2; t = 1, ..., 44;n = 1, ..., N(t). (27)

Thus the range of Mtn is 0 ≤ Mtn ≤ 27. As usual, we want to group the properties in
our sample into 3 groups of roughly equal size. We chose our break points for M to be
M1 ≡ 6 and M2 ≡ 11. Using these break points, we found that 1811 observations fell into
the interval 0 ≤ Mtn < 6, 2261 observations fell into the interval 6 ≤ Mtn < 11 and 1506
observations fell into the interval 11 ≤ Mtn ≤ 27. 47We label the three sets of observations
that fall into the above three groups as groups 1-3. For each observation n in period t, we
define the three time to nearest subway station dummy variables, DM,tn,k, for k = 1, 2, 3 as
follows:48

DM,tn,k ≡ 1 if observation tn has translated subway walking time that belongs to group k;
(28)

≡ 0 if observation tn has translated subway walking time that does not belong to group k.

Now consider the following piecewise linear function of Mtn, fM (Mtn), defined as follows:

fM (Mtn) ≡ τ1 + DM,tn,1τ2Mtn + DM,tn,2[τ2M1 + τ3(Mtn − M1)] (29)

+ DM,tn,3[τ2M1 + τ3(M2 − M1) + τ4(Mtn − M2)]

where the τk are unknown parameters and M1 = 6 and M2 = 11. If Mtn < 6, then
fM (Mtn) = τ1 + τ2Mtn. If 6 ≤ Mtn < 11, then fM (Mtn) = τ1 + τ2M1 + τ3(Mtn − M1). If
11 ≤ Mtn, then fM (Mtn) = τ1 + τ2M1 + τ3(M2 − M1) + τ4(Mtn − M2). We will use the
piecewise linear function fM to determine the relative value of the land area as a function
of the travel time to the nearest subway station, holding other characteristics constant.

The subway travel time variable TT has the range 4 to 48 minutes. We translate this
variable to start at zero. Thus define the translated subway travel time variable Ttn as
follows:

47Thus the sample probabilities for an observation to fall into the 3 (translated) time to nearest subway
station groups are 0.32467, 0.40534 and 0.26999.

48Note that for each observation, the subway time dummy variables sum to one; i.e., for each tn, DM,tn,1+
DM,tn,2 + DM,tn,3 = 1.
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Ttn ≡ TTtn − 4; t = 1, ..., 44;n = 1, ..., N(t). (30)

The range of Ttn is 0 ≤ Ttn ≤ 44. As usual, we want to group the properties in our sample
into 3 groups of roughly equal size. We chose our break points for T to be T1 ≡ 24 and
T2 ≡ 32. Using these break points, we found that 1678 observations fell into the interval
0 ≤ Ttn < 24, 2049 observations fell into the interval 24 ≤ Ttn < 32 and 1851 observations
fell into the interval 32 ≤ Ttn ≤ 44. 49 We label the three sets of observations that fall
into the above three groups as groups 1-3. For each observation n in period t, we define the
three travel time to Tokyo station dummy variables, DT,tn,k, for k = 1, 2, 3 as follows:

DT,tn,k ≡ 1 if observation tn has translated time to Tokyo station that belongs to group k;
(31)

≡ 0 if observation tn has translated time to Tokyo station that does not belong to group k;

Now consider the following piecewise linear function of Ttn, fT (Ttn), defined as follows:

fT (Ttn) ≡ µ1 + DT,tn,1µ2Ttn + DT,tn,2[µ2T1 + µ3(Ttn − T1)] (32)

+ DT,tn,3[µ2T1 + µ3(T2 − T1) + µ4(Ttn − T2)]

where the µk are unknown parameters and T1 = 24 and T2 = 32. If Ttn < 24, then
fT (Ttn) = µ1 +µ2Ttn.If 24 ≤ Ttn < 32,then fT (Ttn) = µ1 +µ2T1 +µ3(Ttn−T1). If 32 ≤ Ttn,
then fT (Ttn) = µ1 + µ2T1 + µ3(T2 − T1) + µ4(Ttn − T2). We will use the piecewise linear
function fT to determine the relative value of the land area as a function of the travel time
from the nearest subway station to the Tokyo Central station, holding other characteristics
constant.

The travel time characteristics are ones that may affect the value of the land that a house
sits on. Thus we multiply the land value term in Model 3 for observation n in period t by
fM (Mtn)fT (Ttn). This leads to the following nonlinear regression model for t = 1, ..., 44 and
n = 1, ..., N(t):

Vtn = αt


21∑

j=1

ϖjDW,tn,j

 fL(Ltn)fF (Ftn)fM (Mtn)fT (Ttn)+βpCtgA(Atn)gB(Btn)Stn+εtn

(33)
where the functions fL, gA, gB , fF , fM and fT are defined above by (10), (12), (19),

(22), (29) and (32) respectively. Compared to the previous Model, we have added 8 new
subway time parameters, the 4 walking time parameters τk and the 4 subway travel time
to the Tokyo station parameters µk, for a total of 88 parameters. However, as was the case

49Thus the sample probabilities for an observation to fall into the 3 (translated) travel time to the Tokyo
station time groups are 0.30082, 0.36734 and 0.33184.
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with our previous models, not all parameters in (33) can be identified. Hence we impose the
following identifying restrictions on the parameters:

ϖ10 = 1;λ1 = 1;φ1 = 1;κ1 = 1; τ1 = 1 and µ1 = 1. (34)

Thus there are 82 unknown parameters to be estimated. The nonlinear regression model
defined by (33) and (34) is our Model 4.

As usual, we estimated the unknown parameters for Model 4 using the nonlinear regression
option in Shazam. The detailed parameter estimates are listed in the Appendix in Table
A7. The R2 for this model turned out to be 0.8417 and the log likelihood was -8815.9,
a very large increase of 269.4 over the Model 3 log likelihood.50 Thus adding the 3 extra
walking time parameters and the 3 extra travel time to Tokyo station parameters provides
a significant addition to the explanatory power of our hedonic regression model.

The estimated walking time to the nearest subway station parameters were τ2 = −0.0035,
τ3 = −0.0201 and τ4 = −0.0171. The interpretation of these parameters runs as follows:
for properties where the walk to the nearest subway station is 2-8 minutes, an increase in
walking time of 1 minute decreases the land value of the property by 0.35%; for properties
where the walk to the nearest subway station is 8-13 minutes, an increase in walking time of
1 minute decreases the land value of the property by 2.01% and for properties where the walk
to the nearest subway station is over 13 minutes, an increase in walking time of 1 minute
decreases the land value of the property by 1.71%. Thus for properties that are quite close
to a subway station, the drop in land value as walking time increases is not too substantial
but as the walking time increases markedly, the drop in land value is quite substantial.

The estimated time from the nearest subway station to the Tokyo station parameters were
µ2 = −0.0008, µ3 = −0.0128 and µ4 = −0.0188. The interpretation of these parameters runs
as follows: for properties where the subway running time from the nearest subway station
to the Tokyo station is 4-28 minutes, an increase in running time of 1 minute decreases the
land value of the property by 0.08%, a negligible decease; for properties where the subway
running time from the nearest subway station to the Tokyo station is 28-36 minutes, an
increase in running time of 1 minute decreases the land value of the property by 1.28% and
for properties where the subway running time from the nearest subway station to the Tokyo
station is over 36 minutes, an increase in running time of 1 minute decreases the land value
of the property by 1.88%, which is a substantial drop in value.

The Model 4 constant quality residential land price index for Tokyo for quarter t is defined
to be PL4t ≡ αt/α1 and the corresponding constant quality residential structures price index
for Tokyo for quarter t is defined to be PS4t ≡ pCt/pC1. The corresponding Model 4 quarter
t constant quality quantity levels, QL4t and QS4t, are defined as the total quarter t values of
land and structures divided by the corresponding price levels for t = 1, ..., 44:

QL4t ≡
N(t)∑
n=1

α1


21∑

j=1

ϖjDW,tn,j

 fL(Ltn)fF (Ftn)fM (Mtn)fT (Ttn); (35)

50The sum of the residuals in this model was -11.4.
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QS4t ≡
N(t)∑
n=1

βpCtgA(Atn)gB(Btn)Stn. (36)

We again use the Fisher ideal index to aggregate the price and quantity components for
land and structures into a house price index. Thus define the overall house price level for
quarter t for Model 4, P4t, as the chained Fisher price index of the land and structure
series{PL4t, PS4t,QL4t,QS4t}.

The overall Model 4 house price index P4t as well as the land and structure price indexes
PL4t and PS4t for Tokyo over the 44 quarters in the years 2000-2010 are graphed in Chart
4 below.51

Comparing Chart4 with the previous Charts, it can be seen that the structure price index
is the same in all Models (by construction) and the land and overall indexes are much the
same in all four Models.52

We have allowed for a different level of land prices across the 21 Wards in Tokyo that
span our data set. However, we have forced all land prices to change proportionally across
time with the estimated αt being the proportional factors. It is unlikely that land prices
in the different Wards move in an exactly fixed proportion. Thus in the following section,
we divide up the Wards into two groups: those that have relatively high price levels (i.e.,
large estimated ϖj parameters) and those that have relatively low price levels (i.e., small
ωj parameters) and we allow land prices to move independently in these high and low end
wards. We also allow the level of structure prices to differ in high and low end wards.

7 Allowing for Land and Structure Price Differences

Across Wards

In many countries, property price movements differ substantially across expensive and less
expensive neighborhoods. Usually, land price movements in high end properties are more
volatile than in lower end properties. In this section, we will attempt to determine whether
this pattern also holds for Tokyo residential land prices.

Ideally, it would be preferable to have separate land price parameters (the αt) for each
Ward. However, we do not have enough degrees of freedom to accurately measure land price
movements ward by ward.53 We do have a sufficient number of observations so that we can
divide Wards into two groups based on the estimated ϖj parameters from Model 4: Group
1 Wards are those whose estimated relative land price levels ϖj exceeded 0.75 and Group
2 Wards are those whose estimated land price levels ωj were less than 0.75. The following

51The series P4, PL4 and PS4 are also listed in Table A8 of the Appendix.
52The correlation coefficients between P4 and P1, P2 and P3 were 0.99408, 0.99543 and 0.99643 respec-

tively and the correlation coefficients between PL4 and PL1, PL2 and PL3 were 0.99416, 0.99536 and 0.99650
respectively.

53The total number of observations in Wards 1-21 were as follows: 69, 136, 82, 15, 32, 38, 144, 349, 409,
1158, 107, 305, 773, 124, 53, 34, 214, 925, 271, 143 and 197. Thus Wards 4, 5, 6 and 16 have only 15, 32, 33
and 34 observations. Thus the Wards with the most observations were Wards 10, 13 and 18 with 1158, 773
and 925 observations.
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Wards were in Group 1 (the expensive or high end Wards): 1-4, 7-11, 13-14. The following
Wards were in Group 2 (the cheaper or lower end Wards): 5, 12, 15-21. We will allow
land prices to evolve over time in a completely independent manner for high and lower end
Wards. Thus instead of estimating a single set of 44 land price parameters αt, we will now
estimate two sets of land price parameters: α1,t for high end Wards and α2,t for lower end
Wards for t = 1, ..., 44.

Recall definition (10) which defined the quality adjustment for lot size function, fL(Ltn).
We will now allow for separate lot size quality adjustments in the high and lower end wards.
The high and low end lot size quality adjustment functions for property n sold in period t,
f1L(Ltn) and f2L(Ltn) respectively, are defined as follows for i = 1, 2:

fiL(Ltn) ≡ DL,tn,1λi,1Ltn + DL,tn,2[λi,1L1 + λi,2(Ltn − L1)] + DL,tn,3[λi,1L1 (37)

+ λi,2(L2 − L1) + λi,3(Ltn − L2)]

where the λi,k are 6 unknown parameters, L1 ≡ 0.77 and L2 ≡ 1.10, and the lot size
dummy variables DL,tn,k are defined above by (9). The parameters λ1,1, λ1,2 and λ1,3 are
the relative marginal prices of land for plots in high end wards and the parameters λ2,1, λ2,2

and λ2,3 are the relative marginal prices of land for plots in lower end wards.
A final generalization over Model 4 is that we will now allow the level of structure prices

to differ in high and lower end wards so that the previous structure price level parameter β

is now replaced by β1 (the level of structure prices in high end wards) and β2 (the level of
structure prices in lower end wards). Our expectation is that β2 will be less than β1 since
we would expect the quality of construction to be higher in the high end wards. Our final
nonlinear regression model is defined for t = 1, ..., 44 and n = 1, ..., N(t) by the following
equations:

V tn = α1,t{ϖ1DW,tn,1 + ϖ2DW,tn,2 + ϖ3DW,tn,3 + ϖ4DW,tn,4 + ϖ7DW,tn,7 (38)

+ ϖ8DW,tn,8 + ϖ9DW,tn,9 + ϖ10DW,tn,10 + ϖ11DW,tn,11 + ϖ13DW,tn,13

+ ϖ14DW,tn,14}f1L(Ltn)fF (Ftn)fM (Mtn)fT (Ttn) + α2,t{ϖ5DW,tn,5 + ϖ6DW,tn,6

+ ϖ12DW,tn,12 + ϖ15DW,tn,15 + ϖ16DW,tn,16 + ϖ17DW,tn,17 + ϖ18DW,tn,18

+ ϖ19DW,tn,19 + ϖ20DW,tn,11 + ϖ21DW,tn,21}f2L(Ltn)fF (Ftn)fM (Mtn)fT (Ttn)

+ β1{DW,tn,1 + DW,tn,2 + DW,tn,3 + DW,tn,4 + DW,tn,7 + DW,tn,8

+ DW,tn,9 + DW,tn,10 + DW,tn,11 + DW,tn,13 + DW,tn,14}pCtgA(Atn)gB(Btn)Stn

+ β2{DW,tn,5 + DW,tn,6 + DW,tn,12 + DW,tn,15 + DW,tn,16 + DW,tn,17

+ DW,tn,18 + DW,tn,19 + DW,tn,20 + DW,tn,21}pCtgA(Atn)gB(Btn)Stn + εtn

The explanatory variables on the right hand side of equations (38) decompose into 4 sets
of terms:54

54The model defined by equations (38) looks complicated but it is an almost straightforward generalization
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• The terms associated with α1,t represent the estimated land value of a property in
a high end ward;
• The terms associated with α2,t represent the estimated land value of a property in

a lower end ward;
• The terms associated with β1 represent the estimated structure value of a property

in a high end ward and
• The terms associated with β2 represent the estimated structure value of a property

in a lower end ward.
Compared to the previous Model, we have added 44 new land price parameters, α2,t, 3

new lot size quality adjustment parameters, λ2,1, λ2,2 and λ2,3 and one new structure price
level parameter, β2. However, as was the case with our previous models, not all parameters
in (38) can be identified. Hence we impose the following identifying restrictions on the
parameters:55

ϖ10 = 1;ϖ18 = 1;λ1,1 = 1;λ2,1 = 1;φ1 = 1;κ1 = 1; τ1 = 1 and µ1 = 1. (39)

There are 128 unknown parameters to be estimated. The nonlinear regression model
defined by (38) and (39) is our Model 5.

As usual, we estimated the unknown parameters for Model 5 using the nonlinear regression
option in Shazam. The detailed parameter estimates are listed in the Appendix in Table
A9.56 The R2 for this model turned out to be 0.8476 and the log likelihood was -8709.9, an
increase of 106.0 over the Model 4 log likelihood.57 Thus adding the 46 extra parameters
added significantly to the explanatory power of our hedonic regression model.

When we calculate the price indexes for land in the high and low end wards later in this
section, it will be seen that the price movements are quite different, even though the overall
land price index has not changed substantially from the land price indexes that resulted
from our previous 4 models.

In Model 5, we allow for different schedules of land prices as functions of the plot size in
the two types of ward. For high end wards, the relative marginal price of land for small plots
is λ1,1 and this price was set equal to unity. For medium sized plots in high end wards, the
marginal price falls to λ1,2 = 0.8949 but for large sized plots, the marginal price increases
to λ1,3 = 1.0336. For small plots in lower end wards, the relative marginal price of land is

of Model 4 where we have broken up our observations into two separate groups according to whether the
observed sale is in Group 1 or 2 wards. The resulting two Ward models are not completely separate
because we force the parameters characterizing the quality adjustment functions gA(Atn), gB(Btn), fF (Ftn),
fM (Mtn) and fT (Ttn) to be the same across the two groups of wards.

55The restrictions λ1,1 = 1 and λ2,1 = 1 replace our old restriction λ1 = 1. The other new restriction is
ω18 = 1. Thus the level of land prices in the less expensive wards (the ωj for j = 5, 12, 15− 17 and 19− 21)
is relative to the level of land prices in Ward 18 where we set ω18 = 1. Of course, the movements in land
prices in the Group 2 wards is given by the movements in the α2,t and the movements in land prices over
time in the Group 1 wards is given by the movements in the α1,t. The level of land prices in the Group 1
wards is relative to the level of land prices in Ward 10 where we set ω10 = 1.

56The standard errors on the estimated high end ward parameters are generally lower (and the T statistics
higher) than the estimated lower end ward parameters. There were 3326 observations in the high end wards
and only 2252 observations in the lower end wards.

57The sum of the residuals in this model was 10.8.
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λ2,1 and this price was also set equal to unity. For medium sized plots in lower end wards,
the marginal price falls more dramatically to λ2,2 = 0.6087 but for large sized plots, the
marginal price again increases to λ2,3 = 0.9214. Thus both high and low end wards exhibit
the same general pattern of marginal valuations for land as a function of the lot size but the
drop in the marginal price is more pronounced for medium sized plots in lower end wards.

Model 5 also allows for different structure price levels in high and low end wards. The
estimated structure price level parameter for high end wards is β1 = 3.9734 and for lower
end wards, it is β2 = 2.4777. Thus it appears that the average quality of construction in
lower end wards is only about 62% of the construction quality in high end wards.

We turn now to the problems associated with the construction of land, structure and
overall price indexes for Tokyo. The construction of the land and overall price indexes is
more complex in the present model that in previous models, because the quarter to quarter
movements in land prices are different in the Group 1 and 2 wards. For the high end wards,
the Model 5 constant quality residential land price index for quarter t is defined to be
PL1,5t ≡ α1,t/α1,1. For the lower end wards, the Model 5 constant quality residential land
price index for quarter t is defined to be PL2,5t ≡ α2,t/α2,1. For all wards, the constant
quality residential structures price index for quarter t is defined to be the usual MLIT
structures price index, PS5t ≡ pCt/pC1 = pCt since pC1 = 1. The land and structure price
indexes PL1,5t, PL2,5t and PS5t for Tokyo over the 44 quarters in the years 2000-2010 are
graphed in Chart 5 below.

The Model 5 quarter t constant quality quantity levels of land in high and lower end wards,
QL1,5t, and QS2,5t respectively, are defined as the estimated total quarter t values of land in
high and lower end wards divided by the corresponding price levels, PL1,5t and PL2,5t, for
t = 1, ..., 44:

QL1,5t ≡
N(t)∑
n=1

α1,1{ϖ1DW,tn,1 + ϖ2DW,tn,2 + ϖ3DW,tn,3 + ϖ4DW,tn,4 + ϖ7DW,tn,7 (40)

+ ϖ8DW,tn,8 + ϖ9DW,tn,9 + ϖ10DW,tn,10 + ϖ11DW,tn,11 + ϖ13DW,tn,13

+ ϖ14DW,tn,14}f1L(Ltn)fF (Ftn)fM (Mtn)fT (Ttn);

QL2,5t ≡
N(t)∑
n=1

+ α2,1{ϖ5DW,tn,5 + ϖ6DW,tn,6 + ϖ12DW,tn,12 + ϖ15DW,tn,15 (41)

+ ϖ16DW,tn,16 + ϖ17DW,tn,17 + ϖ18DW,tn,18 + ϖ19DW,tn,19 + ϖ20DW,tn,11

+ ϖ21DW,tn,21}f2L(Ltn)fF (Ftn)fM (Mtn)fT (Ttn).

The Model 5 quarter t constant quality quantity structure level, QS5t, is defined as the total
quarter t estimated value of structures divided by the corresponding price level PS5t = pCt

for t = 1, ..., 44:58

58Note that pCt does not appear on the right hand side of (42).
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QS5t ≡
N(t)∑
n=1

β1{DW,tn,1 + DW,tn,2 + DW,tn,3 + DW,tn,4 + DW,tn,7 + DW,tn,8 (42)

+ DW,tn,9 + DW,tn,10 + DW,tn,11 + DW,tn,13 + DW,tn,14}gA(Atn)gB(Btn)Stn

+
N(t)∑
n=1

β2{DW,tn,5 + DW,tn,6 + DW,tn,12 + DW,tn,15 + DW,tn,16 + DW,tn,17

+DW,tn,18 +DW,tn,19 + DW,tn,20 + DW,tn,21}gA(Atn)gB(Btn)Stn.

We use the Fisher ideal index to aggregate the price and quantity components for high and
lower end land. Thus define the overall land price level for quarter t for Model 5, PL5t, as the
chained Fisher price index of the two land price and quantity series {PL1,5t, PL2,5t, QL1,5t, QL2,5t}.
The overall house price index for Tokyo for quarter t for Model 5, P5t, is defined as the
chained Fisher price index of the two land price and quantity series and the structure price
and quantity series, {PL1,5t, PL2,5t, PS5t, QL1,5t, QL2,5t, QS5t}. The overall Model 5 house
price index P5t as well as the overall land price index PL5t for Tokyo over the 44 quarters
in the years 2000-2010 are also graphed in Chart 5 below.59

As expected, the pattern of land price movements is very different in the high and low end
wards. Price movements have generally been higher and more volatile in the more expensive
wards; i.e., PL1,5t generally lies above PL2,5t and PL1,5t has a higher variance than PL2,5t.60

However, it can also be seen from viewing Chart 5 that the overall land price index for
Model 5, PL5t, is not that different from the land price indexes from previous Models.61 We
compare the Model 1 to Model 5 overall land price indexes in Chart 6.

It can be seen that the overall land price series for Models 1-4, PL1t − PL4t, are generally
quite close with small drops in the series as we move from Model 1 to Model 4. The overall
land price series for Model 5 drops a more substantial amount: about 3% on average.62

However, the overall pattern of land price movements is much the same in all 5 Models.
It is also useful to compare the overall house price indexes for Models 1-5 and this is done

in Chart 7.
Again, there are only small differences in the overall house price indexes P1t − P4t for

Models 1-4.63 However, the Model 5 overall house price index P5t is about 2% lower on
average compared to the levels in the other Models.

In summary, the overall house price index P5t is probably the most accurate one but
the overall pattern of price movements is much the same in all 5 Models. Two important
implications of our results for statistical agencies are as follows:

59The series P5t, PL5t, PL1,5t and PL2,5t are listed in Table A10 of the Appendix. PS5t is equal to PS4t

and is listed in Table A8 and is equal to the MLIT construction index pCt.
60The sample variance for PL1,5t was 0.0358 and for PL2,5t was 0.0077.
61The correlation coefficients between PL5 and PL1, PL2, PL3 and PL4 were 0.98997, 0.99123, 0.99324

and 0.99684 respectively.
62We regard the Model 5 estimates as the most accurate estimates since this model has reasonable

parameter values and gives us the best fit.
63The correlation coefficients between P5 and P1, P2, P3 and P4 were 0.98637, 0.98822, 0.99132 and

0.99492.
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• Our generalized builder’s model can provide a sensible decomposition of house prices
in a major city into land and structure components and
• Model 1, our simplest model that uses only information on lot size, floor space size,

the age of the structure and the ward in which the lot is located, can provide an adequate
approximation to a more data intensive model that uses information on other characteristics
of the lot location and the structure.

All of the price indexes that we have constructed thus far have been for the quarterly
sales of houses in Tokyo. In order to construct estimates of real household wealth, it is
useful to be able to construct price indexes for the stock of residential houses in Tokyo. In
the following section, we show how approximate stock indexes can be constructed using the
Models that have already been estimated.

8 Approximate Stock House Price and Land Price In-

dexes

In order to construct a completely accurate price index for the stock of houses in a city
or location, it is necessary to have an updated census of dwelling units in the area under
consideration. However, if census information is not available, it is possible to construct an
approximation to a housing stock price index for the location using cumulated information
on the sales of houses in the location.64

The basic idea is straightforward: we form an approximation to the quantity of quality
adjusted high end land, lower end land and structures over our sample period by cumulating
the corresponding quarterly sales quantities QL1,5t, QL2,5t and QS5t defined by equations
(40)-(42) in the previous section. Define the cumulated quantities as follows:65

QL1 ≡
44∑

t=1

QL1,5t;QL2 ≡
44∑

t=1

QL2,5t;QS ≡
44∑

t=1

QS5t. (43)

The corresponding land prices are the Model 5 land prices defined in the previous section:
for the higher and lower end wards, the constant quality residential approximate stock land
price indexes for quarter t are defined to be PL1,t ≡ α1,t/α1,1 and PL2,t ≡ α2,t/α2,1. The
constant quality residential structures stock price index for quarter t is defined to be the
usual MLIT structures price index, PSt ≡ pCt.

Our approximate land price for the stock of houses in Tokyo for quarter t, PKL5t, based
on the Model 5 regression parameters is defined as the following Lowe (1823) index:66

PKL5t ≡ [PL1,tQL1 + PL2,tQL2]/[PL1,1QL1 + PL2,1QL2]; t = 1, ..., 44. (44)

64This approximate stock of housing price index methodology was explained in Chapter 8 of the Eurostat
Residential Property Price Index Handbook ; see de Haan and Diewert (2011; sections 8.49-8.57).

65These cumulated quantities divided by the sample number of observations 5578 turned out to equal
QL1= 2.22644, QL2 = 1.19465 and QS = 2.73970.

66For additional material on Lowe indexes, see Hill (2004; Ch. 15).
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It can be seen that the land price index defined by (44) is a fixed basket type index
where the quantity basket consists of the quality adjusted total amounts of the two types of
residential land in Tokyo.67

Our approximate overall house price for the stock of houses in Tokyo for quarter t, PK5t,
based on the Model 5 regression parameters is defined as the following Lowe index:

PK5t ≡ [PL1,tQL1+PL2,tQL2+PStQSt]/[PL1,1QL1+PL2,1QL2+PStQS1]; t = 1, ..., 44. (45)

The land and overall stock price indexes PK5t and PKL5t defined by (44) and (45) are
compared with their sales counterparts from Model 5, P5t and PL5t, in Chart 8.68

It can be seen that the overall approximate housing stock index PK5t is very close to its
sales counterpart P5t and the approximate stock of land price index PKL5t is almost identical
to its sales counterpart PL5t.69 These close correspondences are very encouraging since it
indicates that the sales based indexes are likely to provide adequate approximations to the
corresponding true stock indexes, which use updated census weights for the housing stock.

The sales price hedonic regression models that we have presented in previous sections
are not completely suitable for use by statistical agencies producing house price indexes.
The reason for this lack of suitability is due to the fact that as data on sales for the most
recent quarter becomes available, the new hedonic regression will give rise to new estimates
of house price inflation for past periods and this would lead to a need to revise past series.
For many purposes, it is useful to have price indexes that are not revised. In the following
section, we will address how to deal with this revisions problem.

9 Rolling Window Hedonic Housing Regressions

We dealt with the no revisions problem in the following way. We started off by using
Model 5 but applied it to only the first 24 quarters of our sample (instead of the full 44
quarters). We then computed our land, structures and overall house price indexes as in
section 7 above for quarters 1-24. At Stage 2 of our procedure, we dropped the data for
quarter 1 and added the data for quarter 25 to form our Stage 2 data set and then ran the
nonlinear regression model defined by equations (38) and (39) for quarters t = 2, 3, ..., 25.
Using these new coefficient estimates, we computed the structure price index and land price
indexes for high and low end wards as in section 7 for quarters 2-25. However, we used only
the ratios of the Stage 2 quarter 25 to quarter 24 land price indexes in order to update our
previous Stage 1 land price indexes so that the new set of indexes covered quarters 1-25.70

67When quantities are constant across periods as they are in the case of a Lowe index, it will turn out
that fixed base and chained Laspeyres, Paasche and Fisher indexes will all be equal.

68The corresponding series are listed in Table A10 in the Appendix.
69The differences in the stock type indexes and their sales counterparts are entirely due to the effects of

different quantity weights since the price components are identical in these counterpart indexes. The close
correspondence of PK5t to P5t shows that the quarter to quarter fluctuations in QL1,5t, QL2,5t and QS5t

(compared to the fixed weights QL1, QL2 and QS) were not large enough to cause the stock and sales type
indexes to diverge substantially.

70The structure price indexes turn out to equal the MLIT indexes pCt that we have listed previously.
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At Stage 3 of our procedure, we dropped the data for quarter 2 and added the data for
quarter 26 from our Stage 2 data to form our Stage 3 data set and then ran the nonlinear
regression model defined by equations (38) and (39) for quarters t = 3, 4, ..., 26. Using these
new coefficient estimates, we computed the structure price index and land price indexes for
high and low end wards as in section 7 for quarters 3-26. We used only the ratios of the
Stage 3 quarter 26 to quarter 25 land price indexes in order to update our previous Stage 2
land price indexes so that the new set of indexes covered quarters 1-26. We continued this
process of adding the data of the next quarter and dropping the data of the oldest quarter
in the rolling window of 24 quarters until we reached quarter 44. Thus we ran a total of 21
Rolling Window Hedonic Regressions.71 The resulting Rolling Window overall house price
indexes PRWt, overall land price indexes PLRWt, high and low end ward land price indexes,
PL1RWt and PL2RWt, are plotted in Chart 972 along with their Model 5 counterpart indexes,
P5t, PL5t, PL1,5t and PL2,5t.

Viewing Chart 9, it can be seen that the Model 5 overall house price index, P5, can hardly
be distinguished from its Rolling Window counterpart, PRW . However, for the land price
indexes, it can be seen that while the Model 5 indexes PL5 (the overall land price index),
PL1,5 (the high end ward land price index) and PL2,5 (the lower end ward land price index)
are very close to their Rolling Window counterparts PLRW , PL1RW and PL2RW for the first
5 years in our sample, the Rolling Window land price indexes tend to be lower than their
single regression Model 5 counterparts for the last 5 years in our sample.

The question now arises: which model should be a preferred model: Model 5 based on a
single regression or the Rolling Window Model based on 21 separate hedonic regressions? We
prefer the Rolling Window Model since it allows for gradual change in the hedonic coefficients
over time and moreover, the RW Model fits the data better while still generating sensible
parameter estimates.73

Our conclusion here is that the Rolling Window hedonic house price regression model is
a suitable one for a statistical agency that is mandated to produce a house price index in a
timely manner without having to make revisions to previous estimates. An open question
which we did not explore in the present paper is the question of choosing the “optimal”
window length.

71Each of the 21 regressions had 88 parameters to estimate with a varying number of degrees of freedom.
This rolling window updating procedure was introduced by Shimizu, Nishimura and Watanabe (2010) and
Shimizu, Takatsuji, Ono and Nishimura (2010) in their hedonic regression models for Tokyo house prices.
The method we are using here deals with the extra complications due to the need for separate land and
structures estimates. Our present method was explained and implemented for the Dutch town of “A” with
a window length of 9 quarters; see Chapter 8 of de Haan and Diewert (2011). The rolling window updating
methodology has also been used previously in an index number context; see Ivancic, Diewert and Fox (2011),
de Haan and van der Grient (2011) and de Haan and Krsinich (2012).

72These indexes are also listed in Table A12 in the Appendix.
73The R2 for the 21 regressions were as follows: 0.8518, 0.8470, 0.8494, 0.8481, 0.8496, 0.8489, 0.8526,

0.8511, 0.8515, 0.8483, 0.8505, 0.8533, 0.8551, 0.8544, 0.8540, 0.8551, 0.8551, 0.8525, 0.8516, 0.8555 and
0.8573. Recall that the R2 for the Model 5 regression was 0.8476. The structural parameters that were
common to all of the regressions did not change much over time but there were some small changes which
of course led to the differences between the Model 5 and Rolling Window land price indexes.

29



10 Comparison with Traditional Time Dummy Hedonic

Regression Models

There is no doubt that our Model 5 defined in section 7 is rather complicated. Thus
most hedonic housing regression models are based on the far simpler time dummy approach
where the log of the selling price of the house is regressed on either a linear function of the
characteristics or on the logs of the characteristics of the house along with time dummy
variables.74 This method does not generate decompositions of the selling price into land
and structure components and so it is not suitable when such decompositions are required
but the time dummy method can be used to generate overall house price indexes. In this
section, we will use the time dummy method to generate overall house price indexes and
compare them with our Model 5 overall estimates.

Recall that Vtn is the sales price of property n that was sold in quarter t,Ltn is the area of
the plot, Stn is the floor space area of the structure and Atn is the age of the structure. In
the time dummy linear regression defined below by (46), we have replaced Vtn, Ltn, Stn and
Atn by their logarithms, lnVtn, lnLtn, lnStn and lnAtn.75 Our first time dummy hedonic
regression model is defined for t = 1, ..., 44 and n = 1, ..., N(t) by the following equations:

lnVtn = αt + γ lnLtn + β lnStn + δ lnAtn +
21∑

j=1

ϖjDW,tn,j + εtn (46)

where α1, ..., α44,γ, β, δ and ω1, ..., ω21 are 68 unknown parameters to be estimated and
DW,tn,j is the Ward j dummy variable for observation tn defined earlier by (4). The αt

are the quarter t time coefficients which shift the hedonic surface during each quarter, γ

and β are parameters which adjusts the sales price for the size of the lot and the floor
space area respectively, δ is a parameter which adjusts the sales price for the age of the
structure (essentially a depreciation parameter) and the ϖj are parameters which adjust
the selling price Vtn up or down depending on the ward that property n in quarter t is
located. We expect β and γ to be positive and δ to be negative. The time dummy variables
associated with the αt and the dummy variables DW,tn,j associated with the wards are
linearly dependent and so we need to impose a normalization on the parameters in order to
identify the remaining parameters. We choose the following normalization:

α1 = 0. (47)

Model 6 is the hedonic regression model defined by (46) and (47). Using our Tokyo
housing data, we estimated Model 6 using the Ordinary Least Squares option in Shazam

74This methodology was developed by Court (1939; 109-111) as his Hedonic Suggestion Number Two.
For an application of the time dummy approach to the construction of house price indexes for Tokyo, see
Shimizu and Nishimura (2007).

75The log-linear regression model that replaced lnLtn, lnStn and lnAtn by their levels, Ltn, Stn and Atn,
led to an R2 of 0.8374 and a log likelihood of 1883.5 which is lower than the R2 and log likelihood generated
by the model defined by (46). Thus we report only the results for the log-log model.
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and the parameter estimates are listed in Table A13 in the Appendix.76 The R2 for this
model turned out to be 0.8432 with a log likelihood of 1985.9.

The overall house price indexes for Model 6, P6t, are defined as the exponentials of the
time coefficients αt:

P6t ≡ exp[αt]; t = 1, ...., 44. (48)

The Model 6 time dummy hedonic regression uses the same characteristics information
that we used in our nonlinear regression for Model 1. Thus we compare our Model 6 overall
price indexes P6t with the Model 1 indexes P1t and our best Model 5 indexes P5t in Chart
10 below77 along with the Mean and Median indexes.

It can be seen that during the last half of the sample period, the Mean and Median house
price series are about 10-20% below the other indexes P1t, P5t and P6t that rely on hedonic
regressions to control for the quality of the houses sold in each quarter. Over the entire
sample period, the time dummy index P6t is on average about 2% below our best nonlinear
regression based index P5t and about 4% below our initial nonlinear regression based index
P1t that used the same characteristics information that was used in Model 6. Thus the time
dummy based indexes P6t do differ somewhat from our overall house price indexes P1t −P5t

that were based on variants of our basic builder’s model.
We run one additional time dummy model that uses all of the characteristics information

that we used in Model 5. Perhaps the use of this extra information will lead to an index
which is close to P5t.

We will add the following 4 variables as explanatory variables to the regression model
defined earlier by (46): NB = Number of bedrooms; WI = Width of the lot in meters; TW

= Walking time in minutes to the nearest subway station and TT = Subway running time
in minutes to the Tokyo station from the nearest station.78 Thus our Model 7 regression is
defined as follows, for t = 1, ..., 44andn = 1, ..., N(t).

lnVtn = αt + γ lnLtn + β lnStn + δ lnAtn + φNBtn + κ ln WItn (49)

+ τTWtn + µTTtn +
21∑

j=1

ϖjDW,tn,j + εtn

where α1, ..., α44, γ, β, δ, φ, κ, τ, µ and ϖ1, ..., ϖ21 are 72 unknown parameters to be esti-
mated and DW,tn,j is the Ward j dummy variable for observation tn defined earlier by (4).
As was the case with Model 6, not all parameters are identified. Thus we again impose the
normalization (47), which was α1 = 0. The 4 new parameters φ, κ, τ and µ are associated

76The estimated structure and land area coefficients turned out to be β = 0.44108 and γ = 0.49708 with
T statistics of 40.32 and 56.01. The estimated age of structure parameter turned out to be δ = −0.09662
with a T statistic of -27.70. The coefficients ϖj associated with the Ward dummy variables were highly
significant with T statistics ranging between 43.6 and 131.8. For Model 5, the expensive Wards were 1-4,
7-11 and 13-14. For the present Model 6, the Wards with the highest ϖj ’s were 1-4 and 7-14. The sum of
residuals was 0 in Models 6 and 7.

77The P6t are also listed in Table A14 in the Appendix.
78These variables were defined in section 2 above.
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with the variables NBtn, WItn, TWtn and TTtn. We tried entering each of these variables
into the regression defined by (49) in levels form or by transforming the variable by the nat-
ural logarithm function. We found that entering the lot width variable in log form led to a
higher log likelihood (so notice that we have the term κlnWItn in (49) rather than the term
κlnWItn) but for the other 3 new variables, the levels form led to higher log likelihoods.
Using our Tokyo housing data, we estimated Model 7 using the Ordinary Least Squares
option in Shazam and the parameter estimates are listed in Table A15 in the Appendix.79

The R2 for this model turned out to be 0.8621 with a log likelihood of 2344.1, a very large
increase of 358.3 over the Model 6 log likelihood.

The overall house price indexes for Model 7, P7t, are defined as the exponentials of the
new time parameters αt:

P7t ≡ exp[αt]; t = 1, ...., 44. (50)

The Model 7 time dummy hedonic regression uses the same characteristics information
that we used in our nonlinear regression for Model 5. Thus we compared our Model 7 overall
price indexes P7t with the Model 5 indexes P5t in Chart 10 above80 along with the Mean
and Median indexes. It can be seen that the P7t are not all that different from the P6t and
both indexes are still generally below our best index P5t.81

Viewing Chart 10, it can be seen that the time dummy regression models give rise to
house price indexes P6t and P7t that are fairly close to our preferred index P5t but there are
two significant differences:
• The P6t and P7t are significantly below the corresponding P5t and
• The P6t and P7t are significantly smoother than the corresponding P5t.82

Thus the time dummy based house price indexes do differ significantly from the indexes
generated by our best builder’s model. However, can we determine which type of model is
“best”? In order to answer this question, we return to the basic builder’s model defined
by equations (1) above, which set the value of a property, Vtn, equal to the sum of its
land value, αtLtn, plus its structure value, βtStn. Thus there are four main determinants
of property value in this simplified model: the land area Ltn, the structure area Stn, the
period t price of land αt and the period t price of the structure per meter squared βt.
The corresponding simplified time dummy hedonic regression model sets the logarithm of
property value, lnVtn, equal to a time dummy parameter, say ρt, plus a weighted sum of

79The estimated structure and land area coefficients turned out to be β = 0.42882 and γ = 0.52920 with
T statistics of 38.7 and 62.7. The estimated age of structure parameter turned out to be δ = −0.08885
with a T statistic of -26.5. The estimated width, bedrooms, walking time and subway time parameters
were κ = 0.10277, φ = −0.00190, τ = −0.00106 and µ = −0.00007 with T statistics of 11.4, -7.4, -20.6
and -16.9. The coefficients ϖj associated with the Ward dummy variables were highly significant with T
statistics ranging between 45.2 and 92.4. For Model 5, the expensive Wards were 1-4, 7-11 and 13-14. For the
present Model 7, the expensive Wards with the highest ϖj ’s were 1-4 and 7-14. The signs of the estimated
parameters are all reasonable.

80The P7t are also listed in Table A14 in the Appendix.
81The sample means (over the 44 quarters) for the P1t, P5t, P6t and P7t were 1.0404, 1.0199, 1.0010 and

0.9935 respectively. Thus on average, the P7t were 0.75% below the corresponding P6t and 2.64% below the
P5t. The correlation coefficients between P5 and P1, P6, P7 were 0.98637, 0.96770, 0.96507 respectively.

82The sample variances for the P1t, P5t, P6t and P7t are 0.00692, 0.00624, 0.00378 and 0.00396.
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the logarithms of land and structure areas, θlnLtn + σ lnStn. Thus the exponential of ρt,
say πt ≡ exp[ρt], can be interpreted as the period t price of the fixed weight “average” 83of
land and structure composite commodity, Lθ

tnSσ
tn. The weakness of the time dummy model

now becomes apparent: the time dummy model has only a single price πt for a fixed weight
aggregate of land and structures that can vary over time whereas the builder’s model has
two prices that can vary independently over time, the prices of land and structures, αt

and βt. Thus at this stage of the argument, it is clear that the builder’s model is a far
more flexible model than the time dummy model.84 However, in our empirical work, we did
not estimate the movements of structure prices over time; i.e., we assumed that an official
house construction price index could accurately capture how the price of structures changed
over time.85 If this assumption is far from being satisfied, then it is possible that the time
dummy model could give more accurate results. Our subjective assessment is that the MLIT
construction price index does reflect movements in house construction costs in Tokyo and
thus we feel that the Model 5 results are more accurate than the Model 6 and 7 results.
However, all three models provide similar overall price indexes for house sales in Tokyo.

11 Conclusion

We summarize some of the main points that have emerged in the previous sections:
• The paper shows that the builder’s model that was previously applied to a small

Dutch town86 can be applied to a large urban city (Tokyo) provided that we have information
on the sales price of houses, the land and structure areas of the house, the age of the house,
some information on the location of the properties and an exogenous price index for house
construction costs. The builder’s model can successfully provide a decomposition of property
value into land and structures components.
• We showed how additional information on the characteristics of the properties can

be incorporated into the builder’s model, leading to models that fit the data better and thus
presumably providing more accurate land, structure and overall price indexes.
• Hedonic regression models typically model the effects of increasing amounts of a

characteristic on the selling price in a linear fashion. In the present paper, we generalized
this approach to allow the response to be a piece-wise linear function (or spline function)
in place of a linear response function. This generalization was particularly important in
modeling the effects of structure age and of walking time to the nearest subway station; see
sections 4 and 6.
• In section 8, we showed how our regression results could be used to calculate ap-

proximate price indexes for the stock of houses in Tokyo (as opposed to the sales of houses

83We have a true average only if θ and σ sum to one.
84The two models can give the same answer empirically if either αt = λβt for all periods t so that the

prices of land and structures move proportionally over time or if Ltn = µStn for all t and n so that the
land-structure ratio is constant for all properties. Neither possibility is empirically likely.

85Recall that we made this assumption to eliminate the multicollinearity problem between Ltn and Stn.
86See de Haan and Diewert (2011) and Diewert, de Haan and Hendriks (2011a) (2011b).
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in each quarter).
• In section 9, we computed 21 Rolling Window regressions and showed how these

regression results could be used to construct house price indexes that were timely and did
not need to be revised each period as new information on house sales became available.
• Finally, in section 10, we compared our builder’s model indexes to traditional time

dummy hedonic regression models. The comparisons could only be made for the overall
house price indexes since the time dummy method does not lead to accurate separate indexes
for land and for structures. We found that while the time dummy and builder’s models
captured the same trends, there were some small but significant differences between the
indexes generated by the two approaches.
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Table 1: Descriptive Statistics for the Variables 

 

Name No. of Obs. Mean Std. Dev Minimum Maximum

V 5578 6.2310 2.95420 2.0500  20

S 5578 1.0961 0.36255 0.5012 2.4789

L 5578 1.0283 0.42538 0.5001 2.4977

A 5578 14.689 8.91460 2.0140 49.7230

NB 5578 3.9518 1.04090 2 8

WI 5578 4.6987 1.26090 2.5 9

TW 5578 9.9295 4.48510 2 29

TT 5578 31.677 7.55220 4 48
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Chart 1: Mean, Median and Overall Price, Land Price and Structure 
Price Indexes for Model 1
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Chart 2: Overall House Price Index, Land Price Index and Structure 
Price Index for Model 2
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Chart 3: Overall House Price Index, Land Price Index and 
Structure Price Index for Model 3
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Chart 4: Overall House Price Index, Land Price Index and Structure 
Price Index for Model 4
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Chart 5: Price Indexes for Tokyo Houses, Land, Structures, High 
End Land and Lower End Land

0.75
0.85
0.95
1.05
1.15
1.25
1.35
1.45
1.55

20
00

-1

20
00

-3

20
01

-1

20
01

-3

20
02

-1

20
02

-3

20
03

-1

20
03

-3

20
04

-1

20
04

-3

20
05

-1

20
05

-3

20
06

-1

20
06

-3

20
07

-1

20
07

-3

20
08

-1

20
08

-3

20
09

-1

20
09

-3

20
10

-1

20
10

-3

P5 PL5 PS5 PL1,5 PL2,5

Chart 6: Land Price Indexes for Tokyo, Models 1-5

0.75
0.85
0.95
1.05
1.15
1.25
1.35
1.45
1.55

20
00

-1

20
00

-3

20
01

-1

20
01

-3

20
02

-1

20
02

-3

20
03

-1

20
03

-3

20
04

-1

20
04

-3

20
05

-1

20
05

-3

20
06

-1

20
06

-3

20
07

-1

20
07

-3

20
08

-1

20
08

-3

20
09

-1

20
09

-3

20
10

-1

20
10

-3

PL1 PL2 PL3 PL4 PL5



v 
 

 

 

 

 

 

 

 

 

  

Chart 7: House Price Indexes For Tokyo, Models 1-5
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Chart 8: Approximate Stock and Sales House and Land Price 
Indexes Based on Model 5 Estimates
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Chart 9: Model 5 Price Indexes P5, PL5, PL1-5, PL2-5 and Rolling 
Window Price Indexes PRW, PLRW, PL1-RW and PL2-RW
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Chart 10: Mean, Median, Nonlinear Hedonic Models P1 and P5 and 
Time Dummy Hedonic Models P6 and P7 House Price Indexes for 

Tokyo
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Appendix: Model Estimated Coefficients and Index Number Tables 

 

Table A1: Estimated Coefficients for Model 1 

 

Name Est Coef T Stat Name Est Coef T Stat Name Est Coef T Stat

1 2.1348 41.112 3 3.7863 28.383 25 4.4053 35.093

2 1.0020 30.511 4 3.9980 32.103 26 4.3998 35.979

3 1.1553 30.269 5 3.7944 32.603 27 4.7558 31.124

4 1.0552 11.541 6 3.7475 27.506 28 5.1506 40.423

5 0.38569 5.621 7 3.3218 26.688 29 5.1939 37.356

6 0.62467 9.992 8 3.4285 30.338 30 5.4013 37.140

7 1.0214 27.35 9 3.7525 27.488 31 5.2080 33.905

8 1.2304 58.353 10 3.3802 28.813 32 5.6581 39.967

9 0.88449 46.691 11 3.0205 23.868 33 5.1146 31.804

11 1.6639 41.882 12 3.3602 31.929 34 5.0592 31.877

12 0.67269 34.870 13 3.8478 29.689 35 5.3721 32.813

13 0.79505 64.468 14 3.7603 32.321 36 4.0782 23.219

14 0.89487 26.294 15 3.5570 28.634 37 4.0863 22.016

15 0.54123 8.8738 16 3.7025 22.845 38 3.9651 24.827

16 0.44453 6.0919 17 3.8440 34.010 39 3.9528 24.771

17 0.45904 16.009 18 3.8632 29.935 40 3.8021 23.690

18 0.49218 39.188 19 3.4764 28.183 41 4.2077 27.508

19 0.21120 8.9117 20 4.0631 30.474 42 4.4752 28.542

20 0.28298 7.9508 21 4.1170 31.375 43 3.9829 25.538

21 0.33419 12.273 22 4.1321 31.351 44 4.1515 29.487

1 3.7342 32.491 23 4.1994 28.264  3.4071 59.780

2 3.9089 33.202 24 4.2315 35.553  0.01394 26.830
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Table A2: Mean and Median House Price Indexes for Tokyo, Model 1 Overall 

Price Index P1, Land Price Index PL1 and Structure Price Index PS1 

 

Quarter PMean PMedian P1 PL1 PS1 

2000-1 1.00000 1.00000 1.00000 1.00000 1.00000

2000-2 1.00349 1.03192 1.01926 1.04678 0.98919

2000-3 0.99552 0.98016 1.00253 1.01395 0.98919

2000-4 0.98649 0.99223 1.03399 1.07064 0.99459

2001-1 1.01299 1.03192 1.00091 1.01612 0.98378

2001-2 0.93072 0.97498 0.99714 1.00355 0.98919

2001-3 0.96159 1.03192 0.93555 0.88956 0.98378

2001-4 0.91955 0.89387 0.94532 0.91814 0.97297

2002-1 0.94738 1.00690 0.98594 1.00490 0.96216

2002-2 0.93671 1.01467 0.93521 0.90521 0.96757

2002-3 0.89508 0.93184 0.88051 0.80889 0.96216

2002-4 0.95421 0.94564 0.93233 0.89983 0.96757

2003-1 0.94934 0.94564 0.99763 1.03042 0.95676

2003-2 0.94085 0.96462 0.98258 1.00700 0.95135

2003-3 1.00603 0.99741 0.95549 0.95256 0.95676

2003-4 0.85028 0.89387 0.97334 0.99152 0.95135

2004-1 1.02468 1.03192 0.99288 1.02941 0.95135

2004-2 0.89192 0.88525 0.99299 1.03454 0.94595

2004-3 0.90729 0.94909 0.94139 0.93095 0.95135

2004-4 0.95412 0.91113 1.01828 1.08808 0.94054

2005-1 0.87366 0.84211 1.02551 1.10250 0.94054

2005-2 0.93691 0.88525 1.03026 1.10654 0.94595

2005-3 0.91959 0.95427 1.03932 1.12457 0.94595

2005-4 0.98333 0.91113 1.04097 1.13316 0.94054

2006-1 1.00718 0.99741 1.06178 1.17972 0.93514

2006-2 1.01915 1.01467 1.06910 1.17824 0.95135

2006-3 0.99796 1.00777 1.11739 1.27359 0.95135

2006-4 1.00189 0.94564 1.16990 1.37930 0.95135

2007-1 1.02574 0.99741 1.17282 1.39090 0.94595

2007-2 1.05370 1.00604 1.19774 1.44645 0.94054

2007-3 0.98805 0.94564 1.18005 1.39467 0.95676



ix 
 

2007-4 1.03498 0.96290 1.23907 1.51522 0.95676

2008-1 0.88688 0.85936 1.16089 1.36966 0.94054

2008-2 0.99726 0.93615 1.15999 1.35483 0.95135

2008-3 0.93450 0.85936 1.20819 1.43862 0.96757

2008-4 0.85835 0.85936 1.04315 1.09213 0.96216

2009-1 0.80939 0.83261 1.03838 1.09430 0.95135

2009-2 0.88014 0.89387 1.02507 1.06183 0.95676

2009-3 0.85473 0.89387 1.03207 1.05855 0.97297

2009-4 0.86533 0.85936 1.00357 1.01819 0.95676

2010-1 0.90025 0.94564 1.05875 1.12679 0.95676

2010-2 0.86150 0.85936 1.09112 1.19843 0.95135

2010-3 0.84646 0.85936 1.03284 1.06660 0.96216

2010-4 0.85947 0.85936 1.05487 1.11175 0.96216
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Table A3: Estimated Coefficients for Model 2 

 

Name Est Coef T Stat Name Est Coef T Stat Name Est Coef T Stat

1 2.0767 40.384 5 4.1769 28.529 28 5.573 35.504

2 0.9913 37.299 6 4.1243 6.404 29 5.6444 33.495

3 1.1570 33.140 7 3.6852 23.834 30 5.8674 33.101

4 1.0095 11.842 8 3.7734 26.696 31 5.6407 15.302

5 0.3983 7.420 9 4.1041 22.655 32 6.0943 31.948

6 0.6319 12.675 10 3.6993 26.211 33 5.5414 27.803

7 1.0176 37.353 11 3.3335 20.763 34 5.4951 24.115

8 1.2216 65.502 12 3.7174 27.153 35 5.8102 30.188

9 0.8840 57.053 13 4.2406 26.082 36 4.4582 22.725

11 1.6268 45.867 14 4.1455 29.176 37 4.4086 21.635

12 0.6738 36.448 15 3.8834 25.455 38 4.3685 6.443

13 0.7979 69.871 16 4.0353 20.874 39 4.3619 6.7494

14 0.8973 33.725 17 4.2236 29.782 40 4.1466 18.460

15 0.5419 12.041 18 4.1959 25.305 41 4.6075 21.011

16 0.4540 8.511 19 3.8100 25.719 42 4.8625 18.285

17 0.4594 18.873 20 4.4164 21.115 43 4.3266 24.209

18 0.5036 43.634 21 4.4666 25.637 44 4.5152 21.315

19 0.2299 10.934 22 4.5327 7.764 2 0.7533 15.156

20 0.2986 10.507 23 4.6204 22.415 3 0.9486 36.105

21 0.3489 14.394 24 4.6215 30.532  3.6480 37.870

1 4.0813 28.744 25 4.8048 30.995 1 0.0247 13.049

2 4.2889 29.291 26 4.8227 31.550 2 0.0159 10.197

3 4.1733 11.112 27 5.1552 21.722 3 0.0032 2.429

4 4.3660 28.702  
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Table A4: Model 2 Overall House Price Index P2, Land Price Index PL2 and 

Structure Price Index PS2 

 

Quarter P2 PL2 PS2 Quarter P2 PL2 PS2 

2000-1 1.00000 1.00000 1.00000 2005-3 1.04701 1.13207 0.94595

2000-2 1.02266 1.05085 0.98919 2005-4 1.04458 1.13235 0.94054

2000-3 1.00761 1.02254 0.98919 2006-1 1.06559 1.17726 0.93514

2000-4 1.03515 1.06975 0.99459 2006-2 1.07563 1.18166 0.95135

2001-1 1.00551 1.02342 0.98378 2006-3 1.11861 1.26312 0.95135

2001-2 1.00117 1.01052 0.98919 2006-4 1.17166 1.36549 0.95135

2001-3 0.94074 0.90293 0.98378 2007-1 1.17799 1.38299 0.94595

2001-4 0.94753 0.92455 0.97297 2007-2 1.20375 1.43761 0.94054

2002-1 0.98706 1.00559 0.96216 2007-3 1.18259 1.38208 0.95676

2002-2 0.93446 0.90640 0.96757 2007-4 1.23960 1.49321 0.95676

2002-3 0.88163 0.81676 0.96216 2008-1 1.16346 1.35773 0.94054

2002-4 0.93705 0.91084 0.96757 2008-2 1.16367 1.34639 0.95135

2003-1 1.00409 1.03902 0.95676 2008-3 1.21019 1.42361 0.96757

2003-2 0.98870 1.01572 0.95135 2008-4 1.04434 1.09234 0.96216

2003-3 0.95494 0.95151 0.95676 2009-1 1.03267 1.08019 0.95135

2003-4 0.97272 0.98873 0.95135 2009-2 1.03025 1.07036 0.95676

2004-1 0.99752 1.03485 0.95135 2009-3 1.03762 1.06875 0.97297

2004-2 0.99137 1.02807 0.94595 2009-4 1.00210 1.01598 0.95676

2004-3 0.94255 0.93352 0.95135 2010-1 1.06221 1.12892 0.95676

2004-4 1.01822 1.08209 0.94054 2010-2 1.09170 1.19139 0.95135

2005-1 1.02464 1.09440 0.94054 2010-3 1.03058 1.06010 0.96216

2005-2 1.03569 1.11059 0.94595 2010-4 1.05408 1.10631 0.96216
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Table A5: Estimated Coefficients for Model 3 

 

Name Est Coef T Stat Name Est Coef T Stat Name Est Coef T Stat

1 2.1720 46.575 7 3.0524 19.437 33 4.5638 23.738

2 1.0317 39.912 8 3.1454 21.707 34 4.5523 15.929

3 1.2142 38.814 9 3.4139 20.278 35 4.7507 23.788

4 1.0137 11.793 10 3.1019 21.427 36 3.5949 18.991

5 0.4055 7.694 11 2.7167 15.513 37 3.6080 18.489

6 0.6358 13.024 12 3.0574 21.675 38 3.5949 15.800

7 1.0205 41.464 13 3.5041 19.416 39 3.5809 18.844

8 1.2354 65.496 14 3.3939 22.985 40 3.3792 16.225

9 0.8752 56.853 15 3.1761 19.769 41 3.7236 20.300

11 1.6534 47.079 16 3.3300 15.479 42 3.9279 21.504

12 0.6801 39.231 17 3.4754 23.455 43 3.4924 12.726

13 0.7986 73.161 18 3.4478 19.539 44 3.6929 21.283

14 0.9205 33.793 19 3.1505 20.627 2 0.8117 15.869

15 0.5377 12.288 20 3.6162 10.915 3 1.0015 35.792

16 0.4473 8.247 21 3.6453 16.745 2 0.1038 5.421

17 0.4555 19.932 22 3.7602 4.608 3 0.0433 3.318

18 0.4964 42.854 23 3.8321 21.340 4 0.0124 1.555

19 0.2149 10.411 24 3.7670 23.298  3.6857 23.881

20 0.2895 10.375 25 3.9370 23.924 1 0.0223 11.218

21 0.3409 14.964 26 3.9708 24.483 2 0.0151 9.312

1 3.3850 22.614 27 4.2376 8.073 3 0.0023 1.701

2 3.5200 22.962 28 4.5457 25.580 2 0.0277 0.744

3 3.4650 8.242 29 4.6878 20.300 3 0.0326 -2.227

4 3.5976 22.720 30 4.8662 20.137 4 0.0437 -6.051

5 3.4611 22.606 31 4.6781 6.549  

6 3.4286 14.562 32 5.0071 24.382
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Table A6: Model 3 Overall House Price Index P3, Land Price Index PL3 and 

Structure Price Index PS3 

 

Quarter P3 PL3 PS3 Quarter P3 PL3 PS3 

2000-1 1.00000 1.00000 1.00000 2005-3 1.04539 1.13209 0.94595

2000-2 1.01625 1.03989 0.98919 2005-4 1.03284 1.11286 0.94054

2000-3 1.00774 1.02363 0.98919 2006-1 1.05613 1.16307 0.93514

2000-4 1.03077 1.06283 0.99459 2006-2 1.06919 1.17308 0.95135

2001-1 1.00456 1.02250 0.98378 2006-3 1.10978 1.25188 0.95135

2001-2 1.00211 1.01288 0.98919 2006-4 1.15580 1.34290 0.95135

2001-3 0.94089 0.90176 0.98378 2007-1 1.17416 1.38487 0.94595

2001-4 0.95050 0.92922 0.97297 2007-2 1.19822 1.43759 0.94054

2002-1 0.98824 1.00854 0.96216 2007-3 1.17809 1.38203 0.95676

2002-2 0.94072 0.91636 0.96757 2007-4 1.22654 1.47922 0.95676

2002-3 0.87576 0.80257 0.96216 2008-1 1.15422 1.34824 0.94054

2002-4 0.93387 0.90323 0.96757 2008-2 1.15850 1.34485 0.95135

2003-1 1.00175 1.03518 0.95676 2008-3 1.19538 1.40348 0.96757

2003-2 0.98149 1.00264 0.95135 2008-4 1.02894 1.06202 0.96216

2003-3 0.94831 0.93830 0.95676 2009-1 1.02513 1.06590 0.95135

2003-4 0.97016 0.98375 0.95135 2009-2 1.02596 1.06203 0.95676

2004-1 0.99290 1.02671 0.95135 2009-3 1.03237 1.05789 0.97297

2004-2 0.98601 1.01855 0.94595 2009-4 0.99389 0.99829 0.95676

2004-3 0.94189 0.93074 0.95135 2010-1 1.04671 1.10005 0.95676

2004-4 1.01010 1.06832 0.94054 2010-2 1.07421 1.16040 0.95135

2005-1 1.01450 1.07691 0.94054 2010-3 1.01655 1.03173 0.96216

2005-2 1.03446 1.11086 0.94595 2010-4 1.04580 1.09096 0.96216
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Table A7: Estimated Coefficients for Model 4 

 

Name Est Coef T Stat Name Est Coef T Stat Name Est Coef T Stat

1 1.8800 39.649 9 4.2713 16.589 37 4.4331 15.561

2 0.9139 39.739 10 3.8307 16.925 38 4.4175 16.254

3 1.0587 34.569 11 3.3846 15.753 39 4.4676 16.556

4 0.9138 12.722 12 3.9010 16.996 40 4.2349 15.959

5 0.3770 9.195 13 4.3396 16.958 41 4.6103 16.719

6 0.5766 14.056 14 4.1868 17.632 42 4.8746 16.780

7 0.8811 36.306 15 3.9628 16.601 43 4.3306 16.387

8 1.1422 72.156 16 4.0569 16.066 44 4.5275 16.952

9 0.7884 57.600 17 4.2484 17.537 2 0.8135 18.683

11 1.4181 47.227 18 4.3038 16.984 3 0.9633 40.256

12 0.6770 41.726 19 3.9044 17.194 2 0.1249 7.904

13 0.7923 75.729 20 4.5513 17.044 3 0.0509 4.060

14 0.8150 37.629 21 4.5148 17.214 4 0.0236 2.977

15 0.4971 13.280 22 4.6399 17.365 2 0.0035 1.311

16 0.4184 9.476 23 4.7050 17.148 3 0.0201 7.369

17 0.4907 23.255 24 4.6198 17.674 4 0.0171 5.496

18 0.5856 50.055 25 4.8524 17.586 2 0.0008 0.453

19 0.2434 13.220 26 4.9709 17.656 3 0.0128 6.876

20 0.2996 12.474 27 5.1678 17.245 4 0.0188 9.065

21 0.3641 17.493 28 5.6178 18.326  3.4381 30.267

1 4.2002 17.507 29 5.7830 17.895 1 0.0220 12.322

2 4.3367 17.466 30 6.0430 18.330 2 0.0164 10.763

3 4.2781 16.954 31 5.7929 17.857 3 0.0026 1.971

4 4.4558 17.497 32 6.2191 18.217 2 0.0277 1.019

5 4.3962 17.572 33 5.7130 17.616 3 0.0293 1.919

6 4.1720 16.815 34 5.4707 17.696 4 0.0484 6.863

7 3.7929 16.824 35 5.7189 18.032  

8 3.8968 17.774 36 4.5691 15.873  
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Table A8: Model 4 Overall House Price Index P4, Land Price Index PL4 and 

Structure Price Index PS4 

 

Quarter P4 PL4 PS4 Quarter P4 PL4 PS4 

2000-1 1.00000 1.00000 1.00000 2005-3 1.04490 1.12020 0.94595

2000-2 1.01372 1.03250 0.98919 2005-4 1.03130 1.09991 0.94054

2000-3 1.00595 1.01856 0.98919 2006-1 1.05927 1.15529 0.93514

2000-4 1.03184 1.06087 0.99459 2006-2 1.08212 1.18349 0.95135

2001-1 1.01915 1.04667 0.98378 2006-3 1.10776 1.23037 0.95135

2001-2 0.99191 0.99329 0.98919 2006-4 1.16545 1.33751 0.95135

2001-3 0.93871 0.90303 0.98378 2007-1 1.18394 1.37685 0.94595

2001-4 0.94809 0.92778 0.97297 2007-2 1.21471 1.43875 0.94054

2002-1 0.99432 1.01693 0.96216 2007-3 1.19022 1.37920 0.95676

2002-2 0.93647 0.91203 0.96757 2007-4 1.24420 1.48067 0.95676

2002-3 0.87228 0.80582 0.96216 2008-1 1.17353 1.36019 0.94054

2002-4 0.94643 0.92876 0.96757 2008-2 1.14956 1.30250 0.95135

2003-1 1.00255 1.03319 0.95676 2008-3 1.18824 1.36160 0.96757

2003-2 0.97921 0.99681 0.95135 2008-4 1.04534 1.08783 0.96216

2003-3 0.95028 0.94349 0.95676 2009-1 1.02307 1.05546 0.95135

2003-4 0.96069 0.96590 0.95135 2009-2 1.02363 1.05173 0.95676

2004-1 0.98643 1.01148 0.95135 2009-3 1.03785 1.06368 0.97297

2004-2 0.99157 1.02466 0.94595 2009-4 1.00020 1.00826 0.95676

2004-3 0.94036 0.92959 0.95135 2010-1 1.04948 1.09764 0.95676

2004-4 1.02247 1.08360 0.94054 2010-2 1.08052 1.16057 0.95135

2005-1 1.01777 1.07492 0.94054 2010-3 1.01775 1.03106 0.96216

2005-2 1.03640 1.10469 0.94595 2010-4 1.04256 1.07794 0.96216
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Table A9: Estimated Coefficients for Model 5 
 

Name Est Coef T Stat Name Est Coef T Stat Name Est Coef T Stat Name Est Coef T Stat

1 1.9633 39.625 1,23 4.3069 15.778 4 0.0166 8.680 2,23 3.5417 5.009

2 0.9057 36.783 1,24 4.1806 16.477 5 0.6785 11.178 2,24 3.7971 5.385

3 1.0575 33.380 1,25 4.3665 16.265 6 1.0016 12.150 2,25 3.8944 12.758

4 0.9048 12.137 1,26 4.4749 16.321 12 1.1239 34.884 2,26 4.0142 11.458

7 0.8688 35.194 1,27 4.8225 16.284 15 0.8846 15.548 2,27 3.5020 4.894

8 1.1505 72.571 1,28 5.2712 17.114 16 0.8193 11.473 2,28 3.9118 13.174

9 0.7772 56.140 1,29 5.3545 16.647 17 0.9015 23.072 2,29 4.2516 12.835

11 1.4448 47.088 1,30 5.6706 17.103 19 0.5338 16.161 2,30 4.2537 6.045

13 0.7762 73.276 1,31 5.3258 16.557 20 0.6165 14.194 2,31 4.3927 5.774

14 0.7968 34.836 1,32 5.8252 17.086 21 0.6977 18.855 2,32 4.3479 10.708

1,1 3.6545 15.918 1,33 5.3137 15.935 2,1 3.9412 5.288 2,33 4.1610 4.615

1,2 3.8100 16.064 1,34 5.0382 16.287 2,2 3.9435 10.724 2,34 4.0692 5.695

1,3 3.7829 15.295 1,35 5.4233 16.643 2,3 3.5019 11.765 2,35 3.9107 7.149

1,4 3.9679 16.186 1,36 4.1252 13.967 2,4 3.6617 12.323 2,36 3.5742 10.113

1,5 3.8260 15.959 1,37 4.0739 4.0430 2,5 3.7945 12.647 2,37 3.2497 3.874

1,6 3.7102 15.365 1,38 4.0611 14.675 2,6 3.4356 4.636 2,38 3.3287 9.672

1,7 3.2816 15.089 1,39 4.1395 15.132 2,7 3.3615 5.073 2,39 3.1356 3.393

1,8 3.3929 16.144 1,40 3.8368 14.508 2,8 3.4579 12.098 2,40 3.3051 9.300

1,9 3.8221 15.243 1,41 4.2438 15.356 2,9 3.3557 10.168 2,41 3.3104 4.204

1,10 3.3537 15.457 1,42 4.5134 15.562 2,10 3.5108 10.615 2,42 3.2847 3.482

1,11 2.8895 13.831 1,43 3.8608 14.807 2,11 3.3367 7.438 2,43 3.4985 10.503

1,12 3.4461 15.575 1,44 4.2065 15.509 2,12 3.2431 6.085 2,44 3.2090 9.348

1,13 3.9140 15.793 1,2 0.8949 16.115 2,13 3.3251 9.985 2,2 0.6087 6.293

1,14 3.7744 16.386 1,3 1.0336 32.986 2,14 3.3232 11.164 2,3 0.9214 14.972

1,15 3.5055 15.386 2 0.11591 6.559 2,15 3.7466 9.992 1 3.9734 18.808

1,16 3.6281 14.454 3 0.05421 4.017 2,16 3.2874 10.196 1 0.02118 10.485

1,17 3.7883 16.229 4 0.02272 2.667 2,17 3.5232 7.714 2 0.01624 9.106

1,18 3.8840 15.740 2 0.00373 1.377 2,18 3.2123 4.691 3 0.00256 1.656

1,19 3.4208 15.792 3 0.02145 8.187 2,19 3.7342 10.622 2 0.02728 0.749

1,20 4.1079 15.710 4 0.01531 5.495 2,20 3.4207 11.054 3 0.02812 1.880

1,21 4.0751 15.772 2 0.00096 0.513 2,21 3.5135 11.298 4 0.05368 7.104

1,22 4.2874 16.255 3 0.01421 7.701 2,22 3.3312 8.016 2 2.4777 12.086
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Table A10: Model 5 Overall House Price Index P5, Land Price Index PL5 and Land 

Price Indexes in High and Lower End Wards, PL1,5 and PL2,5 

 

Quarter P5 PL5 PL1,5 PL2,5 Quarter P5 PL5 PL1,5 PL2,5 

2000-1 1.00000 1.00000 1.00000 1.00000 2005-3 1.02137 1.07904 1.17853 0.89864 

2000-2 1.01201 1.02999 1.04256 1.00057 2005-4 1.01899 1.07909 1.14395 0.96344 

2000-3 0.98713 0.98561 1.03514 0.88854 2006-1 1.03991 1.12072 1.19485 0.98812 

2000-4 1.01596 1.03273 1.08577 0.92909 2006-2 1.06383 1.15071 1.22450 1.01852 

2001-1 1.00376 1.01939 1.04693 0.96278 2006-3 1.07369 1.16875 1.31962 0.88855 

2001-2 0.97668 0.96665 1.01526 0.87170 2006-4 1.13696 1.28512 1.44240 0.99253 

2001-3 0.92653 0.88155 0.89797 0.85291 2007-1 1.16185 1.33521 1.46519 1.07875 

2001-4 0.93793 0.91004 0.92841 0.87738 2007-2 1.18812 1.38731 1.55170 1.07929 

2002-1 0.97445 0.98276 1.04588 0.85145 2007-3 1.17113 1.34302 1.45733 1.11455 

2002-2 0.92871 0.89631 0.91770 0.89080 2007-4 1.21379 1.42143 1.59398 1.10318 

2002-3 0.86656 0.79076 0.79068 0.84661 2008-1 1.15152 1.32034 1.45402 1.05576 

2002-4 0.93102 0.90032 0.94297 0.82288 2008-2 1.12835 1.26750 1.37865 1.03247 

2003-1 0.98389 1.00306 1.07101 0.84369 2008-3 1.15670 1.30596 1.48403 0.99227 

2003-2 0.96560 0.97492 1.03280 0.84319 2008-4 1.02601 1.06749 1.12881 0.90687 

2003-3 0.95058 0.94436 0.95924 0.95061 2009-1 0.99470 1.01921 1.11478 0.82455 

2003-4 0.94499 0.93845 0.99277 0.83411 2009-2 1.00168 1.02736 1.11126 0.84458 

2004-1 0.97187 0.98656 1.03661 0.89393 2009-3 1.00314 1.01656 1.13273 0.79560 

2004-2 0.96727 0.98254 1.06281 0.81506 2009-4 0.97803 0.98446 1.04989 0.83861 

2004-3 0.93814 0.92580 0.93607 0.94748 2010-1 1.01763 1.05578 1.16127 0.83994 

2004-4 0.99390 1.03393 1.12407 0.86795 2010-2 1.03857 1.09915 1.23503 0.83342 

2005-1 0.99595 1.03765 1.11510 0.89147 2010-3 0.99706 1.01227 1.05647 0.88768 

2005-2 1.00909 1.05695 1.17320 0.84524 2010-4 1.00904 1.03416 1.17853 0.89864 
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Table A11: Model 5 Approximate Stock and Sales House Price Indexes, PK5 and P5, 

and Approximate Stock and Sales Land Price Indexes, PKL5 and PL5.  

 

Quarter PK5 P5 PKL5 PL5 Quarter PK5 P5 PKL5 PL5 

2000-1 1.00000 1.00000 1.00000 1.00000 2005-3 1.02083 1.02137 1.08079 1.07904 

2000-2 1.01068 1.01201 1.02790 1.02999 2005-4 1.01849 1.01899 1.08092 1.07909 

2000-3 0.98628 0.98713 0.98395 0.98561 2006-1 1.03927 1.03991 1.12266 1.12072 

2000-4 1.01484 1.01596 1.03106 1.03273 2006-2 1.06309 1.06383 1.15257 1.15071 

2001-1 1.00253 1.00376 1.01754 1.01939 2006-3 1.07226 1.07369 1.16909 1.16875 

2001-2 0.97583 0.97668 0.96513 0.96665 2006-4 1.13680 1.13696 1.28531 1.28512 

2001-3 0.92740 0.92653 0.88224 0.88155 2007-1 1.15935 1.16185 1.33025 1.33521 

2001-4 0.93833 0.93793 0.91059 0.91004 2007-2 1.18831 1.18812 1.38673 1.38731 

2002-1 0.97095 0.97445 0.97798 0.98276 2007-3 1.16826 1.17113 1.33763 1.34302 

2002-2 0.93466 0.92871 0.90831 0.89631 2007-4 1.21544 1.21379 1.42260 1.42143 

2002-3 0.87779 0.86656 0.81021 0.79076 2008-1 1.14845 1.15152 1.31495 1.32034 

2002-4 0.93062 0.93102 0.90104 0.90032 2008-2 1.12150 1.12835 1.25776 1.26750 

2003-1 0.97612 0.98389 0.99163 1.00306 2008-3 1.15900 1.15670 1.31230 1.30596 

2003-2 0.95981 0.96560 0.96659 0.97492 2008-4 1.01166 1.02601 1.05131 1.06749 

2003-3 0.95646 0.95058 0.95623 0.94436 2009-1 0.98582 0.99470 1.01343 1.01921 

2003-4 0.94359 0.94499 0.93737 0.93845 2009-2 0.99084 1.00168 1.01814 1.02736 

2004-1 0.97103 0.97187 0.98678 0.98656 2009-3 0.99631 1.00314 1.01500 1.01656 

2004-2 0.96280 0.96727 0.97629 0.98254 2009-4 0.96751 0.97803 0.97611 0.98446 

2004-3 0.94508 0.93814 0.94005 0.92580 2010-1 1.00801 1.01763 1.04906 1.05578 

2004-4 0.99279 0.99390 1.03463 1.03393 2010-2 1.03100 1.03857 1.09479 1.09915 

2005-1 0.99411 0.99595 1.03701 1.03765 2010-3 0.98180 0.99706 0.99753 1.01227 

2005-2 1.00854 1.00909 1.05867 1.05695 2010-4 1.00174 1.00904 1.03343 1.03416 
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Table A12: Rolling Window Overall House Price Index PRW, Land Price Index 

PLRW and Land Price Indexes in High and Lower End Wards, PL1,RW and PL2,RW 

 

 

Quarter PRW PLRW PL1,RW PL2,RW Quarter PRW PLRW PL1,RW PL2,RW 

2000-1 1.00000 1.00000 1.00000 1.00000 2005-3 1.01411 1.05945 1.14988 0.89238 

2000-2 1.01228 1.02811 1.03734 1.00583 2005-4 1.02054 1.07401 1.13421 0.96513 

2000-3 0.98593 0.98375 1.03037 0.89096 2006-1 1.03500 1.10267 1.16709 0.98580 

2000-4 1.01432 1.02778 1.08182 0.92161 2006-2 1.05539 1.12605 1.19204 1.00633 

2001-1 1.00730 1.02340 1.05642 0.95697 2006-3 1.06070 1.13554 1.27315 0.86857 

2001-2 0.97594 0.96672 1.01630 0.86941 2006-4 1.12514 1.25442 1.39276 0.98600 

2001-3 0.93666 0.90428 0.93207 0.85243 2007-1 1.15159 1.30827 1.42802 1.06526 

2001-4 0.94056 0.91810 0.94208 0.87492 2007-2 1.18679 1.37925 1.54072 1.07092 

2002-1 0.97623 0.98487 1.04244 0.86578 2007-3 1.16342 1.32029 1.42645 1.10303 

2002-2 0.92730 0.89828 0.92117 0.88636 2007-4 1.21164 1.41317 1.57841 1.10117 

2002-3 0.87064 0.80737 0.81015 0.85516 2008-1 1.15232 1.31305 1.44207 1.05369 

2002-4 0.93344 0.90860 0.95137 0.82852 2008-2 1.12192 1.24189 1.35716 1.00448 

2003-1 0.97572 0.98697 1.05123 0.83457 2008-3 1.15304 1.28652 1.45655 0.97959 

2003-2 0.96415 0.97133 1.02588 0.84675 2008-4 1.02186 1.03323 1.09920 0.87706 

2003-3 0.94577 0.93724 0.95491 0.93340 2009-1 0.99551 0.99304 1.10392 0.78447 

2003-4 0.93704 0.92610 0.97653 0.82754 2009-2 0.99932 0.99525 1.09040 0.80474 

2004-1 0.97739 0.99425 1.04734 0.89105 2009-3 0.99581 0.97454 1.09572 0.75124 

2004-2 0.96862 0.98314 1.06454 0.80906 2009-4 0.96849 0.93868 1.00325 0.80533 

2004-3 0.93445 0.92147 0.93313 0.93794 2010-1 1.00796 1.01008 1.12593 0.78503 

2004-4 0.98957 1.02155 1.11045 0.85348 2010-2 1.03134 1.05965 1.19931 0.79429 

2005-1 1.00220 1.04308 1.12860 0.87982 2010-3 0.98908 0.96868 1.02299 0.83814 

2005-2 1.00732 1.04794 1.16088 0.83817 2010-4 0.99605 0.98170 1.10245 0.76350 
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Table A13: Estimated Coefficients for Model 6 

 

Name Est Coef T Stat Name Est Coef T Stat Name Est Coef T Stat

 0.44108 40.32 22 -0.03206 -1.557 1 2.5971 100.4

 0.49710 56.01 23 -0.01547 -0.744 2 2.1231 98.70

 -0.09662 -27.70 24 0.00220 0.110 3 2.2229 89.74

2 0.01980 1.041 25 0.01510 0.782 4 2.0598 43.58

3 -0.00977 -0.476 26 0.03062 1.565 5 1.6997 49.55

4 0.02905 1.476 27 0.05679 2.699 6 1.8396 56.91

5 0.00439 0.233 28 0.07446 4.000 7 2.1286 99.60

6 -0.03044 -1.498 29 0.10867 5.589 8 2.2722 124.6

7 -0.03968 -1.975 30 0.11894 5.744 9 2.0451 114.4

8 -0.06480 -3.368 31 0.11589 5.610 10 2.1472 131.8

9 -0.03407 -1.585 32 0.15764 7.989 11 2.4110 104.6

10 -0.06956 -3.558 33 0.09925 4.974 12 1.9484 103.8

11 -0.08096 -3.821 34 0.09112 4.370 13 2.0261 119.6

12 -0.06539 -3.447 35 0.09137 4.407 14 2.0362 92.80

13 -0.04697 -2.261 36 -0.00664 -0.297 15 1.8462 65.06

14 -0.05446 -2.815 37 -0.03158 -1.400 16 1.7700 52.71

15 -0.05867 -2.686 38 -0.00740 -0.345 17 1.7599 88.92

16 -0.05199 -2.398 39 -0.04020 -1.921 18 1.7685 105.1

17 -0.04769 -2.376 40 -0.03208 -1.448 19 1.4993 79.25

18 -0.04756 -2.406 41 -0.01766 -0.858 20 1.6137 75.76

19 -0.06290 -3.153 42 -0.01507 -0.746 21 1.6584 82.44

20 -0.03342 -1.640 43 -0.01534 -0.730    

21 -0.01566 -0.823 44 -0.02218 -1.110    
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Table A14: Model 6 and 7 House Price Indexes for Tokyo 

 

Quarter P6 P7 Quarter P6 P7 Quarter P6 P7 

2000-1 1.00000 1.00000 2003-4 0.94934 0.93746 2007-3 1.12287 1.12422 

2000-2 1.02001 1.01284 2004-1 0.95342 0.93431 2007-4 1.17074 1.15983 

2000-3 0.99027 0.98416 2004-2 0.95355 0.94588 2008-1 1.10435 1.09802 

2000-4 1.02948 1.01977 2004-3 0.93903 0.92946 2008-2 1.09541 1.08060 

2001-1 1.00440 1.00459 2004-4 0.96713 0.96107 2008-3 1.09568 1.08083 

2001-2 0.97002 0.96648 2005-1 0.98446 0.98389 2008-4 0.99338 0.99594 

2001-3 0.96110 0.95013 2005-2 0.96845 0.96045 2009-1 0.96891 0.95382 

2001-4 0.93725 0.93426 2005-3 0.98464 0.98378 2009-2 0.99262 0.97806 

2002-1 0.96650 0.95806 2005-4 1.00220 0.98825 2009-3 0.96059 0.95341 

2002-2 0.93280 0.92990 2006-1 1.01522 1.00744 2009-4 0.96843 0.95632 

2002-3 0.92223 0.90646 2006-2 1.03110 1.02775 2010-1 0.98249 0.96829 

2002-4 0.93670 0.93545 2006-3 1.05844 1.05257 2010-2 0.98504 0.97775 

2003-1 0.95411 0.95196 2006-4 1.07731 1.06879 2010-3 0.98477 0.97289 

2003-2 0.94700 0.92611 2007-1 1.11479 1.11544 2010-4 0.97806 0.96799 

2003-3 0.94302 0.93955 2007-2 1.12630 1.13143    
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Table A15: Estimated Coefficients for Model 7 

 

Name Est Coef T Stat Name Est Coef T Stat Name Est Coef T Stat

 0.42882 38.65 19 -0.07315 -3.907 43 -0.02749 -1.392

 0.52920 62.73 20 -0.03970 -2.075 44 -0.03253 -1.732

 -0.08885 -26.50 21 -0.01624 -0.909 1 2.7576 92.38

 0.10277 11.42 22 -0.04035 -2.089 2 2.3117 83.98

 -0.00190 -7.43 23 -0.01635 -0.838 3 2.3799 81.23

 -0.00106 -20.64 24 -0.01182 -0.631 4 2.1596 45.16

 -0.00007 -16.87 25 0.07416 0.409 5 1.8569 49.69

2 0.01276 0.715 26 0.02737 1.490 6 2.0014 56.11

3 -0.01596 -0.828 27 0.05123 2.592 7 2.2714 83.22

4 0.01957 1.060 28 0.06653 3.803 8 2.4986 94.55

5 0.00458 0.259 29 0.10925 5.988 9 2.2402 84.61

6 -0.03409 -1.788 30 0.12348 6.351 10 2.4074 90.85

7 -0.05116 -2.714 31 0.11709 6.038 11 2.5953 90.93

8 -0.06800 -3.766 32 0.01483 8.001 12 2.1895 81.14

9 -0.04284 -2.124 33 0.09351 4.989 13 2.2736 85.88

10 -0.07268 -3.961 34 0.07752 3.960 14 2.2275 79.26

11 -0.09821 -4.936 35 0.07773 3.994 15 2.0107 61.46

12 -0.06673 -3.749 36 -0.00407 -0.194 16 1.9037 52.32

13 -0.04923 -2.526 37 -0.04728 -2.230 17 2.0317 68.52

14 -0.07676 -4.223 38 -0.02219 -1.099 18 2.0899 72.81

15 -0.06236 -3.042 39 -0.04771 -2.427 19 1.7414 62.21

16 -0.06458 -3.172 40 -0.04466 -2.143 20 1.8376 63.23

17 -0.06794 -3.604 41 -0.03222 -1.664 21 1.9016 65.44

18 -0.05564 -2.998 42 -0.02250 -1.184    
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