Skill-Biased Structural Change and the Skill Premium

Francisco J. Buera Joseph P. Kaboski Richard Rogerson

FRB Chicago Notre Dame

Princeton

April, 2015

Motivating Trends

- Well-documented rise in the skill premium, e.g., +28 pp since 1977 in the US
 - Katz & Murphy (1992),..., Acemoglu & Autor (2011)
 - ▶ Will skill premium continue rising, plateau, revert?

Motivating Trends

- Well-documented rise in the skill premium, e.g., +28 pp since 1977 in the US
 - Katz & Murphy (1992),..., Acemoglu & Autor (2011)
 - ► Will skill premium continue rising, plateau, revert?

Motivating Trends

- ullet Well-documented rise in the skill premium, e.g., +28 pp since 1977 in the US
 - Katz & Murphy (1992),..., Acemoglu & Autor (2011)
 - Will skill premium continue rising, plateau, revert?
- Skill-biased structural change (SBSC) in advanced economies:
 - rising value added share of skill-intensive sectors
 - rising relative price of skill-intensive sectors

This Paper

Complements the standard emphasis on skill-biased technical change (SBTC) to account for the rise in the skill premium by:

- Documenting salient, pervasive skill-biased structural change (SBSC) patterns for advanced economies
- ② Developing a two-sector model of skill-biased structural change and assessing its contribution to the rise of the skill premium

This Paper

Complements the standard emphasis on skill-biased technical change (SBTC) to account for the rise in the skill premium by:

- Documenting salient, pervasive skill-biased structural change (SBSC) patterns for advanced economies
- Oeveloping a two-sector model of skill-biased structural change and assessing its contribution to the rise of the skill premium
 - Fits cross-country panel well, with common preferences, technological change
 - Contribution of SBSC: 27-33% in U.S.

Literature Review

- Theories explaining the rise of the skill premium, w/ emphasis on SBTC:
 - Katz & Murphy (1992), ..., Acemoglu & Autor (2011), Autor & Dorn (2013), Leonardi (2015)
- Structural change:
 - Baumol (1969),..., Kongsamut et al. (2001), Ngai & Pissarides (2007), Acemoglu & Guerrieri (2008), Buera & Kaboski (2012), Reshef (2013), Herrendorf et al. (2014)

Literature Review

- Theories explaining the rise of the skill premium, w/ emphasis an on SBTC:
 - Katz & Murphy (1992), ..., Acemoglu & Autor (2011), Autor & Dorn (2013), Leonardi (2015)
- Structural change:
 - Baumol (1969),..., Kongsamut et al. (2001), Ngai & Pissarides (2007), Acemoglu & Guerrieri (2008), Buera & Kaboski (2012), Reshef (2013), Herrendorf et al. (2014)

Skill-Biased Structural Change

- Standard theories of structural change focused on agriculture, manufacturing, services categories
- Recent theories emphasize technology or preference defining characteristics:
 - ► Capital intensity: Acemoglu & Guerrieri (2008)
 - Skill intensity: rise of services explained by growth of skill-intensive services, Buera & Kaboski (2012)

Skill-Biased Structural Change

- Standard theories of structural change focused on agriculture, manufacturing, services categories
- Recent theories emphasize technological defining characteristics:
 - Capital intensity: Acemoglu & Guerrieri (2008)
 - Skill intensity: rise of services explained by growth of skill-intensive services Buera & Kaboski (2012)

Data Work

- Document salient patterns in cross-country panel
 - Rising share of skill-intensive sector with per capita income
 - Substitution: Rising relative price of skill-intensive output with per capita income
- Non-hometheticity: VA share of skill-intensive sector in expenditures rises with household income (U.S. cross-section)

Cross-Country Data

- EUKLEMS Basic Tables
 - Current-value VA by (1-2 digit) industry
 - Price indexes by industry
 - ▶ 1970-2005 for most countries
 - ▶ PPP data for 1997 for cross-country comparisons
- EUKLEMS Labour Input Data for advanced economies
 - Percentage distribution of labor payments and hours
 - broken out by education level, age, sex, and (1-2 digit) industry
 - ▶ 1970-2005, but years vary by country
- PWT 7.1 GDP per capita

High vs. Low Skill-Intensive Industries

High Skill Share	1970
Education	0.74
Health and Social Work	0.49
Real Estate and Business Activities	0.39
Financial Intermediation	0.27
Chemical, Rubber, Plastics & Fuel	0.21
Electrical and Optical Equipment	0.21
Wood and of Wood and Cork	0.05
Private Households with Employed Persons	0.02

High vs. Low Skill-Intensive Industries

High Skill Share	1970	2005
Education	0.74	0.79
Health and Social Work	0.49	0.63
Real Estate and Business Activities	0.39	0.66
Financial Intermediation	0.27	0.62
Chemical, Rubber, Plastics & Fuel	0.21	0.46
Electrical and Optical Equipment	0.21	0.57
Wood and of Wood and Cork	0.05	0.18
Private Households with Employed Persons	0.02	0.14

Skill-Biased Structural Change: Value Added

EUKLEMS 1970-2005: Australia, Austria Denmark, France, Germany, Italy, Japan, the Netherlands, South Korea, Spain, UK, US. within manufacturing within services

Skill-Biased Structural Change: Relative Prices

U.S. Cross-Section Data

- CEX (2012) gives expenditures on final goods/services (except investment)
- Most models are value-added models (Herrendorf et al., 2014)
- Factor intensity is at value-added level (use EUKLEMS for cross-country comparability)
- Obtaining value-added content of consumer spending:
 - Designate industry VA as high or low-skill intensive
 - Get skill-intensive sector VA of one dollar of PCE categories by mapping through BEA I-O tables (BEA correspondence)
 - Mapping CEX expenditures to PCE categories (BLS correspondence) to get VA content
- Regress household skill-intensive VA content on household observables (education instruments for income)

U.S. Cross-Section Evidence: Non-Homotheticity

Table: Household High-Skill Intensive Expenditure Share vs. Income/Skill

	OLS	IV	OLS
Ln Income	0.012***	0.049***	
SE	0.001	0.002	
High Skill Head			0.043***
SE			0.002
R^2	0.08	0.02	0.15
Observations	48,550	48,550	17,812

^{***} indicate significance at the 1 percent level.

Controls include: age; age squared; dummies for sex, race, state, urban, and month; number of boys (2-16 year); number of girls (2-16 years); number of men (over 16 years); number of women (over 16 years);and number of infants (less than 2 years). High skilled is defined as 16 years of schooling attained, while low skilled is defined as 12 years attained.

Quantitative Model

- Simple, standard structural change model incorporating two chief causes:
 - (Low) substitution: relative productivity/prices
 - Nonhomotheticity: "Stone-Geary"-like constant (or Boppart, 2014, extension)
- Static
- Closed economy
- High- and low-skilled workers, exogenous supply

Quantitative Model: Preferences

$$a_G c_G^{\frac{\varepsilon-1}{\varepsilon}} + (1 - a_G)(c_S + \bar{c}_S)^{\frac{\varepsilon-1}{\varepsilon}}$$

- c_G : goods (and low-skill intensive services)
- ullet c_S : high-skill intensive services
- ε : elasticity of substitution (if $\bar{c}_S=0$)
- $\bar{c}_S > 0$: (high-skill intensive) services are luxuries

Quantitative Model: Technologies

For each sector j = G, S

$$Y_j = A_j \left[\alpha_j H_j^{\frac{\rho - 1}{\rho}} + (1 - \alpha_j) L_j^{\frac{\rho - 1}{\rho}} + \right]^{\frac{\rho}{\rho - 1}}$$

- ullet A_j : skill-neutral, sector-biased technological parameter
- ullet $\alpha_j,\ \alpha_S>lpha_G$: skill-biased technological parameter
- $oldsymbol{
 ho}$: elasticity of substitution

Equilibrium

• Individuals with skill i = L, H

$$\max_{c_{Gi}, c_{Si}} a_G c_{Gi}^{\frac{\varepsilon - 1}{\varepsilon}} + (1 - a_G) \left(c_{Si} + \bar{c}_S \right)^{\frac{\varepsilon - 1}{\varepsilon}}$$
s.t.
$$p_G c_{Gi} + p_S c_{Si} = w_i$$

② Firms in sector j = G, S

$$\max_{L_{j},H_{j}} p_{j} A_{j} \left[\alpha_{j} H_{j}^{\frac{\rho-1}{\rho}} + (1 - \alpha_{j}) L_{j}^{\frac{\rho-1}{\rho}} \right]^{\frac{\nu}{\rho-1}} - w_{H} H_{j} - L_{j}$$

Markets clear

$$H_G + H_S = f_H$$
, $L_G + L_S = 1 - f_H$, ...

$$\frac{p_S c_{Si}}{w_i} = \frac{\left(\frac{1 - a_G}{a_G}\right)^{\varepsilon} \left(\frac{p_S}{p_G}\right)^{1 - \varepsilon} - \frac{p_S \bar{c}_S}{w_i}}{\left(\frac{1 - a_G}{a_G}\right)^{\varepsilon} \left(\frac{p_S}{p_G}\right)^{1 - \varepsilon} + 1}$$

$$\frac{p_S c_{Si}}{w_i} = \frac{\left(\frac{1 - a_G}{a_G}\right)^{\varepsilon} \left(\frac{p_S}{p_G}\right)^{1 - \varepsilon} - \frac{p_S \bar{c}_S}{w_i}}{\left(\frac{1 - a_G}{a_G}\right)^{\varepsilon} \left(\frac{p_S}{p_G}\right)^{1 - \varepsilon} + 1}$$

• Relative price: $\Delta \frac{p_S}{p_G} > 0$ & $\varepsilon < 1$ (Baumol, 1969; Ngai & Pissarides, 2007)

$$\frac{p_S c_{Si}}{w_i} = \frac{\left(\frac{1-a_G}{a_G}\right)^{\varepsilon} \left(\frac{p_S}{p_G}\right)^{1-\varepsilon} - \frac{\frac{p_S \bar{c}_S}{w_i}}{w_i}}{\left(\frac{1-a_G}{a_G}\right)^{\varepsilon} \left(\frac{p_S}{p_G}\right)^{1-\varepsilon} + 1}$$

- Relative price: $\Delta \frac{p_S}{p_G} > 0$ & $\varepsilon < 1$ (Baumol, 1969; Ngai & Pissarides, 2007)
- Income effect: $\bar{c}_S>0$ & $\Delta \frac{w_i}{p_s}>0$ (Engel, 1857, Kongsamut et al., 2001)

$$\frac{p_S c_{Si}}{w_i} = \frac{\left(\frac{1 - a_G}{a_G}\right)^{\varepsilon} \left(\frac{p_S}{p_G}\right)^{1 - \varepsilon} - \frac{p_S \bar{c}_S}{w_i}}{\left(\frac{1 - a_G}{a_G}\right)^{\varepsilon} \left(\frac{p_S}{p_G}\right)^{1 - \varepsilon} + 1}$$

- Relative price: $\Delta \frac{p_S}{p_G} > 0$ & $\varepsilon < 0$ (Baumol, 1969; Ngai & Pissarides, 2007)
- Income effect: $\bar{c}_S>0$ & $\Delta \frac{w_i}{n_s}>0$ (Engel, 1857, Kongsamut et al., 2001)
- Technological progress, either sector biased or neutral, drive these effects

$$p_j = \frac{1}{A_j} \left[(1 - \alpha_j)^{\rho} + \frac{\alpha_j^{\rho}}{w_H^{(\rho-1)}} \right]^{1-\rho}.$$

High Skill Labor Market Clearing

$$\left[\frac{\alpha_{S}\hat{p}_{S}(w_{H})A_{S}}{w_{H}}\right]^{\rho} \frac{\sum_{i=L,H} f_{i}\hat{c}_{Si}\left(w_{H}\right)}{A_{S}} + \left[\frac{(\alpha_{G}\hat{p}_{G}(w_{H})A_{G}}{w_{H}}\right]^{\rho} \frac{\sum_{i=L,H} f_{i}\hat{c}_{Gi}\left(w_{H}\right)}{A_{G}} = f_{H}.$$

Quantitative Exploration: Roadmap

- Given ε and ρ , we calibrate $\{\alpha_{jt}\}_{t=0}^T$, $\{A_{jt}\}_{t=0}^T$, a_G , and \bar{c}_S to match high-skill intensities in each sector, relative prices, aggregate growth, and the value-added share of skill-intensive sector in 1977 and 2005 for U.S.
- Oata on skill premium and aggregate factor shares imply "effective" supply of skills
- Examine U.S. fit over time
- Examine out-of-sample fit in cross-country panel
- **9** Perform counterfactuals to quantify the fraction of the U.S. change in the skill-premium explained by SBSC ($\approx 30\%$) vs. SBTC ($\approx 70\%$)
- **1** Analyze the sensitivity to alternative values of ε (not sensitive) and ρ (relatively insensitive)

Calibration, setting $\varepsilon=0.2$ and $\rho=1.4$

Parameters		Moments	
α_{G0}, α_{GT}	0.28, 0.43	$\frac{w_{Lt}L_{Gt}}{p_{Gt}Y_{Gt}}$	0.82, 0.66
α_{S0} , α_{ST}	0.55, 0.66	$\frac{w_{Lt}L_{St}}{p_{St}Y_{St}}$	0.46, 0.34
$\%\Delta rac{A_G}{A_S}$	86%	$\%\Delta \frac{p_S}{p_G}$	62%
$\%\Delta A_G$	123%	$\%\Delta Y$	70%
a_G	0.71	$\frac{p_{S0}Y_{S0}}{Y_0}$	0.29
\bar{c}_S	0.14	$\Delta \frac{p_S Y_S}{Y}$	0.15 pp

Evolution of the Skill Premium and SBSC: Model vs. Data

Evolution of the Exogenous Shocks

Examining Fit in Cross-Country Panel

Approach:

- Keep preferences and technology parameters the same as U.S.
- ② Use countries' income share, relative price, and aggregate growth data as targets
- 3 Examine fit for sector shares, skill premium
- Examine imputed exogenous processes

Panel Results: Skill-Intensive Sector Fit

Service Share Fit: Model vs. Data

Panel Results: Skill-Intensive Sector Fit

Service Share Fit: Model vs. Data

Panel Results: Skill-Biased Technology Levels

▶ Raw Results

Panel Results: Sector-Biased Technology Levels

Panel Results: Relative Sectoral Productivity Levels

Panel Results: Skill Premium Fit

Skill Premium Fit: Model vs. Data

▶ Raw Results

Panel Results: Supply of Skills

No Clear Skill Premium Patterns in Data

Taking Stock

- Model fits U.S. data well
- Model fits cross-country panel
 - Variation in skill premia, stock of skills, SBTC, but...
 - Salient sectoral productivity patterns emerge
- Now return to the U.S. for counterfactuals

Counterfactual Dynamics: Fixed A_G and A_S

Accounting for the Rise in the Skill-Premium, 1977-2005

$\Delta(w_H/w_L-1)$ (percentage points)		
	$\varepsilon = 0.2$	
5	40	
Data	49	
Model	49	
Counterfactuals:		
No SBSC or SBTC $(\Delta f_H$ only)	-49	
Implied total Δ from technology	98	
No SBSC $(\Delta f_H$ and $\Delta lpha_j$ only)	18	
Implied SBSC contribution (ΔA_j)	31	
SBSC as percent of total	31%	

Sensitivity to ε

 $\Delta(w_H/w_L-1)$ (percentage points)

	$\varepsilon = 0.5$	$\varepsilon = 0.2$	$\varepsilon = 0.1$
Data	49	49	49
Model	49	49	49
Counterfactuals:			
No SBSC or SBTC $(\Delta f_H$ only $)$	-46	-49	-49
Implied total Δ from technology	95	98	98
No SBSC $(\Delta f_H$ and $\Delta lpha_j$ only)	20	18	18
Implied SBSC contribution (ΔA_j)	29	31	31
SBSC as percent of total	31%	31%	31%

Sensitivity to ρ

 $\Delta(w_H/w_L-1)$ (percentage points)

	$\rho = 0.8$	$\rho = 1.4$	$\rho = 2.5$
Data	49	49	49
Model	49	49	49
Counterfactuals:			
No SBSC or SBTC $(\Delta f_H ext{ only})$	-76	-49	-34
Implied total Δ from technology	125	98	63
No SBSC $(\Delta f_H$ and $\Delta lpha_j$ only)	-5	18	27
Implied SBSC contribution (ΔA_j)	54	31	17
SBSC as percent of total	44%	31%	22%

Accounting for Changes in the Skill-Premium, OECD

SBSC contribution / Total technology contribution (%)

Australia	18
Austria	40
Denmark	11
Spain	32
Germany	37
Italy	54
Japan	22
Netherlands	27
United Kingdom	36

Projecting the Evolution of SBSC

- ullet Assume A_G and A_S follow previous trends
- Assume α_G , α_S and f_H remain at 2005 values

Projecting the Evolution of SBSC

Conclusions

- With development consumption shifts toward high-skill intensive industries, increasing the relative demand for high skill workers (SBSC)
- This trend is pervasive across advanced economies
- This leads to a substantial, and persistent, rise in the skill-premium, even without skill-biased technological progress (SBTC)

Decomposing Relative Productivity and Non-Homotheticity

$\Delta \frac{p_S Y_S}{Y_S}$ (percentage	points).	1977-2005	U.S.
- v (percentage	pomito,	1311 2003	0.5.

	$\varepsilon = 0.5$	$\varepsilon = 0.2$	$\varepsilon = 0.1$
Data	15	15	15
Model	15	15	15
Counterfactuals:			
No productivity growth (no ΔA_i)	-3	-4	-4
Implied total Δ from technology	18	19	19
No relative productivity change (no $\Delta A_S/A_G$)	11	4	2
Implied relative productivity contrib. (ΔA_j)	4	11	13
Rel. prod. as % of total prod.	24%	58%	68%

Skill-Biased Structural Change within Manufacturing

Skill-Biased Structural Change within Services

No Clear Pattern in Skill Premium: Raw Data

Service Share Fit: Raw Results

Supply of Skills: Raw Data

Skill-Biased Technology Levels: Raw Results

▶ back

Sector-Biased Technology Levels: Raw Results

Raw Sector-Biased Productivity Levels in Cross-Country Panel

▶ back

Relative Sectoral Productivity Levels: Raw Results

