Small and Orthodox Fiscal Multipliers at the Zero Lower Bound

R. Anton Braun (FRB Atlanta) Lena Körber (LSE) Yuichiro Waki (University of Queensland)

End of Year Macroeconomics Conference December 26, 2014

Disclaimer: The views expressed in this paper are our own personal views and not those of the Federal Reserve System or Bank of England

Outline

1 Introduction

2 Model

3 Our Parameterization

4 Results for the Great Recession

5 Conclusions

Motivation

- The nominal interest rate has fallen to (almost) zero in many countries around the world.
- Does fiscal policy have large and qualitatively different effects when the nominal interest rate is zero?
- An emerging consensus in the New Keynesian (NK) literature is that the answer is yes.

Labor tax increase

- In normal times: labor tax $\uparrow \rightarrow$ hours \downarrow
- At the ZLB: labor tax ↑ → hours ↑ ("Paradox of Toil", Eggertsson(2011))

Government spending multiplier

- In normal times: government spending multiplier ≤ 1
- At the ZLB: government spending multiplier >> 1 (Christiano, Eichenbaum and Rebelo (2011))

 \longrightarrow Policy implication: Fiscal stimulus is particularly effective when monetary policy is constrained by the ZLB.

Our paper

 Provides new evidence that the properties of fiscal policy in the NK model at the ZLB and away from the ZLB are generally quite similar :

- labor tax $\uparrow \rightarrow$ hours \downarrow , or hours are inelastic

- government spending multiplier ≈ 1 .
- How do we reach this conclusion?
 - Formulate a tractable, nonlinear, stochastic NK model with an occasionally binding ZLB.
 - Calibrate shock parameters to reproduce declines in GDP and inflation from the Great Recession and Great Depression.
 - Analyze the global properties of the model using analytical and numerical methods.

Fiscal multipliers are generally small

Great Recession

- GDP government purchase multiplier is about 1.15 or less.
- Employment generally falls or shows no response at all to an increase in the labor tax.

Great Depression

- **GDP** government purchase multiplier is 1.13 or less.
- 2 Employment falls when the labor tax is increased.

Fiscal multiplier asymptotes

- Near asymptotes fiscal multipliers can be arbitrarily large and positive or large and negative.
- This region of the parameter space is small.
- Woodford (2011) and Carlstrom, Fuerst and Paustian (2012) have also documented asymptotes using loglinearized solutions.

What explains the difference between our results and the previous literature?

• Parameterization of the model

- This paper uses parameterizations that can reproduce output and inflation responses from the Great Recession or the Great Depression.
- Some previous work uses parameterizations of the NK model that cannot reproduce these responses.

Solution method

- Loglinear solutions may get the local dynamics of the model wrong.

Outline

4 Results for the Great Recession

Outline

3 Our Parameterization

4 Results for the Great Recession

5 Conclusions

2. Model Overview

- Standard New Keynesian model of a closed economy.
- Nominal price rigidity à la Rotemberg (1996) adjustment costs.
- No need to loglinearize.
- Equilibrium employment and inflation in the ZLB state can be found by solving two nonlinear equations.

State of the economy

- State *s* ∈ {*H*, *L*}.
- 2 state Markov chain with L as the initial state.
- Stays in *L* with probability *p*. (Persistence)
- *H* is the absorbing state.
- Household's one-step discount factor and firms' technology depends on *s*.
- Fiscal policy is also Markov in s.

Households

• Momentary utility function:

$$\frac{c_t^{1-\sigma}}{1-\sigma} - \frac{h_t^{1+\nu}}{1+\nu}$$

- One-step preference discount factor $\beta \times d_{t+1}$ $(t + 1 \rightarrow t)$.
- $d_{t+1} = d^L$ in the L state, $d_{t+1} = 1$ in the H state.
- Labor income subject to linear tax $\tau_{w,t}$.
- Optimality condition:

$$1 = \beta d_{t+1} E_t \left[\frac{c_{t+1}^{-\sigma}}{c_t^{-\sigma}} \frac{1}{1 + \pi_{t+1}} \right] (1 + R_t)$$

$$w_t = \frac{h_t^{\nu}}{c_t^{-\sigma} (1 - \tau_{w,t})}$$

- Produce the final foods using intermediate goods $i \in [0, 1]$.
- CES aggregator:

$$y_t = \left[\int_0^1 y_t(i)^{\frac{\theta}{\theta-1}} di\right]^{\frac{\theta-1}{\theta}}.$$

Profit maximizing input demand:

$$y_t^d(i) = \left(\frac{p_t(i)}{P_t}\right)^{-\theta} y_t$$

where $P_t = \left[\int_0^1 p_t(i)^{1-\theta} di\right]^{\frac{1}{1-\theta}}$ is the price of the final good and $p_t(i)$ is the price of intermediate good *i*.

Intermediate goods producers

• Use linear production function:

$$y_t(i) = \frac{z_t}{h_t(i)},$$

which implies that the marginal cost is

$$w_t/z_t$$
.

• $z_t = z^L$ in the L state, $z_t = 1$ in the H state.

Intermediate goods producers

- Set prices {p_t(i)}[∞]_{t=0} to maximize PV of profits subject to the demand function.
- Momentary profit function:

$$(1+\tau_s)\frac{p_t(i)}{P_t}y_t(i)-\frac{w_t}{z_t}y_t(i)-\frac{\gamma}{2}\left(\frac{p_t(i)}{p_{t-1}(i)}-1\right)^2y_t.$$

- $y_t = z_t h_t$ is the aggregate production.
- In a symmetric equilibrium the fraction $\frac{\gamma}{2}\pi_t^2$ of agg. production is used for price adjustment.

2. Model Policy

- Fiscal policy is Ricardian.
- The Central Bank follows a Taylor rule:

$$R_t = \max(0, r_t + \phi_{\pi} \pi_t + \phi_y \widehat{gdp}_t)$$

where $r_t = \frac{1}{\beta d_{t+1}} - 1$.

Aggregate resource constraint

• Aggregate resource constraint:

$$GDP_t \equiv c_t + g_t = (1 - \kappa_t)z_t h_t.$$

• $\kappa_t \equiv \frac{\gamma}{2} \pi_t^2$ represents the resource costs of price adjustment.

- κ_t plays an important role in a severe, deflationary recession.
 - Magnitude and sign of employment and GDP responses can differ.
 - 2 κ disappears when loglinearized about a constant price steady-state.
 - If the economy is far from the steady state this problem can be severe.
 - Same issue arises under Calvo pricing.

ZLB Markov equilibrium of Eggertsson and Woodford (2003)

- Markov equilibrium with state s ∈ {L, H}. (Fiscal policy is also Markov in s.)
- Assume: Zero inflation steady-state occurs in state H.
- Assume: ZLB binds in state L. (Taylor rule checked).
- ZLB Equilibrium: (c^L, h^L, w^L, π^L) .
 - Eqm condition reduces to two equations with (π^L, h^L) .
 - "AD" and "AS" equations.

Equilibrium condition at the ZLB

NKPC:

$$\pi^L(1+\pi^L)=rac{ heta}{\gamma}(rac{w^L}{z^L}-1)+peta d^L\pi^L(1+\pi^L)$$

2 Euler equation:

$$(c^L)^{-\sigma} = p\beta d^L \frac{(c^L)^{-\sigma}}{1+\pi^L} + (1-p)\beta d^L c^{-\sigma}$$

$$w^{L} = (c^{L})^{\sigma} (h^{L})^{\nu} / (1 - \tau_{w}^{L}).$$

Resource constraint:

$$c^L = (1 - \eta^L - \kappa^L) z^L h^L.$$
 $(g^L = \eta^L z^L h^L.)$

Equilibrium employment and inflation at the ZLB

O AS: Price setting condition (+ labor supply and resource constraint)

$$\pi^{L}(1+\pi^{L}) = \frac{\theta}{\gamma} \left(\frac{(1-\kappa^{L}-\eta^{L})^{\sigma}(h^{L})^{\sigma+\nu}}{(1-\tau^{L}_{w})(z^{L})^{1-\sigma}} - 1 \right) + p\beta d^{L}\pi^{L}(1+\pi^{L})$$

2 AD: Euler equation (+ production function and resource constraint)

$$1 = p\left(\frac{\beta d^{L}}{1+\pi^{L}}\right) + (1-p)\beta d^{L}\left(\frac{(1-\kappa^{L}-\eta^{L})^{\sigma}(h^{L})^{\sigma}}{(1-\eta)^{\sigma}h^{\sigma}}\right)$$

3 $R^{Taylor} < 0$

Outline

1 Introduction

2 Model

4 Results for the Great Recession

5 Conclusions

5. Our Parameterization

Estimated parameters

- Key parameters are estimated by Bayesian methods using the loglinear equilibrium conditions.
- Data: output gap, inflation and the FFR (1985:I-2007:IV).
- Model: loglinearized three-equation model (quarterly)
- Shocks: technology, demand, and monetary policy.

Parameter	Prior			Posterior		
	distribution	mean	std. dev.	mode	5%	95%
ν Labour supply elasticity	gamma	0.5	0.25	0.28	0.08	0.63
γ Price adj. costs	normal	150	200	458	315	704
ϕ_y TR coefficient on GDP	normal	0	1	1.63	1.06	2.33
ϕ_{π} TR coefficient on inflation	normal	3	1	3.46	2.38	4.77
ρ_r TR coefficient on R_{t-1}	beta	0.75	0.1	0.86	0.81	0.90

5. Our Parameterization

Other parameters

• The remaining parameters are fixed a priori as follows:

Parameter		Value	
β	Discount factor	0.997	
σ	Relative risk aversion	1	
$\frac{\theta}{\theta-1}$	Steady state gross markup	1.15	

- Resulting slope of NK Phillips Curve is: 0.021.
- Close to estimate of Rotemberg and Woodford (1997): 0.024.

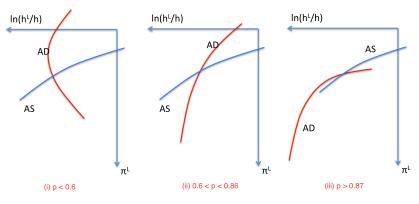
5. Our Parameterization

Targets from the Great Recession and the Great Depression

	Inflation	GDP
Great Recession (2008-09)	-1%	-7%
Great Depression (1929-30s)	-10%	-30%

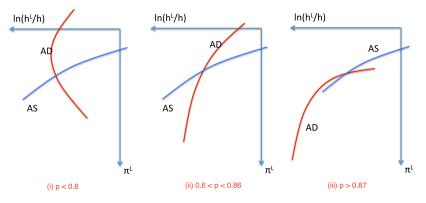
- Consider a wide range of p (duration of the ZLB) \in [0, 0.95].
- For each p we adjust z^{L} and d^{L} to reproduce these numbers at ZLB.
- This presentation focuses on the GR calibration.

Outline

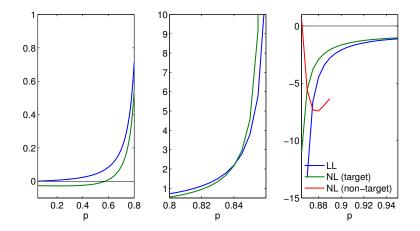


Our Parameterization

4 Results for the Great Recession

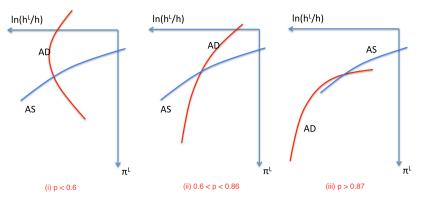

5 Conclusions

Three configurations for the AD-AS schedules

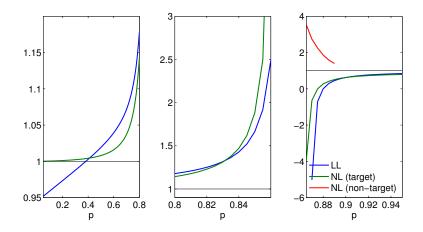

- All equilibria are MSV solutions.
- Left case doesn't occur if loglinearized around zero inflation steady-state.
- Measure policy effects by perturbing fiscal policy in state L.

The response of hours to a labor tax increase

- Labor tax $\uparrow \Rightarrow AS$ shifts up.
- Employment \downarrow for the left and the right cases.
- Employment \uparrow for the middle case.


The response of hours to a labor tax increase

- Third equilibrium can exist (red).
- Labor tax multiplier proportional to $\frac{1}{5lc}$


$$\frac{1}{\operatorname{ope}(AD)/\operatorname{slope}(AS)-1}$$
. 30/34

Government spending multiplier

- Government spending $\uparrow \approx$ AD shifts toward the right.
- Inflation \uparrow for the left and the middle cases. \rightarrow C $\uparrow \Rightarrow$ Multiplier > 1.
- Inflation \downarrow for the right case $\rightarrow C \downarrow \Rightarrow$ Multiplier < 1.

Government spending multiplier

- Very large multiplier only around the asymptote.
- Right panel corresponds to Mertens and Ravn (2014).

Outline

Introduction

2 Model

3 Our Parameterization

4 Results for the Great Recession

Conclusions

- Our findings:
 - For a broad and empirically relevant range of parameter/shock configurations
 - labor tax $\uparrow \rightarrow$ hours \downarrow or hours are inelastic
 - government spending multiplier ≈ 1
- Fiscal multipliers can be very large and positive or large and negative near asymptotes.
- These properties also hold in
 - Specifications with preference shock only, and
 - Specifications that are calibrated to Great Depression.