"Business Cycles, Monetary Policy, and Bank Lending: Identifying the Bank Balance Sheet Channel with Firm-Bank Match-Level Loan Data"

CIGS End of Year Macroeconomics Conference in Tokyo Dec. 26th 2014

Kaoru Hosono (Gakushuin Uni.) Daisuke Miyakawa (Nihon Uni.)

1. Introduction & Motivation

- Bank lending view E.g., Stein (RAND 1998)
 - Bank variables
 - ☐ Firm variables
 - ☐ Aggregate variables
- An Empirical Strategy: "Within-firm estimator"
 - ☐ Take advantage of multiple loan relations b/w firm & banks
 - ☐ Control for unobservable change in loan demand
 - ☐ Khawaja & Mian (AER 2008), Jimenez et al. (AER 2012)

Identification problem!

Shock (e.g., aggregate variables $\uparrow \downarrow$, inst' change, natural disaster etc.) Bank-a Bank-a Firm-j Firm-j Bank-b Bank-b Bank-c Bank-c t-1

2. This paper

- Identify banks' balance sheet channel
 - Impact of the changes in business cycle & monetary policy through banks w/ different liquidity and capital ratio
- With controlling for...
 - ☐ Firm: Time-variant observable/unobservable characteristics
 - ⇔ E.g., <u>loan demand</u> (★)
 - Bank: Observable characteristics
 - ☐ Firm-bank match: Time-invariant unobservable characteristic
 - ⇔ E.g., <u>assortative matching</u>
- Subsample analysis based on firms' characteristics
- Size of bias originating from missing (★)
- Also, impact on <u>Firm-Level Borrowing and Investment</u>

3. Literature (1): Khawaja and Mian (AER 2008)

- Data: Loan-level data (i.e., match-level data) in Pakistan
- Regressions

(1)
$$\Delta L_{ij} = \beta_j + \beta_1 \Delta D_i + F_j + \varepsilon_{i.j}$$
 (lending channel)

 ΔL_{ii} : change in loans from bank i to firm j

 ΔD_i : change in deposits at bank i

 F_i : firm-level fixed effect

In the wake of the test of the nuclear device

(2)
$$\Delta Y_j = eta_1^F \Delta \overline{D}_j + \eta_j$$
 (borrowing channel)

 ΔY_i : firm j's default rate (i.e., outcome variable)

 $\Delta \overline{D}_i$: average change in deposits for the banks that lent to firm i

Results

$$\beta_1>0$$
, $\beta_1^F>0$ (for small firms)

Our paper: Using extended panel data

3. Literature (2): Jimenez et al. (AER 2012)

- Data: Granted / rejected loan applications in Spain (discrete var)
- Regression:

Dep var: Probability(Application by firm *i* to be granted by bank *j*)

Indep var: Bank char, firm char, Macro variables (i.e., short-term interest rate, GDP), Interaction between macro variables & bank char, Firm-month (or loan-level) fixed effect

■ Results:

- ☐ Higher short-term interest rates or lower GDP growth reduce the probability that a loan application is granted
- ☐ This tendency is stronger for banks with low capital (in periods of higher short-term interest rates and lower GDP growth) or low liquidity (in periods of higher short-term interest rates)
- Our paper: Studying quantitative implication

3. Data (1): Match & Bank

- <u>NEEDs-FQ</u>: Firm-bank match-level panel data in Japan from 1981FY to 2010FY including...
 - ☐ Firm-Bank match-specific loan outstanding
 - "Long-term, short-tem loan outstanding, and total loan outstanding (we use this)
 - Bank's financial statement information
 - "SIZE (BSIZE), ROA (BROA), JGB/Total Asset (BJGB), Local Bond/Total Asset (BLOCALBOND), Loan-to Deposit Ratio (BLTD)

Distribution of the Change in Firm and Bank Match-Level Loans Outstanding

3. Data (2): "Key" Bank Variables

" Capital ratio (BCAP):

⇔Either Total Equity/Total Asset (<u>BTETA</u>: 1981-2010FY) or

Capital Adequacy Ratio (REGCAP: 1993-2010FY from JBA)

Subtract 4% or 8%

" Liquidity (<u>BLIQ</u>):

⇔The ratio of (i) the sum of banks' cash and deposits, loans outstanding in the call market, securities for selling, and JGBs and local bonds minus <u>required current deposits</u> at the BOJ to (ii) total assets.

- (i) Current deposits at the BOJ until FY 1997
- (ii) Multiplying the required reserve ratio by the amount of deposits of each type from FY 1997 to FY 2010

3. Data (3): Firm

- ☐ <u>Firm</u>'s financial statement information
 - "PBR, total assets, ROA, liquidity ratio, fixed assets to total assets ratio
 - Debts to total assets ratio, the ratio of short-term to longterm liabilities, the ratio of bank borrowing to total liabilities, and
 - " Number of lender banks

We use the firms with at least two lender banks

■ Sample size: Observations on between 907 firms (in FY1982) and 1,666 firms (in FY2008) and 109 banks (in FY2010) and 153 banks (in FY1981) in any particular year

3. <u>Data (4)</u>: Policy

- Real GDP growth rate (GDPGROWTH)
- Variables related to monetary policy (<u>POLICY</u>)
 - ☐ Change in policy-rate
 - " Koteibuai or O/N call rate
 - " POLRATE_UP, POLRATE_DOWN
 - " Base=no change, QE period
 - ☐ Change in quantitative easing policy
 - " QE_LOOSENING, QE_TIGHTENING
 - " Base=no change, pre-QE period
 - □ Combined indicator
 - " MPLOOSENING
 - " MPTIGHTENING

We use these separately (due to potential multicollinearity)

Structure of "POLICY"

FY	Growth rate of real GDP	Policy Rate Koteibuai:	Policy Rate O/N call rate %	Policy Rate from previous FY:	QE target (Weight Average): Trillion Yen	POLRATE _UP	POLRATE _DOWN	QE _RELAX	QE _TIGHT	MP RELAX	MP TIGHT
1981	0.0394	6.0000	n.a.	-2.0000	0	0	1	0	0	1	0
1982	0.0314	5.5000	n.a.	-0.5000	0	0	1	0	0	1	0
1983	0.0353	5.2500	n.a.	-0.2500	0	0	1	0	0	1	0
1984	0.0476	5.0000	n.a.	-0.2500	0	0	1	0	0	1	0
1985	0.0628	4.8333	6.7010	-0.1667	0	0	1	0	0	1	0
1986	0.0189	3.2083	4.4424	-1.6250	0	0	1	0	0	1	0
1987	0.0610	2.5000	3.5403	-0.7083	0	0	1	0	0	1	0
1988	0.0640	2.5000	3.9572	0.0000	0	0	0	0	0	0	0
1989	0.0457	3.6875	5.7432	1.1875	0	1	0	0	0	0	1
1990	0.0620	5.7500	7.7656	2.0625	0	1	0	0	0	0	1
1991	0.0234	5.2500	6.8928	-0.5000	0	0	1	0	0	1	0
1992	0.0071	3.2500	4.1228	-2.0000	0	0	1	0	0	1	0
1993	-0.0048	2.0625	2.7596	-1.1875	0	0	1	0	0	1	0
1994	0.0150	1.7500	2.1819	-0.3125	0	0	1	0	0	1	0
1995	0.0228	0.7083	0.7746	-1.0417	0	0	1	0	0	1	0
1996	0.0288	0.5000	0.4800	-0.2083	0	0	1	0	0	1	0
1997	-0.0002	0.5000	0.4683	-0.0117	0	0	1	0	0	1	0
1998	-0.0148	0.5000	0.3008	-0.1675	0	0	1	0	0	1	0
1999	0.0073	0.5000	0.0267	-0.2742	0	0	1	0	0	1	0
2000	0.0255	0.4667	0.1533	0.1267	0	1	0	0	0	0	1
2001	-0.0079	0.1625	0.0080	-0.1453	7.1	0	0	1	0	1	0
2002	0.0108	0.1000	0.0019	-0.0061	15.0	0	0	1	0	1	0
2003	0.0211	0.1000	0.0011	-0.0008	28.7	0	0	1	0	1	0
2004	0.0198	0.1000	0.0009	-0.0002	32.5	0	0	1	0	1	0
2005	0.0228	0.1000	0.0011	0.0002	32.5	0	0	0	0	0	0
2006	0.0230	0.3833	0.2186	0.2175	0.0	0	0	0	1	0	1
2007	0.0182	0.7500	0.5047	0.2861	0	1	0	0	0	0	1
2008	-0.0408	0.5583	0.3627	-0.1420	0	0	1	0	0	1	0
2009	-0.0242	0.3000	0.1022	-0.2605	0	0	1	0	0	1	0
2010	0.0240	0.3000	0.0909	-0.0113	0	0	1	0	0	1	0

4. Empirical Strategy (1)

- Model choice depends on our <u>identification assumption</u>
 - ☐ Change in loan amount depends on firm's loan demand, bank's loan supply, and aggregate-level variables
 - **□**ε: (i) Error term, (ii) error & bank-FE, (iii) error & match-FE

Accounting for loan demand

Account for assortative matching up to some extent

```
 \Delta \, LOAN_{1}i,j,t_{1} = \begin{bmatrix} \eta_{1}j,t_{1} + \beta_{1}BSIZE_{1}i,t-1_{1} + \beta_{2}BROA_{1}i,t-1_{1} + \beta_{3}BJGB_{1}i,t-1_{1} \\ + \beta_{3}BJGB_{1}i,t-1_{1} + \beta_{4}BLOCALBOND_{1}i,t-1_{1} + \beta_{5}BLTD_{1}i,t-1_{1} \\ + \beta_{6}BCAP_{1}i,t-1_{1} + \beta_{7}BLIQ_{1}i,t-1_{1} + YEAR(t) \\ + \gamma_{1}BCAP_{1}i,t-1_{1}GDPGROWTH_{1}t_{1} + \gamma_{2}BLIQ_{1}i,t-1_{1}GDPGROWTH_{1}t_{1} \\ + \gamma_{3}BCAP_{1}i,t-1_{1}POLICY_{1}t_{1} + \gamma_{4}BLIQ_{1}i,t-1_{1}POLICY_{1}t_{1} + \varepsilon_{1}i,j,t_{1} \end{bmatrix}
```

Main interest

Two key variables

4. Empirical Strategy (2)

- Additional analyses
 - Subsample based on firms' characteristics
 - "Balance sheet channel interacts w/ firm characteristics?
 - . Different loan provision to firms with different size?
 - . Different loan provision to firms with dispersed (i.e., weak) loan relations?
 - ☐ Results from wrong model
 - " Omit <u>n(j,t)</u>
 - "Include firms' characteristics
 - " Compute the difference in predicted change of ΔLOAN(I,j,t)

4. Empirical Strategy (3)

Firm-level estimation

 \square FIRM(j,t) = \triangle loan(j,t) or \triangle INVESTMENTRATIO(j,t)

$$FIRM(j,t) = \alpha_1 \overline{BCAP}(j,t-1) + \alpha_2 \overline{BCAP}(j,t-1)GDPGROWTH(t)$$

$$+\alpha_2\overline{BCAP}(j, t-1)POLICY(t) + YEAR(t) + \lambda F_CHAR(j, t-1) + \epsilon(t)$$

Accounting for e.g., loan demand

Main interest

$$FIRM(j,t) = \alpha_1 \overline{BLIQ}(j,t-1) + \alpha_2 \overline{BLIQ}(j,t-1)GDPGROWTH(t)$$

$$+\alpha_2\overline{\mathrm{BLIQ}}(j,t-1)\mathrm{POLICY}(t) + \mathrm{YEAR}(t) + \lambda \mathbf{F_CHAR}(j,t-1) + \epsilon(t)$$

5. Empirical Analyses (1)

- Three hypotheses
 - ☐ <u>Hypothesis 1</u>: Banks with a higher <u>BTETA</u>, <u>REGCAP</u>, <u>or BLIQ</u> provide larger amounts of loans
 - □ Hypothesis 2: The positive marginal impact of BTETA, REGCAP, and BLIQ becomes smaller (larger) when GDPGROWTH is higher (lower)
 - □ <u>Hypothesis</u> 3: The positive marginal impact of BTETA, REGCAP, and BLIQ becomes smaller (larger) when **POLRATE_DOWN**, **QE_LOOSE**, and/or **MPLOOSE** take a value of one (**POLRATE_UP**, **QE_TIGHT**, or **MPTIGHT** take a value of one)

5. Empirical Analyses (2): Baseline Estimation

	BCAP = BTETA	BCAP = REGCAP	
Dependent Variable:	(iii)	(iii)	
LOANS(t)	Coef. SD	Coef. SD	
BSIZE(t-1)	0.124 0.007 ***	0.164 0.012 ***	
BROA(t-1)	1.354 0.177 ***	1.416 0.190 ***	
BJGB(t-1)	-0.352 0.057 ***	-0.717 0.084 ***	
BLOCALBOND(t-1)	-0.353 0.119 ***	-0.133 0.187	
BLTD(t-1)	0.020 0.008 **	0.016 0.015	
BCAP(t-1)	1.759 0.511	0.016 0.005	
BLIQ(i-1)	0.213 0.095	0.382 0.186	
$BCAP(t-1) \times GDPGROWTH(t)$	-14.452 5.557	-0.216 0.055	
BCAP(t-1)×POLRATE_UP(t)	-1.201 0.519 **	0.002 0.005	
BCAP(t-1) × POLKATE_DOWN(t) = BCAP(t-1) × QE_LOOSENING(t)	-1,221 0.301 -0.858 0.545	-0.009 0.005	
BCAP(t-1)×QE_TIGHTENING(t)	-1.382 0.639 **	-0.029 0.005 ""	
	1:502 0:057	0.0000	
BLIQ(t-1) × GDPGROWTH(t)	-7.395 0.881	-5.781 1.728	
$BLIQ(t-1) \times POLRATE_UP(t)$	-0.065 0.089	-0.208 0.186	
$BLIQ(t-1) \times POLRATE_DOWN(t)$	-0.073 0.086	-0.198 0.182	
$BLIQ(t-1)\times QE_LOOSENING(t)$	-0.276 0.110 **	-0.298 0.182	
BLIQ(t-1)×QE_TIGHTENING(t)	0.513 0.204 **	0.504 0.244 "	
CONSTANT	0.032 0.005 ***	0.087 0.016 ***	
Year Effect	Yes	Yes	
Firm Time-Variant FE	Yes	Yes	
Bank-Level Time-Invariant FE	Yes	Yes	H3
Match-Level Time-Invariant FE	Yes	Yes	
Number of Obs.	299,196	156,722	H3 (Exi
Number of Groups	52,109	40,374	(-//
F-Value	13.03	14.34	
R-Squared (Overall)	0.0009	0.0018	

H1 supported

H2 supported

H3 supported

Not robust in other specification

H2 supported

H3 supported (Exit from QE)

 $17_{/25}$

5. Empirical Analyses (3): Quantitative Impacts

- BLIQ↓ by 1 Std. (0.068) in t-1
 - ☐ GDPGROWTH = 0 & No Change in monetary policy in year t
 - " $\Delta LOAN(i,j,t)$ is smaller by 0.382 × (0.068) = 2.6%
 - ⇔ Sample mean of ΔLOAN(i,j,t) is -0.3%
 - \Leftrightarrow 7% of the standard deviation of Δ LOAN(i,j,t) (48.4%)
 - ☐ GDPGROWTH = -0.02 & No Change in monetary policy in t
 - " Δ LOAN(i,j,t) is smaller by 3.4%
 - ☐ GDPGROWTH = -0.02 & QETIGHT=1 in t
 - " Δ LOAN(i,j,t) is smaller by <u>6.0%</u>
 - ☐ The impact of bank liquidity more than doubles when quantitative easing is exited under economic downturns

5. Empirical Analyses (3)': Quantitative Impacts

■ REGCAP \downarrow by 1 Std. (2.671%) in year t-1

☐ GDPGROWTH = 0 & No Change in monetary policy in year t

" Δ LOAN(i,j,t) is smaller by 4.3%

"The quantitative impact of bank capital is economically sizable and comparable to that of bank liquidity

☐ GDPGROWTH = -0.02 & No Change in monetary policy in t

" Δ LOAN(i,j,t) is smaller by 5.4%

5. Empirical Analyses (4): Quantifying the Bias

Our model vs. Wrong model

 \square Comparing the impact of 1 STD \downarrow (-0.068) in bank liquidity

☐ Zero GDP growth and BOJ tightened monetary policy

 \Leftrightarrow True model: 0.695 × (-0.068)+0.288 × (-0.068) × 1 = \triangle 6.7%

 \Leftrightarrow Wrong model: $0 \times (-0.068) + 0.375 \times (-0.068) \times 1 = <math>\triangle 2.6\%$

BCAP = REGCAP	Not Controlling for Loan Demand	Controlling for Loan Demand		
Dependent Variable:	With Firm Characteristics	(From Table 6)		
LOANS(t)	Coef. SD	Coef. SD		
BLIQ(t-1)	0.102 0.111	0.695 0.128 ***		
BLIQ(t-1)×GDPGROWTH(t) BLIQ(t-1)×MPTIGHTENING(t)	-1.413 2.023 0.378 0.120 ***	-1.849 2.523 0.288 0.146 **		

5. Empirical Analyses (5): Firm-Level Results

■ Average levels of BLIQ and BCAP among lender banks

BCAP = REGCAP	(i) Δ Borr	owing (t)	(iv) Investment Ratio (t)		
	Full sample	FPBR>Median	Full sample	FPBR>Median	
	Coef.	Coef.	Coef.	Coef.	
BLIQ(t-1)	0.062	0.237	0.100	0.281	
BLIQ(t-1)×GDPGROWTH(t)	-5.959 **	-8.247 **	-1.484	-6.412 **	
BLIQ(t-1)×MPTIGHTENING(t)	0.172	0.311 *	-0.015	0.102	
FPBR(t-1)	3.14E-03 ***	2.07E-03 ""	3.92E-03 ***	2.64E-03	
$FPBR_SQ(t-1)$	-4.12E-06 ***	-3.15E-06 ***	-3.32E-06 **	-2.10E-06 *	
FSIZE(t-1)	-0.187 ***	-0.283 ***	-0.315 ***	-0.492 ***	
FROA(t-1)	0.832 ***	1.350 ***	0.482 ***	0.913 ***	
FTANGIBLE(t-1)	0.177 **	***	-1.611 ***	-2.121 ***	
CONSTANT	1.898 ***	0.206	4.159 ***	6.294 ***	

6. Summary

- Banks' characteristics matter
- Banks' balance sheet channel exists
- Sizable endogeneity bias
- Firms whose banks are less well capitalized or less liquid
 - Obtain <u>fewer loans</u> in a recession
 - ☐ Pronounced for firms w/ better investment opportunities
- Firms w/ better investment opportunities tend to invest more
 - When their lender banks are more liquid
 - ☐ This link is stronger during an economic downturn
 - ⇔ Bank balance sheet channel has a significant impact

7. What's Next?

■ Future studies:

☐ Study the extensive margin of relations (i.e., initiation and termination) in the same framework?

☐ How about <u>unlisted firms</u> (e.g., BSBSA with COSMOS2)?

□Other financial relations (e.g., <u>Venture Firm & VC</u>)?

Appendix

X1. Empirical Analyses: MP Variables

	BCAP = BTETA	BCAP = REGCAP	$\overline{BCAP = BTETA}$	BCAP = REGCAP	
Dependent Variable:	(iii) REL	AX (iii)	(iii) TIG	i HT (iii)	
LOANS(t)	Coef. SD	Coef. SD	Coef. SD	Coef. SD	
BSIZE(t-1)	0.123 0.007 ***	0.168 0.012 ***	0.124 0.007 ***	0.167 0.012 ***	
BROA(t-1)	1.373 0.176 ***	1.476 0.189 ***	1.372 0.176 ***	1.474 0.189 ***	
BJGB(t-1)	-0.374 0.056 ***	-0.667 0.081 ***	-0.378 0.056 ***	-0.655 0.080 ***	
BLOCALBOND(t-1)	-0.366 0.119 ***	-0.139 0.186	-0.370 0.119 ***	-0.151 0.186	
BLTD(t-1)	$0.021 \ \ 0.008$ ***	0.022 0.014	$0.022 \ \ 0.008$ ***	0.023 0.014	
BCAP(t-1)	0.530 0.277	0.006 0.003	0.642 0.174 ***	0.005 0.001	
BLIQ(t-1)	0.204 0.058 """	0.373 0.091 ***	0.118 0.034 ***	0.156 0.051 ""	
$BCAP(t-1) \times GDPGROWTH(t)$	-12.200 5.645	-0.1 60 0.051	-8.514 5.450	-0.121_0.050	
$BCAP(t-1) \times MPLOOSENING(t)$	0.057 0.261	-0.001 0.002	-0.516 0.267 *	-0.002 0.002	
$BLIQ(t-1)\times GDPGROWTH(t)$	-7.346 0.872	-6.103 1.732	7.1000.828	590J 1.707 ^{***}	
$BLIQ(t-1) \times MPLOOSENING(t)$	-0.086 0.046	-0.2200.080	0.081 0.048	0.221 0.086	
CONSTANT	0.032 0.005 ***	0.074 0.015 ***	0.032 0.005 ***	0.068 0.015 ***	
Year Effect	Yes	Yes	Yes	Yes	
Firm Time-Variant FE	Yes	Yes	Yes	Yes	
Bank-Level Time-Invariant FE	Yes	Yes	Yes	Yes	
Match-Level Time-Invariant FE	Yes	Yes	Yes	Yes	
Number of Obs.	299,196	156,722	299,196	156,722	
Number of Groups	52,109	40,374	52,109	40,374	
F-Value	14.36	14.77	14.42	14.71	
R-Squared (Overall)	0.0009	0.0016	0.0009	0.0016	

X2. Empirical Analyses: Subsample by Periods

DCAD DECCAD	(;;)	<i>t</i>			
BCAP = REGCAP	(i) 1993-		(ii) t= 2001-2010		
Dependent Variable:					
LOANS(t)	Coef. SD	Coef. SD	Coef. SD	Coef. SD	
BSIZE(t-1)	0.180 0.014 ***	0.180 0.014 ***	0.232 0.026 ***	0.225 0.026 ***	
BROA(t-1)	1.422 0.200 ***	1.422 0.200 ***	2.348 0.379 ***	2.321 0.379 ***	
BJGB(t-1)	-0.582 0.096 ***	-0.582 0.096 ***	-1.279 0.146 ***	-1.265 0.146 ***	
BLOCALBOND(t-1)	-0.365 0.218 *	-0.365 0.218 *	0.194 0.373	0.164 0.373	
BLTD(t-1)	0.000 0.016	0.000 0.016	0.083 0.052	0.075 0.052	
BCAP(t-1)	0.006 0.004	0.000 0.002	0.017 0.004 ***	0.015 0.002 ***	
BLIQ(t-1)	0.159 0.112	0.032 0.057	0.937 0.166 ***	0.695 0.128	
$BCAP(t-1)\times GDPGROWTH(t)$	-0.031 0.088	-0.031 0.088	-0.312 0.058	-0.262 0.056	
$BCAP(t-1) \times MPLOOSENING(t)$	-0.006 0.004		-0.003 0.003		
BCAP(t-1)×MPTIGHTENING(t)		0.00634 0.004		-0.003 0.003	
· ,					
$BLIQ(t-1)\times GDPGROWTH(t)$	-5.800 2.179	-5.800 2.179 """	-2.211 2.640	-1.849 2.523	
$BLIQ(t-1)\times MPLOOSENING(t)$	-0.127 0.100		-0.249 0.130		
BLIQ(t-1)×MPTIGHTENING(t)		0.127 0.100		0.288 - 0.146	
CONSTANT	0.046 0.010 ***	0.046 0.010 ***	0.092 0.015 ***	0.088 0.015 ***	
Year Effect	Yes	Yes	Yes	Yes	
Firm Time-Variant FE	Yes	Yes	Yes	Yes	
Bank-Level Time-Invariant FE	Yes	Yes	Yes	Yes	
Match-Level Time-Invariant FE	Yes	Yes	Yes	Yes	
Number of Obs.	121,	977	65,592		
Number of Groups	31,771		24,415		
F-Value	14.92	14.92	14.19	14.17	
R-Squared (Overall)	0.0014	0.0014	0.0017	0.0017	

X3. Empirical Analyses: Subsample by Firm Char

$\frac{1}{\text{BCAP}} = \text{REGCAP}$	(i) LN(To	otal Assets)	(ii) LN(Total Assets)		
Dependent Variable:	<= N	l edian	> Median		
LOANS(t)	Coef. SD	Coef. SD	Coef. SD Coef. SD		
BCAP(t-1)	0.012 0.004 ***	0.009 0.002 ***	0.004 0.003 0.001 0.002		
BLIQ(t-1)	0.473 0.141 ***	0.237 0.082 ***	0.242 0.121 ** 0.087 0.067		
BCAP(t-1)×GDPGROWTH(t)	-0.247 0.076 ***	-0.191 0.074 ***	-0.137 0.068 ** -0.109 0.066 **	*	
$BCAP(t-1) \times MPLOOSENING(t)$	-0.003 0.004		-0.003 0.003		
BCAP(t-1)×MPTIGHTENING(t)		-0.0023 0.004	0.001 0.003		
BLIQ(t-1)×GDPGROWTH(t)	-4.499 2.592 *	-4.102 2.549	-6.937 2.333 *** -6.946 2.297 [*]	***	
$BLIQ(t-1) \times MPLOOSENING(t)$	-0.243 0.123		-0.156 0.106		
$BLIQ(t-1) \times MPTIGHTENING(t)$		0.225 0.134	0.169 0.111		
CONSTANT	0.074 0.019 ***	0.071 0.019 ***	0.103 0.021 *** 0.098 0.021	***	
BCAP = REGCAP	(i) No. of Le	ender Banks /	(ii) No. of Lender Banks /		
Derii – Regerii	`	al Assets)	LN(Total Assets)		
Dependent Variable:	<= Median > Median				
LOANS(t)	Coef. SD	Coef. SD	Coef. SD Coef. SD		
BCAP(t-1)	0.007 0.004 *	0.007 0.002 ***	0.006 0.004 0.003 0.002		
BLIQ(t-1)	0.328 0.124 ***	0.178 0.070 **	0.475 0.136 *** 0.145 0.076 *		
BCAP(t-1)×GDPGROWTH(t)	-0.107 0.069	-0.086 0.067	-0.248 0.077 *** -0.187 0.075 **		
BCAP(t-1)×MPLOOSENING(t)	0.000 0.003		-0.004 0.004		
BCAP(t-1)×MPTIGHTENING(t)		-0.002 0.003	-0.002 0.004		
BLIQ(t-1)×GDPGROWTH(t)	-6.280 2.325 ***	-5.500 2.294 **	-6.485 2.597 ** -6.874 2.561 ***	*	
BLIQ(t-1)×MPLOOSENING(t)	-0.158 0.108	5.500 2.2 71	-0.327 0.119		
BLIQ(t-1)×MPTIGHTENING(t)	0.120 0.100	0.092 0.117	0.399 0.126 ***		
CONSTANT	0.054 0.021 ***	0.051 0.021 **	0.060 0.018 *** 0.058 0.018 ***	*	

<Contact Information> Comments are welcome!!!

Kaoru Hosono:

Professor

Gakushuin University, Department of Economics

E-mail: 20030014@gakushuin.ac.jp

Daisuke Miyakawa:

Associate Professor

College of Economics, Nihon University

E-mail: miyakawa.daisuke@nihon-u.ac.jp