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Abstract

Central banks of major market economies have recently adopted QE (quantitative easing),
allowing excess reserves to build up while maintaining the policy rate at very low levels. We
develop a regime-switching SVAR (structural vector autoregression) in which the monetary
policy regime, chosen by the central bank responding to economic conditions, is endogenous
and observable. The model can incorporate the exit condition for terminating QE. We then
apply the model to Japan, a country that has accumulated, by our count, 130 months of QE
as of December 2012. Our impulse response analysis yields two findings about QE. First, an
increase in reserves raises inflation and output. Second, terminating QE is not necessarily
deflationary.
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1. Introduction and Summary

Since the recent global financial crisis, central banks of major market economies have adopted

quantitative easing, or QE, which is to allow reserves held by depository institutions far above

the required level while keeping the policy rate very close to zero. This paper uses an SVAR

(structural vector autoregression) to evaluate the macroeconomic effects of QE. Estimating such a

time-series model with any accuracy is difficult because only several years have passed since the

crisis. We are thus led to examine Japan, a country that has already accumulated a history of, by

our count, 130 months of QE as of December 2012. Those 130 QE months come in three

installments, which allows us to evaluate the effect of exiting from QE as well.

Our SVAR has two monetary policy regimes: the zero-rate regime in which the policy rate is

very close to zero, and the normal regime. In Section 2, we document for Japan that bank

reserves are greater than required reserves (and often several times greater) when the policy rate

is below 0.05% (5 basis points) per year. We say that the zero-rate regime is in place if and only if

the policy rate is below this critical rate. Therefore, the regime is observable and, since reserves

are substantially higher than the required level for all months under the zero-rate regime in data,

the zero-rate regime and QE are synonymous. There are three spells of the zero-rate/QE regime:

March 1999 - July 2000, March 2001 - June 2006, and December 2008 to date. (They are indicated

by the shades in the time-series plot of the policy rate in Figure 1.) They account for the 130

months. Also documented in Section 2 is that for most of those months the BOJ (Bank of Japan)

made a stated commitment of not exiting from the zero-rate regime unless inflation is above a

certain target level. That is, the exit condition in Japan is about inflation. Our SVAR model

incorporates this exit condition.

The model is a natural extension of standard SVAR models. There are four variables,

inflation, output (measured by the output gap), the policy rate, and excess reserves, in that order.

We do not impose any structure on inflation and output dynamics, so the first two equations of

the four-variable system are reduced-form equations. The third equation is the Taylor rule that

specifies a shadow policy rate. The central bank picks the normal regime if the shadow rate is

positive. The fourth equation specifies the central bank’s supply of excess reserves in the

zero-rate regime. We incorporate the exit condition by assuming that the central bank ends the

zero-rate regime only if the shadow rate is positive and the inflation rate is above a certain target.

The implied evolution of the regime is a Markov chain. The regime is endogenous because its
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transition probabilities depend on inflation and output. The model parameters are estimated by

ML (maximum likelihood) that properly takes into account the regime endogeneity arising from

the zero lower bound and the exit condition.

We utilize the IRs (impulse responses) to describe the macroeconomic effects of various

monetary policies, including those of a change in the monetary policy regime. To describe the

effect of, for example, a cut in the policy rate in date t, we compare the the path of inflation and

output projected by the model given the baseline history up to t with the projected path given an

alternative history that differs from the baseline history only with respect to the policy rate in t.

The IR to a rate cut is the difference between those two projections (if the model were linear, the

IR would be independent of the history and proportional to the size of the policy rate change).

From our estimated IRs, we find the following.

• When the regime is the normal regime in both the baseline and alternative histories so that

there is room for rate cuts, the IR of inflation to a policy rate cut is negative for many periods.

Thus, consistent with the finding of the literature to be cited below, we observe the price

puzzle for Japan.

• Under the zero-rate regime, excess reserves increases are expansionary. That is, the IR of

inflation and output to an increase in excess reserves is positive. This, too, is consistent with

the literature’s finding.

• Exiting from the zero-rate regime (a “lift-off”) can be expansionary. That is, take the baseline

history to be a history up to t in which the regime in t is zero-rate/QE with some positive level

of excess reserves, and consider an alternative history in which the regime is normal, not QE,

with the same policy rate (of zero) but with zero excess reserves (as required by the regime). If

the excess reserve level is not too large, the IR to exiting from QE is slightly higher inflation

and higher output. In particular, if the baseline history is the observed history up to t = June

2006 when the excess reserves were only about 58% of (about 1.6 times) the required level, the

effect of terminating the zero-rate regime is expansionary.

Turning to the relation of our paper to the literature, there is a rapidly expanding literature

on the recent QE programs (called large-scale asset purchases (LSAPs)) by the U.S. Federal

Reserve. Given the small sample sizes, researchers wishing to study the macroeconomic effect of

LSAPs proceed in two steps, first documenting that LSAPs lowered longer-term interest rates and

then evaluating the effect of lower interest rates using macroeconomic models. In a recent review
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of the literature, Williams (2012) notes that there is a lot of uncertainty surrounding the existing

estimates. One reason he cites is that LSAP-induced interest rate declines may be atypical.

Were it not for the small-sample problem, time-series analysis of LSAPs would complement

nicely those model-based analyses. There are several SVAR studies about Japan’s QE that exploit

the many QE months noted above. They can be divided into three groups: (a) those assuming

the regime is observable and exogenous, (b) those with exogenous but unobservable regimes,

and (c) those (like our paper) with endogenous and observable regimes. All those studies

assume the block-recursive structure of Christiano, et. al. (1999), which orders variables by

placing non-financial variables (such as inflation and output) first, followed by monetary policy

instruments (such as the policy rate and measures of money), and financial variables (such as

stock prices and long-term interest rates). Honda et. al. (2007) and Kimura and Nakajima (2013)

fall in category (a). Using Japanese monthly data covering only the zero-rate period of 2001

through 2006 and based on SVARs that exclude the policy rate (because it is zero), Honda et. al.

(2007) find that the IR of inflation and output to an increase in reserves is positive. Kimura and

Nakajima (2013) use quarterly data from 1981 and assume two spells of the QE regime (2001:Q1 -

2006:Q1 and 2010:Q1 on). They too find the expansionary effect of excess reserve under QE.1

Falling in category (b) are Fujiwara (2006) and Inoue and Okimoto (2008). Both papers apply the

hidden-stage Markov Switching SVAR model to Japanese monthly data.2 They find that the

probability of state 2 was very high in most of the months since the late 1990s. For those months,

the IR of output to an increase in base money is positive and persistent. In contrast to those

papers, Iwata and Wu (2006) and Iwata (2010) treat the regime as observable and endogenous,

thus falling in category (c). In these two papers, the regime is necessarily endogenous because

the zero lower bound for the policy rate is imposed for all periods. Like the other papers, they

find that money is expansionary: the IR of inflation and output to the monetary base is positive.

They also find, as in some of the papers already cited, the price puzzle under the normal regime.

Because the regime is chosen by the central bank to honor the zero lower bound, or more

1Within each regime, they use the TVP-VAR (time-varying parameter VAR) model to allow coefficients and error

variances to change stochastically. There are studies on the macroeconomic effect of monetary policy of recent years in

Japan that utilize TVP-VAR. They include Nakajima, Shiratsuka, and Teranishi (2010) and Nakajima and Watanabe (2011).

They do not allow for discrete regime changes, though. For example, when the central bank enters the zero-rate regime,

the TV-VAR, ignorant of the regime change, does not shrink the coefficients in the policy rate equation immediately to

zero. This sort of shrinking is enforced in Kimura and Nakajima (2013) cited in the text.

2A precurser to these two papers is the VAR study by Miyao (2002), which, using the conventional likelihood-ratio

method, finds a structural break in 1995.
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generally, to respond to inflation and output, it seems clear that the regime should be treated as

endogenous. And, as already argued above and will be argued more fully in the next section, a

case can be made for the observability of the monetary policy regime. Our paper differs from

Iwata and Wu (2006) and Iwata (2010), both of which treat the regime as observable and

endogenous, in several respects. First, our SVAR incorporates the exit condition as well as the

zero lower bound. Second, we extend the IR analysis to accommodate regime changes. This

allows us to examine the macroeconomic effect of exiting from QE, which should be of great

interest to policymakers. As already mentioned, our paper has a surprising result on this issue.

Third, the interest rate equation in our SVAR is the Taylor rule. Most existing estimates of the

Taylor rule in Japan end the sample period at 1995 because there is little movements in the policy

rate since then. Our estimation of the Taylor rule, utilizing the full sample subject to the zero

lower bound and the exit condition, should be of independent interest.

The rest of the paper is organized as follows. In Section 2, we present the case for the

monetary policy regime observability. Section 3 describes our four-variable SVAR. Section 4

derives the ML estimator of the model, describes the monthly data, and reports our parameter

estimates. Section 5 defines IRs for our regime-switching SVAR and then displays estimated IRs

including regime-change IRs. Section 6 concludes.

2. Identifying the Zero Rate Regime

Identification by the “L”

To address the issue of whether the regime of zero policy rates can be observed, we examine the

relation between excess reserves and the policy rate. Figure 2a plots the policy rate measured by

the overnight interbank rate (called the “Call rate” in Japan) against m, the excess reserve rate

defined as the log of the ratio of the actual to required levels of reserves. The actual reserve level

for the month is defined as the average of daily balances over the reserve maintenance period

(between the 16th day of the month and the 15th day of the following month), not over the

calendar month, because that is how the amount of required reserves is calculated. Accordingly,

the policy rate for the month, to be denoted r, is the average of daily rates over the same reserve

maintenance period. Because the BOJ (Bank of Japan) recently started paying interest on

reserves, the vertical axis in the figure is not the policy rate r itself but the net policy rate r − r

where r is the rate paid on reserves (0.1% since November 2008), which is the cost of holding
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reserves for banks.

The plot in Figure 2a shows a distinct L shape. There are excess reserves (i.e., the excess

reserve rate m is positive) for all months for which the net policy rate r − r is below some very

low critical rate (below 0.05% or 5 basis points, as will be seen from Figure 2b), and no excess

reserves for most, but not all, months for which the net rate is above the critical rate. The plot

shows a few dots corresponding to low but not very low net policy rates. To examine those

exceptions more closely, Figure 2b magnifies the plot near the origin. The red horizontal line is

the critical rate of r− r = 0.05%. The triangle dots in the magnified plot, off the vertical axis, come

from two periods between spells of very low net policy rates and high levels of m. One is a brief

period of August 2000 - February 2001. The other is July 2006 - November 2008. In addition to

those triangles, there are circle dots above the red line that too are off the vertical axis. They all

come from the late 1990s when the Japanese financial system was under stress. For example,

(mt, rt − rt) = (8.9%, 0.22%) in October 1998 when the Long-Term Credit Bank went bankrupt. We

interpret those triangle and circle dots off the vertical axis and above the red line as representing

the demand for excess reserves. Banks wanted to hold reserves above the required level either

for precautionary reasons or because they were reluctant to reduce excess reserves from high

levels achieved during preceding months. On the other hand, those dots below the red line

represents the supply of excess reserves chosen by the central bank, as banks are indifferent

between any two levels of excess reserves as the cost of holding them is essentially zero.

We say that the zero-rate regime is in place if and only if the net policy rate r − r is below the

critical rate of 0.05%. Since there are no incidents of near-zero excess reserves when the net rate is

below the critical rate (see Figure 2b), the zero-rate regime is synonymous with QE (quantitative

easing), which is for the central bank to supply reserves beyond the level of required reserves.

Under our definition, there are three periods of the zero-rate regime in Japan, indicated by the

shades in Figure 1. They are:

I: March 1999 - July 2000,

II: March 2001 - June 2006 (commonly known in Japan as the “quantitative easing period”),

III: December 2008 to date.

It should be noted that the regime is defined by the net policy rate. Because the rate paid on

reserves (r) rose from 0% to 0.1% in November 2008, the policy rate (r) itself is above the critical

rate of 0.05% in zero-rate period III. Conceivably, a central bank can supply excess reserves in the
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zero-rate regime while maintaining the policy rate at high levels very close to r, although it

would not be clear why the central bank wants to do so.

The same “L” shape can be observed for the U.S, as shown in Figure 3. The difference from

Japan is that there are far fewer observations near the horizontal axis.

Are All Zero-Regime Periods Alike?

Central banks around the world take various policy actions under near-zero interest rates. It is

now standard to divide those actions into three categories: (i) setting an exit condition for

terminating the policy of maintaining very low interest rates, (ii) changing the composition of the

central bank’s balance sheet, and (iii) QE.3 We have already noted the equivalence between our

definition of the zero-rate regime and QE at least for Japan. Regarding (i), the exit condition

adopted by the BOJ concerns the inflation rate. We argue below that the BOJ made an inflation

commitment for most, if not all, of the months covered by the above three zero-rate periods. We

will also indicate, briefly, how policy actions in category (ii) can be incorporated in our model of

the next section.

Table 1 has the official statements by the BOJ’s about the exit condition that we were able to

assemble. All of those statements were made during the zero-rate periods we identified above

and they are invariably about inflation. However we were unable to find clear statements of the

exit condition for the following months in the above three ZIRP periods: (a) the very first month

of period I, (b) March 2006 - June 2006 (last four months of period II), and (c) December 2008 -

November 2009 (first several months of period III).

We could divide the zero-rate regime into two, one with and the other without the exit

condition, but doing so would greatly complicate the analysis in the rest of the paper. In our

regime-switching model of the next section, there are two regimes — a single zero-rate regime

and a “normal” regime with positive net policy rates. The model assumes that the central bank

imposed on itself the exit condition in all months during the zero-rate regime, which will, with

no further assumptions, generate a two-state Markov chain whose transition probabilities are

known functions of inflation and output.

Regarding policy actions in category (ii) above, Ueda (2012, Table 2) has a chronology of

actions (such as purchases of common stocks) taken by the BOJ. Their effect could be

incorporated in our regime-switching SVAR by including a third policy variable (in addition to

the policy rate r and the excess reserve rate m) that measures the riskiness of the central bank’s

3See, e.g., Bernanke et. al. (2004).
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balance sheet. We decided not to pursue this because of the small sample size.

3. The regime-switching SVAR

This section presents our four-variable SVAR (structural vector autoregression). A more formal

exposition of the model is in Appendix 2.

The Standard Three-Variable SVAR

As a point of departure, consider the standard three-variable SVAR in the review paper by Stock

and Watson (2001). The three variables are the monthly inflation rate from month t − 1 to t (pt),

the output gap (xt), and the policy rate (rt).4 The inflation and output equations are reduced-form

equations where the regressors are (the constant and) lagged values of all three variables. The

third equation is the Taylor rule that relates the policy rate to the contemporaneous values of

inflation and the output gap. The error term in this policy rate equation is assumed to be

uncorrelated with the errors in the reduced-form equations. This error covariance structure,

standard in the recursive VAR literature (see, e.g., Christiano, Eichenbaum, and Evans (1999)), is

a plausible restriction to make, given that our measure of the policy rate for the month is for the

reserve maintenance period from the 16th of the month to the 15th of the next month.

As is standard in the literature (see, e.g., Clarida etl. al. (1998)), we consider the Taylor rule

with interest rate smoothing. That is,

(Taylor rule) rt = re
t + vrt, re

t ≡ ρrr∗t + (1 − ρr)rt−1, r∗t ≡ α
∗

r + β∗r
′

(1×2)

πt

xt

 , vrt ∼ N(0, σ2
r ). (3.1)

Here, πt, defined as πt ≡
1

12 (pt + · · · + pt−11), is the inflation rate over the past 12 months (this

version of Taylor rule is sometimes described as “backward-looking”). If the adjustment speed

parameter ρr equals unity, then this equation reduces to the desired Taylor rule that rt = r∗t + vrt. In

Taylor’s (1993) original formulation, the vector of inflation and output coefficients β∗r is (1.5, 0.5),

and the intercept α∗r equals 1%, which is the difference between the equilibrium real interest rate

of 2% and half times the target inflation rate of 2%. We will call r∗t the desired Taylor rate.

4In Stock and Watson (2001), the three variables are inflation, the unemployment rate, and the policy rate. We have

replaced the unemployment rate by the output gap, because Okun’s law does not seem to apply for Japan.
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Introducing Regimes

The three-variable SVAR just described does not take into account the non-negativity constraint

on the policy rate. Given the interest rate rt (≥ 0) paid on reserves, the lower bound is not zero

but rt. The Taylor rule with the lower bound, which we call the censored Taylor rule, is

(censored Taylor rule) rt = max
[
re

t + vrt, rt

]
, vrt ∼ N(0, σ2

r ). (3.2)

It will turn out useful to rewrite this in an equivalent form by introducing the regime indicator st

as

(censored Taylor rule) rt =


re

t + vrt, vrt ∼ N(0, σ2
r ) if st = P,

rt if st = Z,
(3.3)

where the two regimes, P (call it the normal regime) and Z (the zero-rate regime), are defined as

st =


P if re

t + vrt ≥ rt,

Z otherwise.
(3.4)

We have thus obtained a simple regime-switching three-variable SVAR by replacing the Taylor

rule (3.1) by its censored version (3.3) (with the regime st defined by (3.4)).5

Adding m and the Exit Condition

We expand this model to capture the two aspects of the zero-rate regime discussed in the

previous section. First, the mt (defined, recall, as the log of actual to required reserve ratio) in the

zero-rate regime is supply-determined, thus qualifying as an additional monetary policy

variable. Second, the (trivial) regime evolution (3.4) needs to be modified to reflect the exit

condition.

Excess reserves are set to zero by the market in the normal regime (P) and set by the central

bank in the zero-rate regime (Z). We assume that the supply of reserves is given by

max[me
t + vmt, 0], where

me
t ≡ ρm

α∗m + β∗m
′

πt

xt


 + (1 − ρm)mt−1. (3.5)

That is,

mt =


0 if st = P,

max
[
me

t + vmt, 0
]
, vmt ∼ N(0, σ2

m) if st = Z,
(3.6)

5If the policy rate equation is not the Taylor rule but a reduced form, the model becomes one estimated in Iwata and

Wu (2004).
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The “max” operator in the supply function is needed because excess reserves cannot be negative

given the system of required reserves. We expect the function’s inflation and output coefficients

to be negative, i.e., β∗m < 0, since the central bank should increase excess reserves when deflation

worsens or when output declines.

The second extension of the model concerns the continuation of the zero-rate regime even if

the Taylor rule instructs otherwise, unless a certain exit condition is met. As was documented in

the previous section, that certain condition for the BOJ is that the twelve-month inflation rate be

above some target rate. We allow the target rate to be time-varying. More formally,

If st−1 = Z, st =


P if re

t + vrt ≥ rt and πt ≥ π + vπt︸ ︷︷ ︸
period t target inflation rate

, vπt ∼ N(0, σ2
π

),

Z otherwise.

(3.7)

We assume that the stochastic component of the target rate (vπt) is i.i.d. over time. If st−1 = P, the

inflation exit condition is mute and the central bank picks the current regime st by (3.4).

To Recapitulate

This completes our exposition of the regime-switching SVAR on four variables, pt (monthly

inflation), xt (the output gap), rt (policy rate), and mt (the excess reserve rate). The underlying

sequence of events leading up to the determination of the two policy instruments (rt,mt) can be

described as follows. At the beginning of period t, the nature draws two reduced-form errors,

one for inflation and the other for output, from a bivariate distribution. This determines (pt, xt).

The central bank then calculates re
t (defined in (3.1)) and me

t (defined in (6.1)), and draws three

policy shocks (vrt, vmt, vπt) fromN( 0
(3×1)

,


σ2

r 0 0

0 σ2
m 0

0 0 σ2
π

). The central bank can now calculate re
t + vrt

(the policy rate dictated by the Taylor rule), me
t + vmt (its quantity counterpart), and π + vπt (the

current target inflation rate). Suppose the previous regime was the normal regime (i.e., suppose

that st−1 = P). The bank picks st = P if re
t + vrt ≥ rt, and st = Z otherwise. Suppose, on the other

hand, that st−1 = Z. Then the bank terminates the zero-rate regime and picks st = P only if

re
t + vrt ≥ rt and πt ≥ π + vπt. If st = P, the bank sets rt by the Taylor rule and the market

determines mt; if st = Z, the bank sets rt at rt and mt by the reserve supply function.
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The implied regime transition matrix can be easily calculated from (3.4) and (3.7). Define

Prt ≡ Prob
(
re

t + vrt ≥ rt
)

= Φ

(
re

t − rt

σr

)
, (3.8)

Pπt ≡ Prob (πt ≥ π + vπt) = Φ

(
πt − π
σπ

)
, (3.9)

where Φ(.) is the cdf ofN(0, 1). The matrix is displayed in Table 2.

4. Estimating the Model

This section has three parts. It summarizes the derivation in Appendix 2 of the model’s

likelihood function and the data description of Appendix 1, followed by a discussion of the

estimation results.

The Likelihood Function (Summary of Appendix 2)

The model’s likelihood function has a convenient separability property. That is, the log

likelihood can be written as the sum of three parts:

log likelihood = LA(θA) + LB(θB) + LC(θC), (4.1)

where (θA,θB,θC) form the model’s parameter vector. Therefore, the ML (maximum likelihood)

estimator of each group of parameters can be obtained by maximizing the corresponding part of

the log likelihood function. The first group of parameters, θA, is the reduced-form parameters

for inflation and output. The second group, θB, is the parameters of the Taylor rule with the exit

condition appearing in (3.1) and (3.7), while the third group θC describes the reserve supply

function max[me
t + vmt, 0] appearing in (3.6). More precisely,

θB =

α∗r, β∗r
(2×1)

, ρr, σr, π, σπ

 (7 parameters), θC =

α∗m, β∗m
(2×1)

, ρm, σm

 (5 parameters). (4.2)

The first part, LA(θA), being the log likelihood of the two reduced-form equations, is entirely

standard, with the ML estimator of θA given by OLS (ordinary least squares). The ML estimator

of θC, which maximizes LC(θC), is Tobit on sample Z, thanks to the censoring implicit in the

“max” operator in the reserve supply function. However, as noted in Section 2, there are no

observations with mt = 0 in the zero-rate regime (which makes the zero-rate regime synonymous

to QE), so the Tobit estimator of θC reduces to OLS. Since the evolution of the regime does not

depend on the reserve supply shock (vmt), there is no need to correct for the endogeneity of the

regime.
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The regime endogeneity becomes relevant for the second part LB(θB), because the shocks in

the Taylor rule and the exit condition (vrt, vπt) affect the regime evolution. If the exit condition

were absent so that the censored Taylor rule (3.2) is applicable, then the ML estimator of θB that

controls the regime endogeneity is Tobit. With the exit condition, the ML estimation becomes

slightly more complicated because, as seen from Table 2, both the lower bound and the exit

condition affect to the evolution of the regime.

The Data (Summary of Appendix 1)

The model’s variables are pt (monthly inflation), xt (output gap), rt (the policy rate), and mt (the

excess reserve rate, defined as 100 times the log of the ratio of actual to required reserves). Data

on actual and required reserves for monthly reserve maintenance periods are available from the

BOJ’s website, way back to as early as 1960. Figure 4a has mt since August 1985.

The output measure underlying the monthly output gap (xt) is the Index of Industrial

Production. We apply the HP (Hodrick-Prescott) filter to the log of seasonally adjusted series to

generate the trend log output. The log seasonally adjusted output and its HP-filtered series are in

Figure 4b. It clearly shows the well-documented decline in the trend growth rate, often

described as the (ongoing) lost decade(s). The output gap is defined as 100 times the difference

between the two log series. There is a steep decline in the output gap after the Lehman crisis.

The policy rate rt for month t is the average of daily values, over the reserve maintenance

period from the 16th day of month t to the 15th day of month t + 1, of the overnight “Call” (i.e.,

interbank) rate. The Call rate used is the uncollateralized Call rate from August 1985 (when the

market was established). For months before then, we use the collateralized Call rate. The graph

of rt thus defined since January 1970 is in Figure 4c.

The inflation rate is constructed from the CPI (consumer price index). The relevant CPI

component is the so-called “core CPI” (the CPI excluding fresh food), which, as seen in Table 1, is

the price index most often mentioned in BOJ announcements. (Confusingly, the “core CPI” in the

U.S. sense, which excludes food and energy, is called the “core-core CPI”.) We made some

adjustments to remove the effect of the increase in the consumption tax rate in 1989 and 1997

before performing a seasonal adjustment (the official CPI series are not seasonally adjusted). We

also adjusted for large movements in the energy component of the CPI in 2007 and 2008. The

monthly inflation rate pt is at annual rates, 1200 times the log difference between month t and

month t − 1 values of the adjusted CPI. The twelve-month inflation rate πt is calculated as 100

times the log difference between month t and t − 12 values of the CPI, so πt = 1
12 (pt + · · · + pt−11).
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Simple statistics of the variables mentioned here are shown Table 3.

Parameter Estimates

Having described the estimation method and the data, we are ready to report the parameter

estimates. We start with θB.

Taylor rule with exit condition (θB).

Most estimates of the Taylor rule for Japan take the sample period to be between around 1980

and 1995.6 The speed of adjustment (ρr in (3.1)) is estimated to be about 7% per month and the

inflation and output gap coefficients in the desired Taylor rate ( β∗r
(2×1)

in (3.1)) are not far from

Taylor’s original formulation of (1.5, 0.5).7 The sample typically ends in 1995 because the policy

rate shows very little movements near the lower bound since then. In our ML estimation, which

can incorporate the lower bound for the policy rate, the sample period includes all the recent

months of very low policy rates.

Before reporting our estimates, we mention several issues that turned out to affect the Taylor

rule estimates. One is the choice of the first month of the sample period. This issue will be

illustrated in a moment. There are two other issues.

• (Treatment of the equilibrium real interest rate) Recall that, in the original Taylor formulation

(r∗t = 1% + 1.5πt + 0.5xt), the intercept of 1% is the equilibrium real rate of 2% minus half times

the assumed target inflation rate of 2%. The assumption of a constant real interest rate may not

be appropriate for Japan, given the growth slowdown since the early 1990s. Indeed, the Taylor

rule in Braun and Waki (2006) takes into account the decline in the real interest rate caused by

the decline in the TFP (total factor productivity) growth documented in Hayashi and Perscott

(2002). To account for the decline, we follow Okina and Shiratsuka (2002) and assume that the

equilibrium real rate equals the trend growth rate, defined as the twelve-month growth rate of

the HP-filtered output (shown in Figure 4b). The desired Taylor rate r∗t in (3.1) is now

r∗t = trend growth rate in t + α∗r + β∗r
′

(1×2)

πt

xt

 . (4.3)

The reason why the treatment of the real rate affects the speed of adjustment can be seen from

Figure 5. The green line is the original desired Taylor rate r∗t = 1% + 1.5πt + 0.5xt. Take, for

6See Miyazawa (2010) for a survey.

7See, e.g., Clarida et. al. (1998). Their estimate of ρr, based on the “forward-looking” version of the Taylor rule and the

sample pdriod of April 1979 - December 1994, is 7%.
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example, the normal period between the zero-regime period II (ending June 2006) and period

III (starting December 2008). Despite the original desired Taylor rate being almost as high as it

was during the “bubble” period around 1991, the policy rate is far lower. The ML interprets it

as extreme interest rate smoothing. The ML estimate of the speed of adjustment for the case of

constant real rates is −0.7%.

• (The quasi zero-rate regime) There is a stretch of the nearly constant policy rate at a low, but

not very low, level from September 1995 to July 1998. By our definition in Section 2, this

period is not in the zero-rate regime. Yet the policy rate was nearly constant despite the rise of

the desired Taylor rate shown in Figure 5. We decided to exclude this quasi zero-rate regime

from the sample. Perhaps the BOJ, being concerned about the very low inflation rate (see

Figure 4c), refrained from raising the policy rate dictated by the Taylor rule. The exclusion of

this period raises the ML estimate of ρr from 4.9% to 6.0%.

Table 4 has our parameter estimates. Several features are worth noting.

• (the baseline estimate) Line 1 of Table 4 reports the ML estimate of our preferred specification.

The first month of the sample is September 1985, the earliest month for which the policy rate

can be calculated from the daily data on the uncollateralized Call rate. As just mentioned, the

speed of adjustment per month is 6.0%. The inflation and output coefficients in the desired

Taylor rate are estimated to be (1.68, 0.23), not very far from Taylor’s original formulation of

(1.5, 0.5). The t-values indicate that those three parameters are sharply estimated by ML. The

mean of the time-varying target inflation rate affecting the exit condition is mere 0.22%. The

desired Taylor rate implied by the ML estimate in Line 1 is shown in red in Figure 5.

• (sensitivity to the starting month) The next four lines, lines 2-5, show the sensitivity (or lack

thereof) of the estimates to the starting month. The two starting months in line 2 and 3,

November 1978 and May 1980, are chosen deliberately. As can be seen from Figure 4c, the

month of November 1978 is shortly before the rise in the inflation rate brought about by the

second oil crisis. The other starting month (May 1980) is when the inflation rate peaked. The

inflation coefficient for this starting month is negative. The point of line 4 and 5 estimates is

that the choice of the starting month does not greatly affect the parameter estimates as long as

it is after the second oil shock.

• (effect of ignoring the exit condition) It is instructive to compare the ML estimates, which

incorporates the exit condition, to the Tobit estimate shown in Line 6 of the table, which
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doesn’t. Going back to Figure 5, focus, for example, on the zero-rate period II (March 2001 -

June 2006). The desired Taylor rate implied by the Line 1 ML estimates, shown in red, crosses

the horizontal line from below in the middle of the period. The zero-rate regime was not

terminated when the desired rate r∗t , hence the shadow Taylor rate re
t , turned from negative to

positive then.8 This is of course due to the exit condition, but Tobit, not being informed of the

condition, take it to be interest rate smoothing. Hence the Tobit estimate of the speed of

adjustment ρr of 4.3%, shown in Line 6, is lower than the ML estimate of 6.0% shown in Line 1.

• (comparison with existing estimates) For comparison with the existing Taylor rule estimates,

Line 7 and 8 display OLS estimates for the sample period of November 1978 - August 1995

which is similar to the sample periods used in existing studies. Line 7 is for the same Taylor

rule specification of the variable real rate (set equal to the trend growth rate), while Line 8

assumes a constant real rate. Comparing these two OLS estimates, we see that the treatment

of the real rate is not as influential as when the zero-rate periods are included in the sample.

The speed of adjustment in Line 8, at 4.3%, is lower than the consensus estimate of around 7%,

perhaps because the Taylor rule here is “backward-looking”.

Inflation and output equations (θA).

Before looking at the estimates of the reduced-form parameters (θA) for inflation (pt) and output

(xt), we need to address two issues on the specification of the reduced-form equations .

• (regime dependence of the reduced form) We take the Lucas critique seriously and allow the

reduced-form equations to depend on the regime. If the private sector in period t sets (pt, xt) in

full anticipation of the period’s regime to be chosen by the central bank, the period t reduced

form should depend on the date t regime. Since we view this to be a very remote possibility,

we assume that the reduced-form coefficients and error variance and covariances in period t

depend, if at all, on the lagged regime st−1. This means that there is no need to correct for the

selectivity bias and OLS for each regime is the appropriate estimation method.

• (exclusion restrictions) In order to preserve the degrees of freedom given modest sample sizes,

we constrain the lagged policy rate (r) coefficient in the inflation and output equations to be

zero when the lagged regime is the zero-rate regime (Z). This should not be controversial. We

do the same for the lagged excess reserve rate (m) coefficient under the normal regime (P). As

8Recall from (3.1): re
t = ρrr∗t + (1 − ρr)rt−1. In the middle of a zero-rate regime, rt−1=0, so re

t = ρrr∗t .
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we noted in Section 2, m is not necessarily zero under P because banks chose to hold excess

reserves in the time of financial distress. We nevertheless exclude m from the set of

reduced-form regressors for two reasons. First, the incidents of a positive m are rare, as can be

seen from Figure 2 and Figure 4a. Second, if m were to be admitted, the VAR system for

regime P would have to include an m equation representing the demand for excess reserves

under financial distress.

Table 5 reports the OLS estimates of the reduced-form parameters θA. The lag length is set

to 1 here in order to facilitate interpretation. As might be expected from the break in the trend

growth rate shown in Figure 4b, there appears to be a structural break around 1991. That is, for

the inflation equation but not for the output equation, and for the whole sample period of

1970-2012 or 1980-2012, the Chow test detects a structural change when the break point is any

month before 1992. For this reason, we take the sample period to be January 1992 - December

2012. Several notable features are:

• Under P, the lagged r coefficient in the inflation equation is highly statistically significant. It is

quantitatively large as well — a 1 percentage point cut in the policy rate lowers inflation by

about 0.4 percentage point in the next period.9 This will be seen as the primal source of the

price puzzle in the next section’s estimated impulse response of p to r. The lagged r coefficient

in the output equation, while negative, is relatively small in absolute value and statistically

insignificant.

• Under Z, the lagged m coefficients in the inflation and output equations have the sign we

would expect: an increase in the supply of excess reserves raises inflation and output in the

next period. They are quantitatively small and not sharply determined though. The lagged m

coefficient of 0.0028 for the output equation implies that an increase of, say, 20% of reserves

raises the output gap by about 0.05 percentage points.

• In either regime, monthly inflation exhibits low persistence, as the lagged p coefficient in the

inflation equation is small in absolute value. This will explain why the IR of p exhibits little

persistence.

9The positive rt−1 coefficient may be due to the fact that rt−1 is the average over the period of the 16th of month t − 1

and the 15th of month t. If the central bank can respond to price increases of the month by raising the policy rate in the

first 15 days of the month, there will be a positive correlation between pt and rt−1. To check this, we replaced rt−1 by rt−2

in the equation for pt and found a very similar coefficient estimate (the estimate is 0.38, t = 3.7).
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Panel B shows parameter estimates when the sample ends in 1991, with and without the

1970s. Since they are before the arrival of the first period of the zero-rate regime, the regime is P.

The quantitatively large and statistically significant lagged r coefficient in the inflation equation

remains for the pre-1991 periods as well. In contrast, the persistence of monthly inflation, while

substantial if the 1970s are included, declines as the sample becomes more recent.

Reserve supply equation (θC).

Table 6 reports the estimated reserve supply equation in (3.6). The sample period is the 130

months comprising the three zero-rate periods. As alerady mentioned, the ML estimator is OLS.

The inflation and output coefficients, alhough not sharply estimated, pick up the expected sign.

The estimated inflation coefficient implies that a one percentage point decrease in the

twelve-month inflation rate brings about a 117% point increase in the desired excess reserve rate.

The speed of adjustment is slow, at 3.4% per month, so the actual monthly increase in the supply

of bank reserves is about 4.0% of required reserves.

5. Impulse Responses (IRs)

With the estimates of our model parameters in hand, we turn IRs (impulse responses). For linear

models, the IR analysis is well known since Sims (1980). Our model, however, is nonlinear

because the dynamics depends on the regime and also because the reserve supply function,

max[me
t + vmt, 0], is a nonlinear function. In this section, we state the definition of IRs for our

model and calculate IRs to changes in monetary policy variables including changes in regimes.

IRs for Nonlinear Processes in General

To motivate our definition of IRs, consider for a moment a strictly stationary process yt
(n×1)

in

general. Gallant, Rossi, and Tauchen (1993, particularly pp. 876-877) and Potter (2000) proposed

to define an IR as the difference in conditional expectations under two alternative possible

histories with one history being a perturbation of the other. The IR of the i-th variable to the j-th

variable k-period ahead is defined as

E
(
yi,t+k | y jt + δ, y j−1,t, ..., y1t,yt−1,yt−2, ...︸                                   ︷︷                                   ︸

alternative history

)
− E

(
yi,t+k | y jt, y j−1,t, ..., y1t,yt−1,yt−2, ...︸                              ︷︷                              ︸

baseline history

)
, (5.1)

where δ is the size of perturbation. The perturbation is to y, not to innovations, thus avoiding the

issue of how to define innovations for nonlinear processes. It is shown in Hamilton (1994, see his
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equation [11.4.19]) that this definition, when applied to linear processes, reduces to the standard

orthogonalized IR. Thus for the linear case the IR defined above is history-independent and

proportional to the size of perturbation.

Adaptation to Our Model: m-IR (IRs to Changes in m) and r-IR (IRs to Changes in r)

Turning to our model of Section 3, it provides a mapping from (st,yt,yt−1, ...,yt−10) (the initial

condition) and ξt+1 (the shock vector) to (st+1,yt+1), where the shock vector ξt+1 collects shocks

dated t + 1 of the system (consisting of the reduced-form shocks for (p, x) and policy shocks

(vr, vm, vπ)). Ten lags are needed because the Taylor rule in period t + 1 involves the

twelve-month inflation rate πt+1 = 1
12 (pt+1 + · · · + pt−10).

The adaptation of the IR defined above to our model is easy to see for the last variable of the

system, mt. Since the central bank has control over m only under the normal regime, we assume

st = Z and define the IR to a change in m (denoted as m-IR) as

(m-IR) Et

(
yt+k | st = Z, (mt + δm, rt, pt, xt),︸                ︷︷                ︸

yt in the alternative history

yt−1, ...,yt−10

)

− Et

(
yi,t+k | st = Z, (mt, rt, pt, xt),︸         ︷︷         ︸

yt in the baseline history

yt−1, ...,yt−10

)
, y = p, x, r,m.

(5.2)

In both the baseline and alternative histories, rt = rt because that is what is implied by the regime

st = Z.10 Several comments are in order.

• (Monte Carlo integration) The conditional expectation in the above IR definition can be

computed by simulating a large number of sample paths from t + 1 on and then taking the

average of those simulated paths. Each sample path given a draw of the shock sequence

(ξt+1, ξt+2, ...) can be generated by the mapping provided by the model of Section 3. The initial

10Stating the definition of m-IR equivalently in terms of the shocks is more complicated, but it can be done. The shocks to

the reduced-form equations for (pt, xt) are the same across the two histories. Let (v(i)
rt , v

(i)
πt, v

(i)
mt) be the vector of policy shocks

in the baseline history (for i = b) and in the alternative history (i = a). Recall that the current regime st is determined by

(3.4) if st−1 = P and by (3.7) if st−1 = Z and that mt = max[me
t +vmt, 0] when st = Z. So if st−1 = P, then (v(b)

rt , v
(b)
πt , v

(b)
mt) satisfies:

re
t + v(b)

rt < rt and mt = max[me
t + v(b)

mt , 0]. If st−1 = Z, then it satisfies: (re
t + v(b)

rt < rt or πt < π+ v(b)
πt ) and mt = max[me

t + v(b)
mt , 0].

Thus he baseline history in the definition of m-IR is the union of two histories differing with respect to st−1: one with

the (v(b)
rt , v

(b)
πt , v

(b)
mt) for st−1 = P and the other with the (v(b)

rt , v
(b)
πt , v

(b)
mt) for st−1 = Z. Because the mapping underlying the

conditional expectation is from (st,yt,yt−1, ...,yt−10) (the initial condition) and ξt+1 (the shock vector) to (st+1,yt+1), the

conditional expectation is the same across those two baseline histories. Turning to the alternative history, if st−1 = P, then

(v(a)
rt , v

(a)
πt , v

(a)
mt) satisfies: re

t + v(a)
rt < rt and mt + δm = max[me

t + v(a)
mt, 0]. If st−1 = Z, then it satisfies: (re

t + v(a)
rt < rt or πt < π+ v(a)

πt )

and mt + δm = max[me
t + v(a)

mt, 0].
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condition for generating the sample paths is given by the conditioning information in the

conditional expectation. In the IRs to be shown below, 1000 simulations are generated.

• (“Et” rather than “E”) The conditional expectation operator is subscripted by t because the

sample path depends on the sequence from t + 1 on of the interest rate paid on reserves (r) and

the trend growth rate (which appears in (4.3)). This sequence is common to all the simulations

in the Monte Carlo integration. The value of sequence at t + k is set equal to its historical value

if t + k is in the sample period and to the value at the end of the sample period if t + k is after

the sample period.

A change in the policy rate is possible only under regime P. The IR to a policy rate change,

denoted r-IR, then, is

(r-IR) Et

(
yt+k | st = P, (0, rt + δr, pt, xt),︸              ︷︷              ︸

yt in the alternative history

yt−1, ...,yt−10

)

− Et

(
yi,t+k | st = P, (0, rt, pt, xt),︸        ︷︷        ︸

yt in the baseline history

yt−1, ...,yt−10

)
, y = p, x, r,m.

(5.3)

In both the baseline and alternative histories, we have mt = 0 because it is implied by regime P.11

ZP-IR (IRs to a Change in Regime from Z to P)

So far, the perturbed variables are continuous. The above definition of the IR can also be applied

to the discrete state variable of the system, the regime st. Take as the baseline history a history

whose current regime is st = Z (so rt = rt) with some level of excess reserve rate mt, and consider

a central bank contemplating on terminating the zero-rate policy without raising the policy rate.

(ZP-IR) Et

(
yt+k | st = P, (0, rt, pt, xt),︸        ︷︷        ︸

yt in the alternative history

yt−1, ...,yt−10

)

− Et

(
yt+k | st = Z, (mt, rt, pt, xt),︸         ︷︷         ︸

yt in the baseline history

yt−1, ...,yt−10

)
, y = p, x, r,m.

(5.4)

11The equivalent definition r-IR in terms of the shocks is as follows. As in footnote 10, let (v(i)
rt , v

(i)
πt, v

(i)
mt) be the vector

of policy shocks in the baseline history (for i = b) and in the alternative history (i = a). If st−1 = P, then (v(b)
rt , v

(b)
πt , v

(b)
mt)

satisfies: re
t + v(b)

rt ≥ rt and re
t + v(b)

rt = rt, and (v(a)
rt , v

(a)
πt , v

(a)
mt) satisfies: re

t + v(a)
rt ≥ rt and re

t + v(a)
rt = rt + δr. If st−1 = Z, then

(v(b)
rt , v

(b)
πt , v

(b)
mt) satisfies: re

t + v(b)
rt ≥ rt, πt ≥ π + v(b)

πt , and re
t + v(b)

rt = rt, and (v(a)
rt , v

(a)
πt , v

(a)
mt) satisfies: re

t + v(a)
rt ≥ rt, πt ≥ π + v(a)

πt ,

and re
t + v(a)

rt = rt + δr.
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This can be rewritten as[
E
(
yt+k | st = P, (0, rt, pt, xt), ...

)
− E

(
yt+k | st = Z, (0, rt, pt, xt), ...

)]
︸                                                                             ︷︷                                                                             ︸

pure regime-change effect

−

[
E
(
yt+k | st = Z, (mt, rt, pt, xt), ...

)
− E

(
yt+k | st = Z, (0, rt, pt, xt), ...

)]
.︸                                                                                ︷︷                                                                                ︸

m-IR

(5.5)

Here, the second bracketed term is none other than the m-IR to an increase in the excess reserve

rate from 0 to mt. The first bracketed term is what should be called the pure regime-change effect.

Some Analytics on the Impact Effect

In general, the IR thus defined satisfies neither state independence nor the proportionality to the

perturbation size. The exception is the impact effect on (p, x), namely the IR for k = 1 (one period

ahead). This is because (pt+1, xt+1) depends linearly on yt and the relevant state is the lagged state

st. To provide analytical expression for the impact effect, write the reduced-form equations (with

L lags) for period t + 1 aspt+1

xt+1

 = c(st)
(2×1)

+

L∑
`=1

φ(`)
p (st)
(2×1)

pt−`+1 +

L∑
`=1

φ(`)
x (st)
(2×1)

xt−`+1 +

L∑
`=1

φ(`)
r (st)
(2×1)

rt−`+1 +

L∑
`=1

φ(`)
m (st)
(2×1)

mt−`+1 + εt+1
(2×1)

. (5.6)

Clearly, for the m-IRs of (5.2) and r-IRs of (5.3),m-IR of pt+1

m-IR of xt+1

 = φ(1)
m (Z) δm,

r-IR of pt+1

r-IR of xt+1

 = φ(1)
r (P) δr. (5.7)

Regarding the pure regime-change component of the ZP-IR, since the only difference is in st and

since the reduced-form coefficients for (pt+1, xt+1) depend on st, the pure regime-change effect on

impact isZP-IR of pt+1

ZP-IR of xt+1

 = [c(P) − c(Z)] +

L∑
`=1

[
φ(`)

p (P) −φ(`)
p (Z)

]
pt−`+1 +

L∑
`=1

[
φ(`)

x (P) −φ(`)
x (Z)

]
xt−`+1

+

L∑
`=1

[
φ(`)

r (P) −φ(`)
r (Z)

]
rt−`+1 +

L∑
`=1

[
φ(`)

m (P) −φ(`)
m (Z)

]
mt−`+1.

(5.8)

For the case of L = 1 (just one lag), Table 5 has the estimated reduced-form coefficients. The

estimated φ(1)
m (Z) is (0.0016, 0.0028)′, so the impact effect of an increase in excess reserves (so

δm > 0) is positive for both inflation (p) and output (x). The estimated φ(1)
r (P) is (0.39,−0.10)′, so

the impact effect of a cut in the policy rate (with δr < 0) for inflation is to lower it. Turning to the

impact effect of ZP-IR, the first term in brackets on the right-hand-side of (5.8), c(P) − c(Z), is

20



(−0.23 + 0.60,−0.00 + 0.23)′ = (0.37, 0.23)′. Thus the effect of terminating the zero-rate regime on

impact can be positive for both inflation and output if the rest of the terms on the right-hand-side

of (5.8) are small relative to c(P) − c(Z).

Estimated IRs

We now report our estimate of IRs. To keep the number of parameters at a minimum, we set the

lag length L to one, so the estimated reduced-form equations are as in Table 5.

m-IRs

Before displaying the IRs to an increase in m under Z given by (5.2), we first show the

conventional IRs that assume no regime change from Z. That is, the inflation and output

dynamics are given by the reduced-form coefficients shown in Panel A of Table 5 for regime Z

and m is given by the reserve supply equation mt+k = max[me
t+k + vm,t+k, 0] (whose parameter

estimates are in Table 6) for all horizon k. Additional features are:

• The base period when the perturbation occurs is taken to be February 2004 (when the excess

reserve rate m is largest), although the IR does not depend very much on the choice of the base

period (it would not depend on the choice of base period at all if the reserve supply equation

for t + k were mt+k = me
t+k + vm,t+k).

• The perturbation size δm is chosen so that its ratio to the estimated standard deviation of vmt

equals the ratio of δr to the estimated standard deviation of vrt. We will set δr = −1% for the

r-IRs below, so δm = 73.3%.

• We obtain the error band for the IR by a Monte Carlo method. That is, we first generate a

sample (of size 100) of the parameter vector from the estimated asymptotic distribution.12 For

each draw of the parameter vector, we calculate the IR by the Monte Carlo integration

described earlier. Finally, we pick the 84 and 16 percentiles for each horizon (so the coverage

rate is 68%, corresponding to one-standard error bands).13

12Let Avar(θ̂T) be the asymptotic variance of the estimator and let ̂Avar(θ̂T) its consistent estimator. Each draw is done

by generating a random vector fromN
(
0, 1

T
̂Avar(θ̂T)

)
and adding the vector to θ̂T .

13For a fraction of the parameter draws, the IRs didn’t converge to zero as k increases. Let IR(i, k) be the k-period ahead

IR of variable i and let n be the IR horizon. For each i, define v1i ≡
∑`

k=1(IR(i, k))2 and v2i ≡
∑n

k=`+1(IR(i, k))2 where ` is the

largest integer not exceeding 0.8n. We exclude the IRs for which min v2i/v1i > 0.1, before identifying the 84% and 16%

percentiles. We set n = 120.
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Figure 6a displays the m-IRs of (p, x, r,m) to an increase in mt of 73.3 percentage points for t =

February 2004 when mt = 185%, corresponding to the actual reserve amount of 27.7 trillion yen

(about $280 billion), about 6.4 times the required amount of 4.4 trillion yen. Thus a perturbation

of 73.3 percentage points implies increasing actual reserves from 27.7 trillion to 57.7

(= 27.7 × exp(0.733)) trillion yen. As shown of the panel for r of the figure, the m-IR of r (to m) is

zero for all k because the regime is assumed to be Z for all future periods. The response of the

output gap (x) builds on the impact effect, peaking at about 1.3% at k = 15 months. In contrast,

for monthly inflation (p), because of the lack of persistence noted in reference to Table 5, the peak

response is 0.13 (percent per year) at k = 3. These features are also found in Honda et. al. (2007,

Figure 2).

The m-IRs shown in Figure 6b differ from those in Figure 6a in that the regime is

endogenous. Because the regime can change from Z to P, the IR of the policy rate (r) gradually

rises from 0. The average duration of the initial regime of Z is 25 months with the perturbation

and 32 months without. The duration is shorter with the increase in m because the expansionary

monetary policy raises future inflation and output, making the zero-rate regime less likely. This

is why the m-IR turns negative after several months. The response of x is substantially weaker

than when the regime is fixed at Z: the peak response of 0.8% occurs at k = 12. As implied by the

analytics above, the impact effect on (pt+1, xt+1) is the same as in Figure 6a because the lagged

regime at t + 1 is Z in all sample paths.

r-IRs

We now turn the r-IRs given by (5.3) for a 1 percentage point policy rate cuts (with δr = −1%).

Figure 6c is for the base period of t = January 1993, when the actual policy rate was 3.6% and

hence the 1 percentage point rate cut would not have hit the zero lower bound. The price puzzle

emerges: the r-IR of p to the rate cut is negative. It is significantly negative (the error band does

not include 0) for nearly 3 years. In contrast, the output effect of the rate cut is positive. The peak

of 0.6% of the output response occurs in about 1 and half years, at k = 15 months. The r-IRs of m

rises from 0 eventually (because the regime is endogenous), but not immediately. Because of the

strength of the price puzzle, the average duration of the regime (P) in the base period is shorter

with the rate cut (32 months) than without (38 months).

ZP-IRs

In the next figure, Figure 6d, the base period is t = February 2004, the same as in Figures 6a and

6b. The question we ask now is, what would have happened if the BOJ terminated the zero-rate
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regime at the peak of QE? As shown in the panel for m in Figure 6d, there is a precipitous decline

in m in the base period from mt = 185% to zero. The m-IR component of ZP-IR shown in (5.5) is

large accordingly. The policy rate starts to rise immediately because the zero-regime has been

terminated. Due to the depressing effect of the precipitous decline in m and also the rate increase,

the output gap steadily declines, with a trough of −2.0% at k = 15. Except for the impact effect,

the response of inflation (p) is negative, as might be expected.

To see to what extent the PZ-IR shown in Figure 6d is due to the deflationary effect of m-IR

to the precipitous decline in m, we change the base period to June 2006, the last month of the

second spell of the zero-rate regime. By then mt declined from the peak in February 2004 of

mt = 185% (6.4 times excess reserves) to mt = 46% (1.6 times excess reserves). The estiamted

ZP-IRs are in Figure 6e. The panel for m reflects the much smaller decline from 46% to zero. As

in Figure 6d, the policy rate rises. Very different are the output and inflation response. Instead of

sinking eventually to about −2.0%, the output gap rises and remains in the positive territory for

the first 19 months. The error band is wide enough to include the horizontal line, so the output

effect is not significant though. The impact effect of inflation (at k = 1) is positive (at 0.34%), but

unlike in Figure 6d, inflation ramains positive for most of the 60-month horizon. The

deflationary effect on output and inflation (except for the impact effect) shown in Figure 6d is

due to the m-IR to the precipitous decline in m.

6. Conclusion

We have constructed a regime-dependent SVAR model in which the regime is determined by the

central bank responding to economic conditions. The model was used to study the dynamic

effect of not only the policy rate changes but also changes in the reserve supply. It can further be

used to study the effect of regime changes engineered by the central bank. Several conclusions

emerge.

• We have estimated the Taylor rule for Japan on the sample period including the recent period

of low interest rates. It indicates that the desired policy rate satisfies the Taylor principle,

provided that the low equilibrium real interest rate during the (ongoing) lost decades is taken

into account.

• The inflation and output dynamics in the lost decades (since 1992) seems different from

previous periods, with far less persistence in the inflation rate.
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• Our IR (impulse response) analysis indicates that a cut in the policy rate lowers inflation and

raises output. Thus, consistent with the existing Japanese literature, the price puzzle is

observed for Japan as well.

• An increase in the reserve supply under QE raises both inflation and output. The significance

of this result relative to the existing Japanese literature is that this conclusion is obtained while

the regime endogeneity is taken into account. The effect is substantially smaller if the regime

endogeneity is taken into account.

• The effect of exiting from the zero-rate regime on inflation and output depends on the size of

excess reserves at the time of regime change. If the exit took place in February 2004, when the

ratio of excess to required reserves was 6.4, the output gap would have eventually declined by

2 percentage points, while the inflation rate would have declined only slightly. If the exit took

place in June 2006, when the ratio is only 1.6, both inflation and output would have risen.

24



References

Bernanke, B. S., V. R. Reinhart (2004): “Conducting Monetary Policy at Very Low Short-Term
Interest Rates”, American Economic Review, Papers and Proceedings May, pp. 85-90.

Braun, R. Andon, and Y, Waki (2006): ”Monetary Policy During Japan’s Lost Decade”, Japanese
Economic Review, Vol. 52, No. 2, pp. 324-344.

Christiano, Lawrence, Martin Enchenbaum, and Charles Evans (1999): “Monetary Policy
Shocks: What Have We Learned and to What End?”, in John B. Taylor and Michael Woodford
eds., Handbook of Macroeconomics Volume 1A, Amsterdam: Elsevier Science Ltd., pp. 65-148.

Clarida, Richard, Jordi Gali, and Mark Gertler (1998): ”Monetary Policy Rules in Practice: Some
International Evidence”, European Economic Review, 42, pp. 1033-1067.

Gallant, Ronald, Peter Rossi, and George Tauchen (1993): Nonlinear Dynamic Structures.
Econometrica 61, pp. 871-907.

Hamilton, James (1994): Time Series Analysis, Princeton University Press.

Hayashi, F. and Edward C. Prescott (2002): ”Japan in the 1990s: A Lost Decade”, Review of
Economic Dynamics, 5, pp. 206-235.

Honda, Yuzo, Yoshihiro Kuroki, and Minoru Tachibana (2007): An Injection of Base Money at
Zero Interest Rates: Empirical Evidence from the Japanese Experience 20012006. Osaka
University, Discussion Papers in Economics and Business, no. 07-08.

Inoue, T. and Okimoto, T., (2008): Were there structural breaks in the effects of Japanese
monetary policy? Re-evaluating policy effects of the lost decade. J. Japanese Int. Economies 22,
pp. 320-342.

Iwata, S. and Shu Wu (2004): ”Estimating Monetary Policy Effects when Interest Rates are Close
to Zero”, Journal of Monetary Economics, 53, pp. 1395-1408.

Iwata, S. (2010): ”Monetary Policy and the Term Structure of Interest Rates When Short-Term
Rates are Close to Zero”, Monetary and Economic Studies, November, pp. 59-77.

Kitagawa, G. and Gersch, W. (1984): ”A Smoothness Priors-State Space Modeling of Time Series
with Trend and Seasonality”, Journal of the American Statistical Association, 79, pp. 378 - 389.

Miyazawa, K. (2010): ”The Taylor rule in Japan” (in Japanese), Financial Review, February, pp.
82-96.

Miyao, R. (2002): ”The Effects of Monetary Policy in Japan”, Journal of Money, Credit, and Banking
34, No. 2, pp. 376-392.

Kimura, T. and J. Nakajima (2013): ”Identifying Conventional and Unconventional Monetary
Policy Shocks: A Latent Threshold Approach”, mimeo, April.

25



Nakajima, J., S. Shiratsuka, and Y. Teranishi (2010): ”The Effects of Monetary Policy
Commitment: Evidence from Time-Varying parameter VAR Analysis”, IMES Discussion
Paper Series 2010-E-6, Bank of Japan, March.

Nakajima, J. and T. Watanabe (2011): ”Bayesian Analysis of Time-Varying Parameter Vector
Autoregressive model with the Ordering of Variables for the Japanese Economy and
Monetary Policy”, mimeo, Institute of Economic Research, Hitotsubashi University, July.

Okina, K. and S. Shiratsuka (2002): ”Asset Price Bubbles, Price Stability, and Monetary Policy:
Japan’s Experience”, Monetary and Economic Studies, Institute for Monetary and Economic
Studies, Bank of Japan, 20(3), pp. 35-76.

Potter, S. (2000): ”Nonlinear Impulse Response Functions”, Journal of Economic Dynamics and
Control 24, pp. 1425-1446.

Ravin, Morten and Harald Uhlig (2002): ”On Adjusting the Hodrick-Prescott Filter for the
Frequency of Observations”, Review of Economics and Statistics, 84, pp. 371-376.

Stock, James and Mark Watson (2001): ”Vector Autoregressions”, Journal of Economic Perspectives,
15, pp. 101-115.

Taylor, John B. (1993): ”Discretion versus Policy Rules in Practice”, Carnegie-Rochester Conference
Series on Putlic Policy, 39, pp. 195-214.

Ueda, Kazuo (2012): ”The Effectiveness of Non-Traditional Monetary Policy Measures: the Case
of the Bank of Japan”, Japanese Economic Review, 63, pp. 1-22.

Williams, John C. (2012): ”The Federal Reserve’s Unconventional Policies”, FRBSF Economic
Letter 2012-34, November 13, 2012.

26



Table 1: Bank of Japan’s Statements of Exit Condition, 1999-2012

date quotes and URLs
1999.4.13 “(The Bank of Japan will) continue to supply ample funds as long as deflationary concern remains.”

(A remark by governor Hayami in a Q & A session with the press. Translation by authors.)
http://www.boj.or.jp/announcements/press/kaiken 1999/kk9904a.htm/

1999.9.21 “The Bank of Japan has been pursuing an unprecedented accommodative monetary policy and is
explicitly committed to continue this policy until deflationary concerns subside. The Bank views
the current state of the Japanese economy as having stopped deteriorating with some bright signs,
though a clear and sustainable recovery of private demand has yet to be seen.”
http://www.boj.or.jp/announcements/release 1999/k990921a.htm/

2000.7.17 “...the majority of the Policy Board views that Japan’s economy is coming to a stage where
deflationary concerns are dispelled, which the Board have clearly stated as the condition for
lifting the zero interest rate policy. At the Meeting, however, some views were expressed that
before reaching a final decision to lift the zero interest rate policy, it was desirable to ensure the
judgment on the firmness of economic conditions including employment and household income.”
http://www.boj.or.jp/announcements/release 2000/k000717b.htm/

2000.8.11 “At present, Japan’s economy is showing clearer signs of recovery, and this gradual upturn,
led mainly by business fixed investment, is likely to continue. Under such circumstances, the
downward pressure on prices stemming from weak demand has markedly receded. Considering
these developments, the Bank of Japan feels confident that Japan’s economy has reached the
stage where deflationary concern has been dispelled, the condition for lifting the zero interest rate
policy.”
http://www.boj.or.jp/en/announcements/release 2000/k000811.htm/

2001.3.19 “The new procedures for money market operations continue to be in place until the consumer
price index (excluding perishables, on a nationwide statistics) registers stably a zero percent or an
increase year on year.”
http://www.boj.or.jp/en/announcements/release 2001/k010319a.htm/

2003.10.10 “The Bank of Japan is currently committed to maintaining the quantitative easing policy until the
consumer price index (excluding fresh food, on a nationwide basis) registers stably a zero percent
or an increase year on year. The Bank emphasizes that it is firmly committed to this policy at this
juncture where there are signs of improvement in the Japanese economy.”
http://www.boj.or.jp/en/announcements/release 2003/k031010.htm/

2006.3.9 “Concerning prices, year-on-year changes in the consumer price index turned positive. Mean-
while, the output gap is gradually narrowing. Unit labor costs generally face weakening down-
ward pressures as wages began to rise amid productivity gains. Furthermore, firms and house-
holds are shifting up their expectations for inflation. In this environment, year-on-year changes
in the consumer price index are expected to remain positive. The Bank, therefore, judged that the
conditions laid out in the commitment are fulfilled.”
http://www.boj.or.jp/en/announcements/release 2006/k060309.htm/

2009.12.18 “The Policy Board does not tolerate a year-on-year rate of change in the CPI equal to or below 0
percent.”
http://www.boj.or.jp/en/announcements/release 2009/un0912c.pdf

2010.10.5 “The Bank will maintain the virtually zero interest rate policy until it judges, on the basis of
the ”understanding of medium- to long-term price stability” that price stability is in sight, on
condition that no problem will be identified in examining risk factors, including the accumulation
of financial imbalances.”
http://www.boj.or.jp/en/announcements/release 2010/k101005.pdf

2012.2.14 “The Bank will continue pursuing the powerful easing until it judges that the 1 percent goal
is in sight on the condition that the Bank does not identify any significant risk, including the
accumulation of financial imbalances, from the view point of ensuring sustainable economic
growth.”
http://www.boj.or.jp/en/announcements/release 2012/k120214a.pdf
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Table 2: Transition Matrix
HHH

HHHst−1

st P Z

P Prt 1 − Prt

Z PrtPπt 1 − PrtPπt

Note: Prt defined in (3.8). Pπt de-
fined in (3.9).

Table 3: Simple Statistics

sample period is Sept. 1985 - Dec. 2012

p
(monthly
inflation
rate, %
per year)

π (12-
month
inflation
rate, %)

x (output
gap, %

r (policy
rate, %
per year)

r − r (net
policy
rate)

m (excess
reserve
rate, %)

subsample P (sample size=198)

mean 0.8% 0.9% 1.1% 2.93% 2.93% 1.5%
std. dev. 1.7% 1.0% 4.2% 2.55% 2.55% 3.3%

max 6.0% 3.2% 10.9% 8.26% 8.26% 20.6%
min -3.9% -0.9% -8.0% 0.08% 0.08% 0.0%

subsample Z (sample size=130)

mean -0.5% -0.5% -1.8% 0.04% 0.00% 105.3%
std. dev. 1.4% 0.5% 6.1% 0.04% 0.02% 61.7%

max 4.8% 0.2% 6.8% 0.14% 0.04% 184.9%
min -4.8% -1.7% -29.5% 0.00% -0.04% 4.1%
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Table 4: Taylor Rule Estimates

Line first
month,
last
month

sample
size

equilib-
rium
real rate
includes
trend
growth?

esti-
mation
method

inflation
coeffi-
cient

output
coeffi-
cient

speed
of
adjut-
ment
(% per
month)

std.
dev.
of
error
(σr, %
per
year)

mean
of
target
infla-
tion
(π, %
per
year)

std.
dev.
of
target
infla-
tion
(σπ, %
per
year)

1 198509,
201212

293 yes ML 1.68
[5.8]

0.23
[3.0]

6.0%
[4.5]

0.22%
[18]

0.21%
[1.6]

0.15%
[1.7]

2 197811,
201212

375 yes ML 0.55
[2.8]

0.37
[3.3]

4.9%
[4.7]

0.26%
[22]

0.22%
[1.6]

0.15%
[1.7]

3 198005,
201212

357 yes ML −0.47
[−0.7]

0.48
[2.0]

2.6%
[2.3]

0.24%
[21]

0.20%
[1.6]

0.15%
[1.7]

4 198301,
201212

325 yes ML 1.48
[4.9]

0.26
[3.0]

5.0%
[4.4]

0.22%
[20]

0.21%
[1.5]

0.15%
[1.7]

5 199201,
201212

217 yes ML 1.07
[2.8]

0.11
[1.6]

5.4%
[2.6]

0.13%
[13]

0.24%
[1.7]

0.16%
[1.7]

6 198509,
201212

293 yes Tobit 3.12
[6.3]

0.32
[3.0]

4.3%
[4.0]

0.22%
[18]

7 197811,
199508

202 yes OLS 0.34
[1.1]

0.69
[3.0]

5.2%
[3.9]

0.33%
[20]

8 197811,
199508

202 no OLS 0.35
[0.8]

0.95
[2.2]

4.3%
[2.1]

0.34%
[20]

Note: t-values in brackets. The Taylor rule estimated here is displayed in (3.1). The inflation and output
coefficients are the first and second element ofs β∗r

(2×1)
. The speed of adjustment is ρr in the Taylor rule.
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Table 5: Inflation and Output Reduced Form

Panel A: sample period is January 1992 - December 2012

subsample P (set of t’s such that st−1 = P, sample size = 123)

dep. var. const. p(−1) x(−1) r(−1) m(−1) R2 SER

p −0.23
[−1.1]

0.12
[1.3]

0.021
[0.7]

0.39
[3.6]

0.16 1.43

x −0.00
[−0.0]

0.05
[0.4]

0.95
[24]

−0.10
[−0.8]

0.87 1.73

subsample Z (set of t’s such that st−1 = Z, sample size = 129)

dep. var. const. p(−1) x(−1) r(−1) m(−1) R2 SER

p −0.60
[−2.3]

0.08
[0.8]

0.02
[1.2]

0.0016
[0.8]

0.03 1.37

x −0.23
[−0.5]

0.16
[1.0]

0.90
[25]

0.0028
[0.8]

0.84 2.42

Panel B: various sample periods, all under regime P

March 1970 - December 1991 (sample size = 262)

dep. var. const. p(−1) x(−1) r(−1) R2 SER

p −0.67
[−0.9]

0.62
[12]

0.16
[2.7]

0.37
[3.0]

0.57 3.95

x 1.03
[4.1]

0.02
[1.3]

0.95
[49]

−0.16
[−4.1]

0.91 1.28

January 1980 - December 1991 (sample size = 144)

dep. var. const. p(−1) x(−1) r(−1) R2 SER

p −1.6
[−2.1]

0.33
[4.0]

0.07
[1.0]

0.47
[3.7]

0.40 2.29

x 0.30
[0.7]

0.04
[0.9]

0.91
[23]

−0.06
[−0.7]

0.83 1.32

Note: t values in brackets. p is the monthly inflation rate stated at annual
rates, x is the output gap in percents. “SER” is the standard error of the
regression, defined as the square root of the sum of squares divided by the
sample size.
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Table 6: Reserve Supply Equation

subsample Z (sample size=130)

inflation
coefficient

output
coefficient

speed of
adjut-ment
(% per
month)

std. of dev.
of error

−117
[−0.8]

−11
[−0.9]

3.4%
[1.4]

16.3%
[260]

Note: t values in brackets. The intercept is not reported. The
estimated equation is mt = max

[
me

t + vmt, 0
]
, vmt ∼ N(0, σ2

m)
where

me
t ≡ ρm

(
α∗m + β∗m

′

[
πt

xt

])
+ (1 − ρm)mt−1. (6.1)

The estimation method is Tobit. However, since mt > 0 for
all months, Tobit reduces to OLS.
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Appendix 1: Data Description

This appendix describes how the variables used in the paper — p (monthly inflation), π

(twelve-month inflation), x (output gap), r (the policy rate), r (the interest rate paid on reserves),

m (the excess reserve rate), and the trend growth rate — are derived from various data sources.

Monthly and Twelve-Month Inflation Rates (p and π)

The monthly series on the monthly inflation rate (appearing in the inflation and output

reduced-form equations) and the twelve-month inflation rate (in the Taylor rule) are constructed

from the CPI (consumer price index). The Japanese CPI is compiled by the Ministry of Internal

Affairs and Communications of the Japanese government. The overall CPI and its various

subindexes can be downloaded from the portal site of official statistics of Japan called“e-Stat”.

The URL for the CPI is

http://www.e-stat.go.jp/SG1/estat/List.do?bid=000001033702&cycode=0.

The CSV file listed first on this page has the CPI excluding fresh food from January 1970. This is

a seasonally unadjusted series and combines different base years from January 1970. For how the

Ministry combines different base years, see Section III-6 of the document (in Japanese)

downloadable from

http://www.stat.go.jp/data/cpi/2010/kaisetsu/index.htm#p3

Briefly, to combine base years of 2005 and 2010, say, the Ministry multiplies one of the series by a

factor called the “link factor” whose value is such that the two series agree on the average of

monthly values for the year 2005.

The above URL also provides seasonally adjusted series for various subindexes, but they are

available only for periods from January 2005. As explained below, we use the CPI excluding

food and energy from January 2005 that is seasonally adjusted, along with the seasonally

unadjusted index excluding fresh food, in order to construct p (monthly inflation) and π

(12-month inflation). The construction involves three steps. .

Adjustment for Consumption Tax Hikes. The consumption tax rate rose from 0% from 3% in

April 1989 and to 5% in April 1997. We compute the 12-month inflation rate from the

seasonally unadjusted index (as the log difference between the current value of the index and

the value 12 months ago) and subtract 1.2% for t = April 1989,..., March 1990 (to remove the

effect of the April 1989 tax hike) and 1.5% for t = April 1997,..., March 1998 (to remove the

effect of the April 1997 tax hike). We then calculate the index such that its implied 12-month

inflation agrees with the tax-adjusted 12-month inflation.

Seasonal Adjustment. We apply Kitagawa and Gersch’s (1984) seasonal adjustment method

that uses a state-space model, known as Decomp, via its online system

(http://ssnt.ism.ac.jp/inets2/title.html). We apply this method on the seasonally

unadjusted (but tax-adjusted) index excluding fresh food from January 1970 through
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December 2012 (42 years). We do not use the U.S. Census’s X12-ARIMA for seasonal

adjustment because it provides a poor fit in earlier periods of the 42 years.

Adjustment for the 2007-2008 Energy Prices. Let CPI1t be the seasonally adjusted CPI

excluding fresh food obtained from this operation for t = January 1970,..., December 2012. Let

CPI2t be the seasonally adjusted CPI excluding food and energy for t = January 2005,...,

December 2012 that is directly available from the above official URL. Our CPI measure (call it

CPI) is CPI1, except that we switch from CPI1 to CPI2 in October 2007 to remove the large

movement in the energy component of the CPI in 2007 and 2008. More precisely,

CPIt =

CPI1t for t = January 1970, ...,October 2007,

CPI2t ×
CPI1,October 2007
CPI2,October 2007

for t = November 2007, ...,December 2012.
(A1.1)

The monthly inflation rate for month t, pt, is calculated as pt ≡ 1200 × [log(CPIt) − log(CPIt−1)].

The 12-month inflation rate for month t, πt, is πt ≡ 100 × [log(CPIt) − log(CPIt−12)].

Excess Reserve Rate (m)

Monthly series on actual and required reserves from September 1959 on are available from the

BOJ’s portal site http://www.stat-search.boj.or.jp/index_en.html/. The value for month t

is the average of daily balances over the reserve maintenance period of the 16th day of month t to

the 15th day of month t + 1. The excess reserve rate for month t (mt) is defined as

mt ≡ 100 × [log(actual reserve balance for month t) − log(required reserve balance for month t)].

The Policy Rate (r)

The monthly time series on the policy rate from January 1970 is a concatenation of three series.

August 1985 - December 2012. We obtained daily data on the uncollateralized overnight “Call”

rate (the Japanese equivalent of the U.S. Federal Funds rate) since immediately after the

inception of the market (which is July 1985) from Nikkei (a data vendor maintained by a

subsidiary of Nihon Keizai Shinbun (the Japan Economic Daily)). The policy rate for month t, rt,

for t = August 1985,...,December 2012 is the average of the daily values over the reserve

maintenance period of the 16th of month t to the 15th of month t + 1.

October 1978 - July 1985. Daily data on the collateralized overnight “Call” rate from October

1978 are available from Nikkei. The policy rate for month t, rt, for t = October 1978,..., July 1985

is the average of the daily values over the reserve maintenance period of the 16th of month t to

the 15th of month t + 1 plus a risk premium of 7.5 basis points. The risk premium estimate of

7.5 basis points is the difference in the August 1985 reserve maintenance period average

between the uncollateralized call rate (6.305%) and the collateralized call rate (6.230%).

January 1970 - September 1978. Monthly averages (over calendar months, not over reserve

maintenance periods) of the collateralized rate are available from the above BOJ portal from

January 1960. The policy rate for month t in this period of January 1970 - September 1978 is

this monthly average for month t plus the risk premium of 7.5 basis points.
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Interest Rate paid on Reserves (r)

rt is 0% before October 2008 and 0.1% since October 2008.

Output Gap (x)

Data on the Index of Industrial Production (IP), compiled by the Ministry of Economy, Trade and

Industry of the Japanese government (METI), are available from METI’s website. The IP series

for the base year of 2005 from January 2003 on can be found in

http://www.meti.go.jp/statistics/tyo/iip/result-2.html#menu2.

The IP series that combines different base years (1980, 1985, 1990, 1995, 2000, and 2005) is

available from the same URL for January 1978 - December 2007. To link the 2005 series with the

2000 series for example, the two series are adjusted so that they agree on the average of monthly

values for January-March of 2003, not for January-December of 2005 as would be the case for the

CPI.

The two IP series, one for the base year of 2005 and the other that combines various base

years, have the same values for the common period of January 2003 - December 2007, because for

both series the value is normalized to 100 for 2005. So we simply concatenate the two series to

create the IP series for January 1978 - December 2012. For the earlier period from January 1970,

we obtained a monthly IP series from Datastream for January 1970 - December 2012. Its values

are identical to the METI series for the common period of January 1978 - December 2012. So we

decided to use the Datastream IP series for the whole period of January 1970 - December 2012.

All these series are seasonally adjusted, so there is no need for us to perform seasonal adjustment

of our own. For an official description of the IP index, go to

http://www.meti.go.jp/statistics/tyo/iip/result/pdf/ha23000j.pdf. See Section 9 of

this document for seasonal adjustment and Section 10 for how to combine the IP series with

different base years. The seasonal adjustment uses X12-ARIMA and includes adjustment for

holidays and leap years.

Let IPt be the month t value of the IP series thus obtained. We applied the HP

(Hodrick-Prescott) filter to log(IPt) (t = January 1970,..., December 2012) to obtain the log output

trend (call it log(IP∗t)) for t = January 1970,..., December 2012. The smoothness parameter for the

HP filter is 1600 × 34, which is the value recommended by Ravin and Uhlig (2002) for monthly

series. The output gap for month t, xt, is defined as xt ≡ 100 × [log(IPt) − log(IP∗t)].

Trend Growth Rate

An estimate of the trend growth rate is used as the equilibrium real interest rate in our Taylor

rule estimation. Our estimate of the trend growth rate for month t is defined as

100 × [log(IP∗t) − log(IP∗t−12)].
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Appendix 2: The Model and Derivation of the Likelihood Function

The Model

The state vector of the model consists of a vector of continuous state variables yt and a discrete

state variable st (= P,Z). The continuous state yt has the following elements:

yt
(4×1)
≡


y1t

(2×1)

rt

mt

 , y1t
(2×1)
≡

pt

xt

 , (A2.1)

where p = monthly inflation rate, x = output gap, r = policy rate, and m = excess reserve rate.

The model is a mapping from (st−1,yt−1, ...,yt−11) to (st,yt). (We need to include 11 lags of y

because of the appearance of the 12-month inflation rate in the model, see (A2.3) below.) The

mapping depends on: (i) an exogenous sequence {rt} (the interest rate paid on reserves) and the

trend growth rate (appearing in the Taylor rule), (ii) the model parameters listed in (A2.7) below,

and (iii) a shock vector (εt, vrt, vπt, vmt) (to be defined below) that are mutually and serially

independent. The mapping itself can be described recursively as follows.

(a) (y1t determined) εt is drawn fromN(0,Ω(st−1)) and y1t (the first two elements of yt) is given

by

y1t
(2×1)

= c(st−1)
(2×1)

+Φ(st−1)
(2×4)

yt−1
(4×1)

+ εt
(2×1)

, Var(εt) = Ω(st−1) (A2.2)

Here, only one lag is allowed, strictly for expositional purposes; more lags can be included

without any technical difficulties.

(b) (st determined) Given y1t and (yt−1, ...,yt−11), the central bank calculates (through

(pt, ..., pt−11, xt, rt−1))

πt ≡
1

12
(
pt + · · · + pt−11

)
, re

t ≡ αr + β′r

πt

xt

 + γrrt−1. (A2.3)

The central bank draws (vrt, vπt) fromN(0,

σ2
r 0

0 σ2
π

) (by the central bank) and st is

determined as

If st−1 = P, st =

 P if re
t + vrt ≥ rt,

Z otherwise.
(A2.4a)

If st−1 = Z, st =

 P if re
t + vrt ≥ rt and πt ≥ π + vπt,

Z otherwise.
(A2.4b)

(c) (rt determined) Given st, rt is determined as

If st = P, then rt = re
t + vrt. (A2.5a)

If st = Z, then rt = rt. (A2.5b)
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Note that rt in (A2.5a) is guaranteed to be ≥ rt because by (A2.4a) and (A2.4b) re
t + vrt ≥ rt if

st = P.

(d) (mt determined) Finally, the central bank draws vmt fromN(0, σ2
m) (by the central bank) and

mt is determined as

If st = P, then mt = 0. (A2.6a)

If st = Z, then mt = max
[
me

t + vmt, 0
]
. (A2.6b)

Here,

me
t ≡ αm + β′m

πt

xt

 + γmmt−1.

Note that me
t can be calculated from (yt−1, ...,yt−11) and y1t through (pt, ..., pt−11, xt,mt−1).

Let θ be the model’s parameter vector. It will turn out to be useful to divide into 3 groups:

θA =

(
c(s)
(2×1)

,Φ(s)
(2×4)

,Ω(s)
(2×2)

, s = P, Z
)

(13 × 2 = 26 parameters),

θB =

αr, βr
(2×1)

, γr, σr, π, σπ

 (7 parameters),

θC =

αm, βm
(2×1)

, γm, σm

 (5 parameters).

(A2.7)

There is a one-to-one mapping between the (θB,θC) in the text and the (θB,θC) here. The

mapping is given by

ρr = 1 − γr, α
∗

r = αr/ρr, β
∗

r = βr/ρr, ρm = 1 − γm, α
∗

m = αm/ρm, β
∗

m = βm/ρm. (A2.8)

Derivation of the Likelihood Function

With the mapping from (st−1,yt−1, ...,yt−11) to (st,yt) in hand, we proceed to derive the likelihood

function. The likelihood of the data is

L ≡ p
(
s1, ..., sT,y1, ...,yT | s0,y0,y−1, ...,y−10

)
. (A2.9)

Here, p(.) is the joint density-distribution function of (s1, ..., sT) and
(
y1, ...,yT

)
conditional on(

s0,y0,y−1, ...,y−10
)
. Since the distribution of {st,yt} depends on the history up to t − 1 only

through (st−1,yt−1, ...,yt−11), the usual sequential factorization yields

L =

T∏
t=1

p
(
st,yt | st−1,yt−1, ...,yt−10

)
, where xt−1 ≡

(
yt−1, ...,yt−11

)
. (A2.10)

The likelihood for period t, p
(
st,yt | st−1, xt−1

)
, can be rewritten as (recall: yt =

(
y′1t, rt,mt

)′
)

p
(
st,yt | st−1, xt−1

)
= f

(
mt, rt | st,y1t, st−1, xt−1

)
× Prob

(
st |y1t, st−1, xt−1

)
× f

(
y1t | st−1, xt−1

)
. (A2.11)

In what follows, we rewrite each of the three terms on the right hand side of this equation in

terms of the model parameters.
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The Third Term, f
(
y1t | st−1, xt−1

)
This term is entirely standard:

f
(
y1t | st−1, xt−1

)
= b

(
y1t −

(
c(st−1) +Φ(st−1)yt−1

)
;Ω(st−1)

)
, (A2.12)

where b(.;Ω) is the density of the bivariate normal with mean 0
(2×1)

and variance-covariance

matrix Ω
(2×2)

.

The Second Term, Prob
(
st |y1t, st−1, xt−1

)
This is the transition probability matrix for {st}. The probabilities depend on (re

t , πt) (which in

term can be calculated from (y1t, xt−1)). They are easy to derive and are displayed in the text. To

reproduce,
H
HHH

HHHst−1

st P Z

P Prt 1 − Prt

Z PrtPπt 1 − PrtPπt

Here,

Prt ≡ Prob
(
re

t + vrt ≥ rt | re
t
)

= Φ

(
re

t − rt

σr

)
, (A2.13)

Pπt ≡ Prob (πt ≥ π + vπt | πt) = Φ

(
πt − π
σπ

)
, (A2.14)

where Φ(.) is the cdf ofN(0, 1).

The First Term, f
(
mt, rt | st,y1t, st−1, xt−1

)
• Case: st = P. Since mt = 0 with probability 1 by (A2.6a), we have

f
(
mt, rt | st = P,y1t, st−1, xt−1

)
= f

(
rt | st = P,y1t, st−1, xt−1

)
. We can rewrite

f
(
rt | st = P,y1t, st−1, xt−1

)
as follows.

– For st−1 = P,

f (rt | st = P,y1t, st−1 = P, xt−1)

= f
(
re

t + vrt | re
t + vrt ≥ rt, re

t
)

(by (A2.4a) and (A2.5a))

=
f
(
re

t + vrt | re
t

)
Prob

(
re

t + vrt ≥ rt | re
t

) (see, e.g., Hayashi, p. 512)

=

1
σr
φ

(
vrt
σr

)
Prob

(
re

t + vrt ≥ rt | re
t

) (b/c re
t + vrt ∼ N

(
re

t , σ
2
r

)
)

=

1
σr
φ

( rt−re
t

σr

)
Prt

(with Prt ≡ Prob
(
re

t + vrt ≥ rt|re
t
)
) (A2.15)
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– For st−1 = Z,

f (rt | st = P,y1t, st−1 = Z, xt−1)

= f
(
re

t + vrt | re
t + vrt ≥ rt, πt ≥ π + vπt, re

t , πt
)

(by (A2.4b) and (A2.5a))

= f
(
re

t + vrt | re
t + vrt ≥ rt, re

t
)

(b/c vrt and vπt are independent)

=

1
σr
φ

( rt−re
t

σr

)
Prt

(as above). (A2.16)

• Case: st = Z. Since rt = rt with probability 1 by (A2.5b), we have

f
(
mt, rt | st = Z,y1t, st−1, xt−1

)
= f

(
mt | st = Z,y1t, st−1, xt−1

)
. By (A2.6b), mt = max

[
me

t + vmt, 0
]
.

So f
(
mt | st = Z,y1t, st−1, xt−1

)
is the standard Tobit likelihood:

f
(
mt | st = Z,y1t, st−1, xt−1

)
=

[
1
σm
φ

(
mt −me

t

σm

)]1(mt>0)

×

[
1 −Φ

(
me

t

σm

)]1(mt=0)

, (A2.17)

where 1(.) is the indicator function, φ(.) and Φ(.) are the density and the cdf ofN(0, 1).

Putting All Pieces Together

Putting all those pieces together, the likelihood for date t,

p
(
st,yt | st−1, xt−1

)
= f

(
mt, rt | st,y1t, st−1, xt−1

)
× Prob

(
st |y1t, st−1, xt−1

)
× f

(
y1t | st−1, xt−1

)
, can be

written as

st|st−1 f
(
mt, rt|st,y1t, st−1, xt−1

)
Prob

(
st|y1t, st−1, xt−1

)
f
(
y1t|st−1, xt−1

)
P|P

gt
Prt

Prt b
(
y1t − c(P) −Φ(P)yt−1;Ω(P)

)
P|Z

gt
Prt

PrtPπt b
(
y1t − c(Z) −Φ(Z)yt−1;Ω(Z)

)
Z|P ht 1 − Prt b

(
y1t − c(P) −Φ(P)yt−1;Ω(P)

)
Z|Z ht 1 − PrtPπt b

(
y1t − c(Z) −Φ(Z)yt−1;Ω(Z)

)
Here,

gt ≡
1
σr
φ

(
rt − re

t

σr

)
, Prt ≡ Φ

(
re

t − rt

σr

)
, Pπt ≡ Φ

(
πt − π
σπ

)
,

ht ≡

[
1
σm
φ

(
mt −me

t

σm

)]1(mt>0)

×

[
1 −Φ

(
me

t

σm

)]1(mt=0)

,

and (recall) b(.;Ω) is the density function of the bivariate normal distribution with mean 0
(2×1)

and

variance-covariance matrix Ω
(2×2)

.
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Dividing it into Pieces

Taking the log of both sides of (A2.10) with (A2.11), we obtain the log likelihood of the sample:

L ≡ log (L) =

T∑
t=1

log
[
p
(
st,yt | st−1, xt−1

)]
=

T∑
t=1

log
[

f
(
y1t | st−1, xt−1

)]
︸                          ︷︷                          ︸

=LA

+

T∑
t=1

log
[
Prob

(
st |y1t, st−1, xt−1

)]
︸                                  ︷︷                                  ︸

=L1

+

T∑
t=1

log
[

f
(
mt, rt | st,y1t, st−1, xt−1

)]
︸                                     ︷︷                                     ︸

=L2

.

(A2.18)

Taking into account the structure shown in the above table, we can rewrite (LA,L1,L2) of the log

likelihood L as

LA =

T∑
t=1

log
[
b
(
y1t − c(st−1) −Φ(st−1)yt−1;Ω(st−1)

)]
, (A2.19)

L1 =
∑
st=P

log [Prt] +
∑

st | st−1=P |Z

log [Pπt] +
∑

st | st−1=Z |P

log [1 − Prt] +
∑

st | st−1=Z |Z

log [1 − PrtPπt] , (A2.20)

L2 =
∑
st=P

[
log

(
gt
)
− log (Prt)

]
+

∑
st=Z

log [ht] . (A2.21)

The terms in L1 + L2 can be regrouped into LB and LC, as in

L = LA + LB + LC︸  ︷︷  ︸
=L1+L2

, (A2.22)

where LA is as defined above in (A2.19), and

LB =
∑
st=P

log
[
gt
]
+

∑
st | st−1=Z |P

log [1 − Prt] +
∑

st | st−1=P |Z

log [Pπt] +
∑

st | st−1=Z |Z

log [1 − PrtPπt] , (A2.23)

LC =
∑
st=Z

log [ht] (A2.24)

LA,LB,LC can be maximized separately, because L j depends only on θ j ( j = A,B,C) ((θA,θB,θC)

was defined in (A2.7) above).

As a special case, consider simplifying step (b) of the mapping above by replacing (A2.4a)

and (A2.4b) by

st =

 P if re
t + vrt ≥ rt,

Z otherwise.
(A2.25)

Namely, drop the exit condition. This is equivalent to constraining Pπt to be 1, so LB becomes

LB =
∑
st=P

log
[
gt
]
+

∑
st=Z

log [1 − Prt] , (A2.26)

which is the Tobit log likelihood function.
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Figure 1: Policy Rate in Japan, September 1985 - December 2012

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

Figure 2a: Plot of Net Policy Rate against Excess Reserve Rate
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Figure 2b: Plot of Net Policy Rate against Excess Reserve Rate, Near Origin
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Figure 3: Plot of Net Policy Rate against Excess Reserve Rate, U.S., January 1959 - December 2012
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Figure 4a: Excess Reserve Rate, August 1985 - December 2012
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Figure 4b: Log Output and Its Trend, January 1970 - December 2012
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Figure 4c: Policy Rate and 12-Month Inflation Rate, January 1970 - December 2012
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Figure 5: Policy Rate and Desired Taylor Rates, September 1985 - December 2012
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Figure 6a: m-IR (Impulse Response to m), the base period is February 2004, regime fixed at Z

0 20 40 60
−1

−0.5

0

0.5

1
Monthly Inflation (p)

%
 pe

r y
ea

r

months
0 20 40 60

−2

−1

0

1

2
Output Gap (x)

%

months

0 20 40 60
−1

−0.5

0

0.5

1
Policy Rate (r)

%
 pe

r y
ea

r

months
0 20 40 60

−50

0

50

100
Excess Reserve Rate (m)

months

%

Figure 6b: m-IR (Impulse Response to m), the base period is February 2004
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Figure 6c: r-IR (Impulse Response to r), the base period is January 1993
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Figure 6d: ZP-IR (Impulse Response to Z→ P), the base period is February 2004
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Figure 6e: ZP-IR (Impulse Response to Z→ P), the base period is June 2005
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