

ON FINANCING RETIREMENT WITH AN AGING POPULATION*

Ellen R. McGrattan and Edward C. Prescott

June 2013

* Materials available at www.minneapolisfed.org/research

A LOOMING QUESTION

- How to finance retirement consumption with
 - Populations aging
 - Constraints on government borrowing
 - Restrictions on non-distortionary taxation?
- Current system relies heavily on taxing workers' incomes

A LOOMING QUESTION

- How to finance retirement consumption with
 - Populations aging
 - Constraints on government borrowing
 - Restrictions on non-distortionary taxation?
- Current system relies heavily on taxing workers' incomes
- Is there a better system?

IS THERE A BETTER SYSTEM?

- Policy analysts increasingly advocate
 - Savings-for-retirement systems
 - Lower distortionary taxes
- Arguments for/against:
 - For: large welfare gains for future cohorts
 - Against: welfare losses for some existing cohorts

IS THERE A BETTER SYSTEM?

- Policy analysts increasingly advocate
 - Savings-for-retirement systems
 - Lower distortionary taxes
- Arguments for/against:
 - For: large welfare gains for future cohorts
 - Against: welfare losses for some existing cohorts
- Previous analyses abstract from 2 important factors...

- In OLG model—with aging population—find switch:
 - $\circ\,$ Current US system to
 - $\circ\,$ Savings-for-retirement system without capital taxes

- In OLG model—with aging population—find switch:
 - Current US system to
 - Savings-for-retirement system without capital taxes
 - \dots increases welfare of <u>all</u> current and future cohorts

- In OLG model—with aging population—find switch:
 - $\circ\,$ Current US system to
 - Savings-for-retirement system without capital taxes
 - \dots increases welfare of <u>all</u> current and future cohorts
- What's new relative to what's normally assumed?

- In OLG model–with aging population–find switch:
 - Current US system to
 - Savings-for-retirement system without capital taxes
 - \dots increases welfare of <u>all</u> current and future cohorts
- What's new relative to what's normally assumed?
 - Productive capital stock larger
 - Capital tax policy more detailed

- In OLG model—with aging population—find switch:
 - Current US system to
 - Savings-for-retirement system without capital taxes
 - \dots increases welfare of <u>all</u> current and future cohorts
- What's new relative to what's normally assumed?
 - Productive capital stock larger
 - Capital tax policy more detailed
 - \Rightarrow more private savings opportunities

PRODUCTIVE CAPITAL STOCK LARGER

- Typical estimates are ≈ 3 GNPs:
 - $\circ~{\rm Private~fixed~assets}~(2.19~{\rm GNPs})$
 - \circ Public fixed assets (0.60 GNPs)
 - \circ Consumer durables (0.31 GNPs)
- But, other stocks help finance retirement:
 - \circ Inventories (0.13 GNPs)
 - \circ Land (0.93 GNPs)
 - \circ Intangible capital (1.72 GNPs)
 - \Rightarrow about 5.9 GNPs currently available

BUSINESS TANGIBLE VS. INTANGIBLE INVESTMENT

- Our estimates found indirectly via national accounts, taxes
- Corrado, Hulten, Sichel use estimates on investments:
 - Computerized information (e.g., software)
 - Innovative property (e.g., R&D)
 - Economic competencies (e.g., brands, org. capital)
- Main findings for 2000–2003:
 - $\circ~$ Tangibles included in GDP $\approx 0.085~{\rm GDPs}$
 - $\circ~$ Intangibles included in GDP $\approx 0.024~{\rm GDPs}$
 - $\circ~$ Intangibles not included in GDP $\approx 0.093~{\rm GDPs}$

Capital Tax Policy More Detailed

- Implies higher productive capital
 - Quantities
 - Prices
- Thus, policy reform yields
 - $\circ\,$ Higher business equity and household net worth
 - More wiggle room for paying off current cohorts

Capital Tax Policy More Detailed

- Implies higher productive capital
 - \circ Quantities <u>and</u>
 - Prices
- Thus, policy reform yields
 - $\circ\,$ Higher business equity and household net worth
 - More wiggle room for paying off current cohorts

Preview of Main Findings

- Balanced growth comparison of
 - Current policy/New demographics
 - New policy/New demographics
 - \Rightarrow 20% welfare gain, 130% increase in HH net worth

• Taking into account transition, *all* cohorts gain

- Needed policies with:
 - Large debt to GDP
 e.g., Birkeland-Prescott find 5 GNPs
 - Nonsmooth capital tax rate paths
 e.g. Conesa-Garriga find oscillatory rates in [-60%, 60%]

• We restrict debt/GDP, smoothly phase out capital taxes

OUTLINE

- Theory
- National Accounts—theory and data—aligned
- Balanced growth comparisons
- Transition to proposed new policy

THEORY

Model Economy

- Discrete time, $t = 0, 1, \ldots$
- Households in OLG structure, ages $j = 1, \ldots, J$
- Businesses of two types:
 - Schedule C corporations (Sector 1)
 - \circ All other business (Sector 2)
- Government summarized by fiscal policies

Age-j Household Problem

• Choose assets a', consumption c, labor ℓ :

$$v_{j}(a,s) = \max_{a',c,\ell} \{ u(c,\ell) + \beta \sigma_{t}^{j} v_{j+1}(a',s') \}$$

s.t. $(1 + \tau_{t}^{c})c + \sigma_{t}^{j}a' = (1 + i_{t})a + (1 - \tau_{t}^{\ell})w_{t}\ell + \psi_{t}^{j}$
 $s' = F(s)$

taking as given the

 \circ prices $\{i_t, w_t\}$

- tax rates and transfers $\{\tau_t^c, \tau_t^\ell, \psi_t^j\}$
- survival probabilities $\{\sigma_t^j\}$
- \circ evolution of the aggregate state s, F(s)
- \circ age of retirement J_r , i.e., $\ell_t = 0$ if $j > J_r$

TECHNOLOGY

• Production technologies:

•
$$Y_t = Y_{1t}^{\theta_1} Y_{2t}^{\theta_2} = \text{composite final good}$$

• $Y_{it} = K_{iTt}^{\theta_{iT}} K_{iIt}^{\theta_{iI}} (\Omega_t L_{it})^{1-\theta_{iT}-\theta_{iI}}, i = 1, 2$

• Evolution of stocks and labor-augmenting technology

•
$$K_{iT,t+1} = (1 - \delta_{iT})K_{iTt} + X_{iTt}$$
 (Tangible)
• $K_{iI,t+1} = (1 - \delta_{iI})K_{iIt} + X_{iIt}$ (Intangible)
• $\Omega_{t+1} = (1 + \gamma)\Omega_t$

GOVERNMENT POLICY

- Public consumption $G_t = \phi_{Gt}$ GNP
- Public debt $B_t \leq \phi_{Bt}$ GNP
- Age-dependent lump-sum transfers $\{\psi_t^j\}$
- Tax rates $\tau = \{\tau_t^c, \tau_t^\ell, \tau_{1t}^d, \tau_{2t}^d, \tau_{1t}^\pi\}$, where
 - $\circ c = consumption$
 - $\circ \ \ell = labor (or payroll)$
 - $\circ d = distribution$
 - $\circ \pi = \text{profit}$

GOVERNMENT BUDGET CONSTRAINTS

• Evolution of debt:

$$B_{t+1} = (1+i_t)B_t + \sum_j n_t^j \psi_t^j + G_t - \tau_t^c C_t$$
$$-\tau_t^\ell w_t L_t - \tau_{1t}^\pi \Pi_{1t} - \sum_i \tau_{it}^d D_{it}$$

where profits and distributions are

Equilibrium Conditions

- Labor, capital, and goods markets clear at each date
- Household policy functions $\{a' = f_j(s)\}_j$ imply s' = F(s).
- Which implies:
 - Aggregate output: $Y = C + \sum_{i} (X_{iT} + X_{iI}) + G$
 - Aggregate assets: $A' = \sum_i V_i + B'$, or:

$$A' = \underbrace{(1 - \tau_1^d)(K'_{1T} + (1 - \tau_1^\pi)K'_{1I})}_{V_1} + \underbrace{K'_{2T} + (1 - \tau_2^d)K'_{2I}}_{V_2} + B'$$

STRATEGY FOR QUANTITATIVE ASSESSMENT

1.

2.

3.

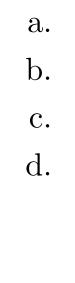
a. b. c.

d.

4.

Steps Taken

1. Revise NIPA accounts to be consistent with theory


4.

- 1. Revise NIPA accounts to be consistent with theory
- 2. Choose parameters so accounts of baseline economy match
- 3.
- a. b. c. d.
- 4.

- 1. Revise NIPA accounts to be consistent with theory
- 2. Choose parameters so accounts of baseline economy match
- 3. Compute balanced growth paths for 4 economies:

4.

- 1. Revise NIPA accounts to be consistent with theory
- 2. Choose parameters so accounts of baseline economy match
- 3. Compute balanced growth paths for 4 economies:
 - a. Current policy/Current demographics
 - b. New policy/Current demographics
 - c. Current policy/New demographics
 - d. New policy/New demographics

4.

- 1. Revise NIPA accounts to be consistent with theory
- 2. Choose parameters so accounts of baseline economy match
- 3. Compute balanced growth paths for 4 economies:
 - a. Current policy/Current demographics
 - b. New policy/Current demographics
 - c. Current policy/New demographics
 - d. New policy/New demographics
- 4. Compute transition from (a) to (c) and (a) to (d)

- 1. Revise NIPA accounts to be consistent with theory
- 2. Choose parameters so accounts of baseline economy match
- 3. Compute balanced growth paths for 4 economies:
 - a. Current policy/Current demographics
 - b. New policy/Current demographics
 - c. Current policy/New demographics
 - d. New policy/New demographics
- 4. Compute transition from (a) to (c) and (a) to (d)
- 5. Compare results to standard 1-sector, 1-capital economy

Jump to Results of Steps 1 and 2... (See Appendix A for Details)

Accounts and Factor Inputs, Avg 2000-2009

TOTAL INCOME $(Y - X_I)$	$\frac{\text{Model}}{1.000}$	$\frac{\text{Data}}{1.000}$
Labor Income (wL)	.587	.587
Capital Income $(Y - wL - X_I)$.413	.413
TOTAL PRODUCT $(C + G + X_T)$	1.000	1.000
Consumption (C)	.743	.743
Tangible investment (X_T)	.214	.214
C-corporations (X_{1T})	.070	.070
Other business (X_{2T})	.144	.144
Defense spending (G)	.043	.043
LABOR INPUT (L)	.279	.279
Capital Stock (K')	5.871	5.871
Tangible capital (K'_T)	4.153	4.153
C-corporations (K'_{1T})	.892	.892
Other business (K'_{2T})	3.261	3.261
Intangible capital (K'_I)	1.718	1.718

POLICY PARAMETERS FOR BASELINE

- $\bullet\,$ Spending and debt shares based on NIPA/FOF
 - Defense spending $\phi_G = 0.043$
 - $\circ~$ Government debt $\phi_B=0.511$
- Tax rates based on IRS/NIPA
 - $\circ\,$ Profits, sector 1, $\tau_1^{\pi}=0.4$
 - $\circ~$ Distributions, sector 1, $\tau_1^d=0.2$
 - $\circ\,$ Distributions, sector 2, $\tau_2^d=0.4$
 - $\circ~$ Payroll $\tau^\ell=0.15$
 - Consumption $\tau^c = 0.27$
- Transfer ratio based on NIPA, $\psi^r/\psi^w = 1.97$

Comparison of Balanced Growth Paths

- Current demographics
 - $\circ~1\%$ population growth
 - $\circ~3.4$ workers per retiree

- New demographics
 - $\circ~0\%$ population growth
 - \circ 2 workers per retiree

Changing Policy

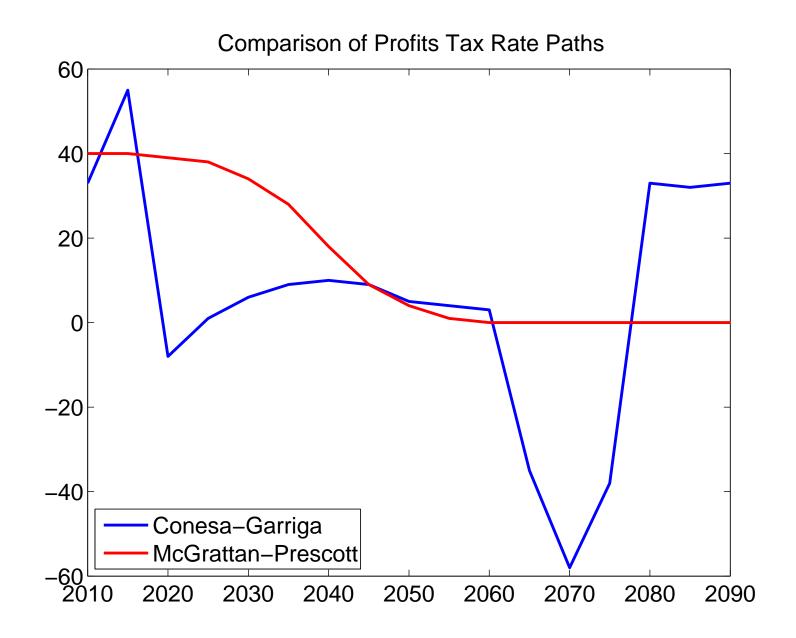
- Current policy: taxes and transfers of baseline model
- New policy:
 - Capital and payroll taxes eliminated
 - $\circ~{\rm Transfers}$ for SS and medicare eliminated

Taxes & Transfers in 4 Economies

	Current Der	Current Demographics		New Demographics	
	Current Policy	New Policy	Current Policy	New Policy	
Tax Rates					
Profits (τ_1^{π})	.40	0	.40	0	
Distributions (τ_1^d)	.20	0	.20	0	
Distributions (τ_2^{d})	.40	0	.40	0	
Payroll (τ^{ℓ})	.15	0	.18	0	
Consumption (τ^c)	.27	.28	.27	.27	
Transfer Ratio (ψ^r/ψ^w)	1.97	1	1.95	1	

Key Balanced Growth Results

	Current De	Current Demographics		New Demographics	
	Current Policy	New Policy	Current Policy	New Policy	
Per Capita GNP	.72	1.06	.67	1.01	
Govt Transfers/GNP	.37	.13	.40	.14	
To retirees	.14	.03	.19	.05	
To workers	.23	.10	.21	.09	
Labor Input	.28	.33	.25	.30	
Capital Stock/GNP	5.9	7.5	5.9	7.7	
HH Net Worth/GNP	5.4	8.0	5.4	8.2	
Welfare Gain	4%	19%	0%	20%	



TRANSITIONS

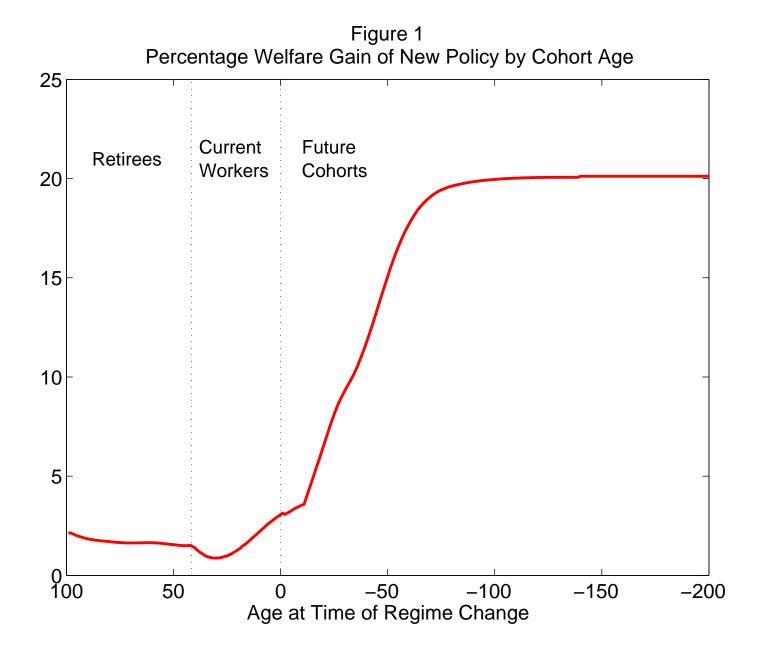
- Initial assets from baseline economy
- Spending and debt shares held constant
- Transfers set with new policies and current allocations
- Payroll and consumption tax rates immediately reset
- Capital tax rates phased out gradually

COMPARISON OF TAX RATE CHOICES

TRANSITIONS

- Initial assets from baseline economy
- Spending and debt shares held constant
- Transfers set with new policies and current allocations
- Payroll and consumption tax rates immediately reset
- Capital tax rates phased out gradually

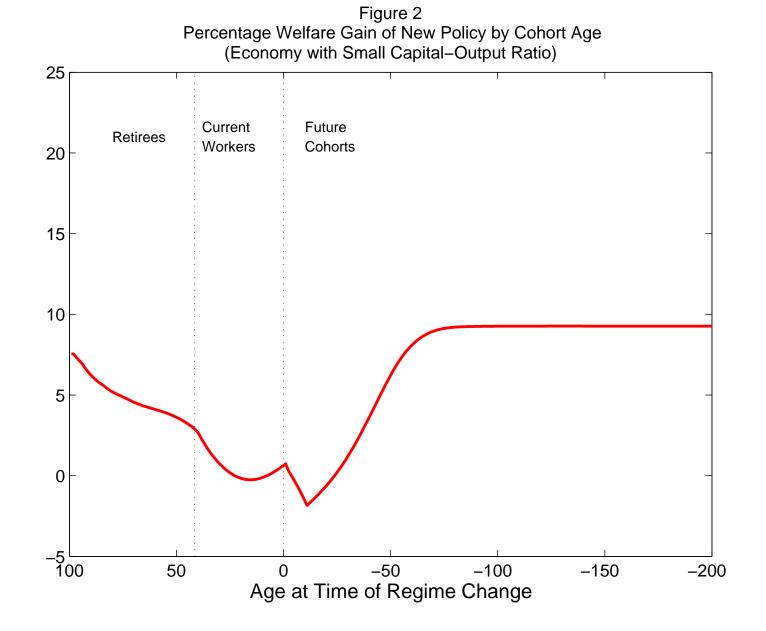
What are the consequences for the transition and welfare?


VARIABLES IN TRANSITION

- No wild oscillations in interest rates
- Large and steady rise in
 - Workers' wages ($\approx 30\%$)
 - Consumption ($\approx 30\%$)
 - GDP ($\approx 40\%$)
- Immediate rise and doubling of investments (before taxes fall)
- Immediate and modest rise in labor input ($\approx 15\%$)

(See Appendix B for Figures)

WELFARE



THE "STANDARD" ANALYSIS

- One production sector $(\theta_1 = 1)$
- One capital stock $(\theta_{1I} = 0)$
- Capital-output ratio of 3 ($\theta_{1T} = 1/3, \beta = .99, \delta = .06$)
- No taxes on distributions $(\tau_1^d = 0)$
- Transfers to retirees as in baseline $(\psi^r/\psi^w = 2.11)$

THE "STANDARD" ANALYSIS

CONCLUSIONS

- Current policy in face of an aging population:
 - Higher capital and payroll taxes to fund
 - Large entitlement programs for retirees

- We find welfare improved for all cohorts with
 - $\circ~$ Capital and payroll taxes eliminated and
 - No entitlement programs for retirees

APPENDIX A: NATIONAL ACCOUNTS AND PARAMETERS

US NIPA AND FACTOR INPUTS

TOTAL ADJUSTED INCOME, AVG 2000-2009

LABOR INCOME (wL)	.587
Compensation of employees	.534
70% of proprietors' income	.053
CAPITAL INCOME $(Y - wL - X_I)$.413
Corporate profits	.072
30% of proprietors' income	.023
Rental income	.016
Surplus on govt enterprises	.000
Net income, rest of world	.007
Indirect business taxes	.072
Less: Sales tax	.042
Consumption of fixed capital	.117
Consumer durable depreciation	.060
Statistical discrepancy	004
Imputed capital services	.037

TOTAL ADJUSTED INCOME, AVG 2000-2009

	LABOR INCOME (wL)	.587
	Compensation of employees	.534
	70% of proprietors' income	.053
	CAPITAL INCOME $(Y - wL - X_I)$.413
	Corporate profits	.072
	30% of proprietors' income	.023
	Rental income	.016
	Surplus on govt enterprises	.000
	Net income, rest of world	.007
	Indirect business taxes	.072
\Rightarrow	Less: Sales tax	.042
	Consumption of fixed capital	.117
\Rightarrow	Consumer durable depreciation	.060
	Statistical discrepancy	004
\Rightarrow	Imputed capital services	.037

TOTAL ADJUSTED PRODUCT, AVG 2000-2009

CONSUMPTION (C)	.743
Personal consumption exp less durables	.573
Less: Imputed sales tax, nondur & services	.035
Govt consumption expenditures, nondefense	.110
<i>Plus:</i> Imputed capital services	.037
Consumer durable depreciation	.060
TANGIBLE INVESTMENT (X_T)	.214
Gross private domestic investment	.149
Schedule C corporations (X_{1T})	.070
Other private business	.079
Consumer durable goods	.082
Less: Imputed sales tax, durables	.005
Govt gross investment, nondefense	.025
Net exports of goods and services	043
Net income, rest of world	.007

.043

Factor Inputs, Avg 2000-2009

LABOR INPUT (L)	.279
Capital Stock (K')	5.871
Tangible capital (K'_T)	4.153
Private fixed assets	2.192
Public fixed assets	.595
Consumer durables	.305
Inventories	.134
Land	.928
Intangible capital (K'_I)	1.718

Note: IRS returns used to estimate $K'_{1T} = .892, K'_{2T} = 3.261$


MODEL PARAMETERIZATION CONSISTENT WITH US DATA

GROWTH AND DEMOGRAPHIC PARAMETERS

- Technology growth: 2%
- Population growth: 1%
- Survival probabilities: 2010 Life tables
- Number of workers per retiree: 3.4

 \Rightarrow work life of 43 years

PREFERENCE AND TECHNOLOGY PARAMETERS

- Preference parameters $u(c, \ell) = \log c + \alpha \log(1 \ell)$
 - Disutility of leisure $\alpha = 1.3$
 - $\circ~$ Discount factor $\beta = .984$
- Technology Parameters
 - $\circ~$ Tangible capital shares: $\theta_{1T}=.19,\,\theta_{2T}=.51$
 - Tangible depreciation rates: $\delta_{1T} = .05, \ \delta_{2T} = .015$

 \Rightarrow chosen to match L, wL, K_{iT} , X_{iT} , i = 1, 2

PREFERENCE AND TECHNOLOGY PARAMETERS

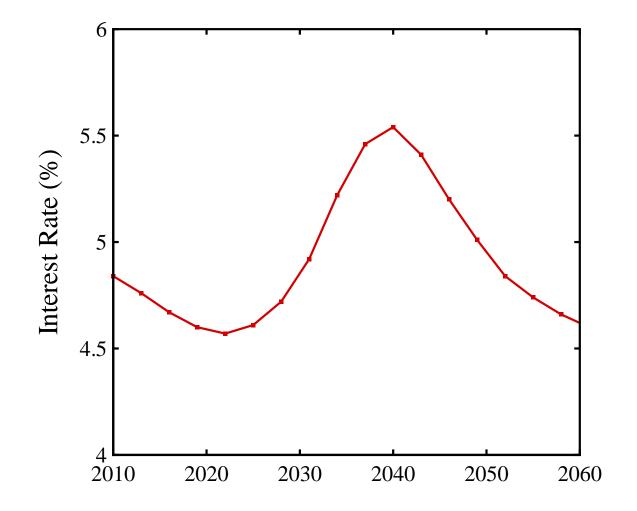
- Somewhat arbitrarily chosen are:
 - Sectoral income share $\theta_1 = .5$
 - $\circ~$ Intangible shares and depreciation rates $\rightarrow~K_I^\prime=1.72$

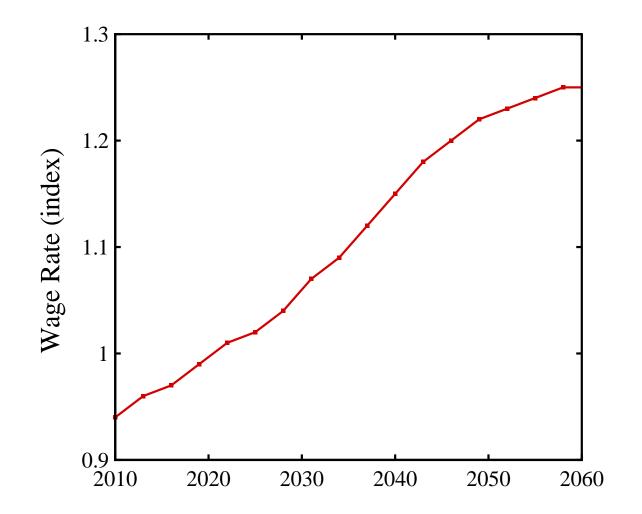
• But sensitivity analysis shows results are robust

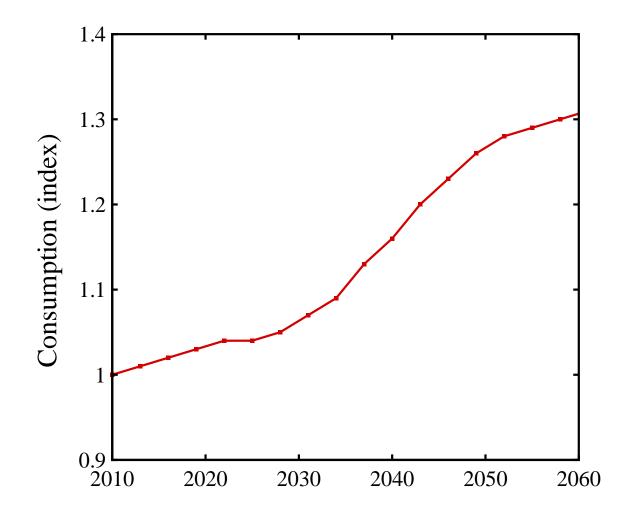
Policy Parameters

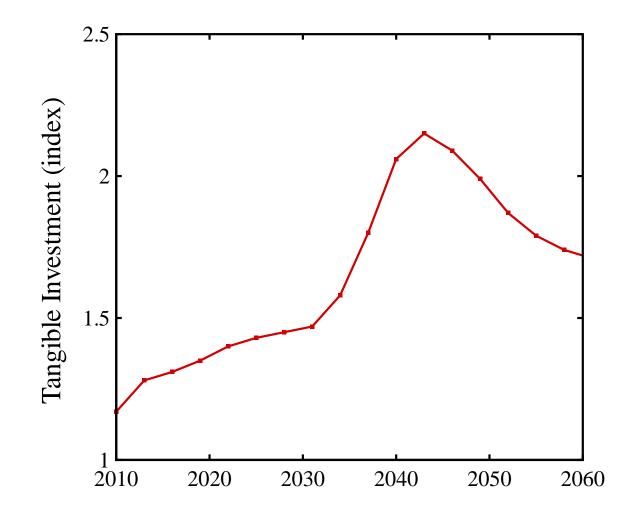
- $\bullet\,$ Spending and debt shares based on NIPA/FOF
 - Defense spending $\phi_G = 0.043$
 - $\circ~$ Government debt $\phi_B=0.511$
- $\bullet\,$ Tax rates based on IRS/NIPA
 - Profits, sector 1, $\tau_1^{\pi} = 0.4$
 - $\circ\,$ Distributions, sector 1, $\tau_1^d=0.2$
 - $\circ\,$ Distributions, sector 2, $\tau_2^d=0.4$
 - $\circ~$ Payroll $\tau^\ell=0.15$
 - $\circ~{\rm Consumption}~\tau^c=0.27$
- Transfer ratio based on NIPA, $\psi^r/\psi^w = 1.97$

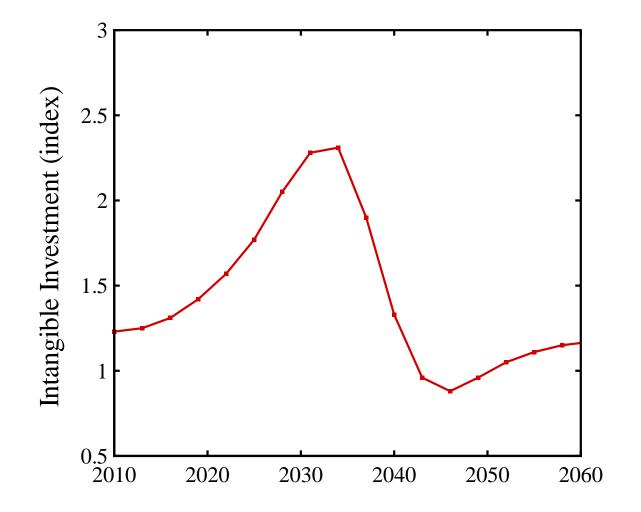
Accounts and Factor Inputs, Avg 2000-2009


TOTAL INCOME $(Y - X_I)$	$\frac{\text{Model}}{1.000}$	$\frac{\text{Data}}{1.000}$
Labor Income (wL)	.587	.587
Capital Income $(Y - wL - X_I)$.413	.413
TOTAL PRODUCT $(C + G + X_T)$	1.000	1.000
Consumption (C)	.743	.743
Tangible investment (X_T)	.214	.214
C-corporations (X_{1T})	.070	.070
Other business (X_{2T})	.144	.144
Defense spending (G)	.043	.043
LABOR INPUT (L)	.279	.279
Capital Stock (K')	5.871	5.871
Tangible capital (K'_T)	4.153	4.153
C-corporations (K'_{1T})	.892	.892
Other business (K'_{2T})	3.261	3.261
Intangible capital (K'_I)	1.718	1.718

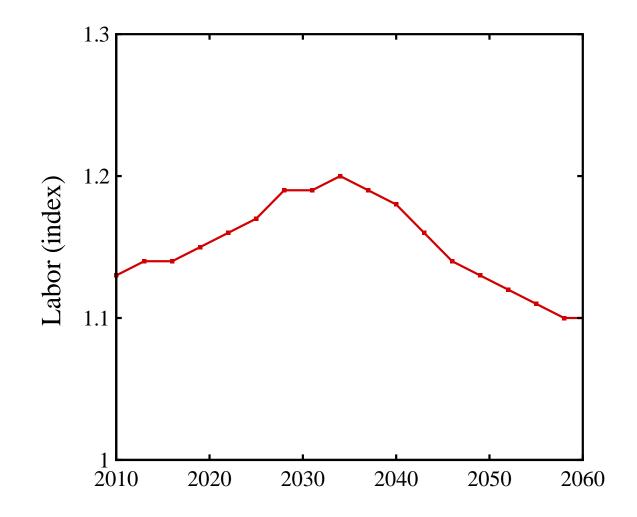

APPENDIX B: TRANSITION FIGURES


TRANSITION: NO WILD OSCILLATIONS IN INTEREST RATES





TRANSITION: IMMEDIATE RISE IN TANGIBLE INVESTMENT



TRANSITION: IMMEDIATE RISE IN INTANGIBLE INVESTMENT

TRANSITION: MODEST RISE IN LABOR INPUT

TRANSITION: LARGE RISE IN GDP

