

The Canon Institute for Global Studies

SECURING RESOURCES FOR THE FUTURE

Geopolitical and geoeconomic considerations of mining seabed minerals

John Seaman Research Fellow, Ifri International Research Fellow, CIGS

> CIGS Seminar 31 May 2013

Outline

- Hypothesis and observations
- Role of sea-bed minerals comparative approaches
- Geopolitical and geoeconomic considerations underlying French and Japanese initiatives

Test hypothesis

- We are headed towards a fundamental shift in the nature of the international market order for raw materials.
- The liberal capitalism model that has underwritten the trade and security of resource supplies in the current era is giving way to a more state / national-interest driven model in which governments take a more pro-active role in securing raw materials for a country's industrial needs.
- Impact of hypothesis: This model and the increasing competition for resources lead to an increase in resourcedriven, inter-state conflict.
- Parallel in IR theory: liberal VS realist schools (a return to history?)

Observations

- Emerging markets (such as China) are driving new demand, straining supply, and pushing up prices for raw materials – particularly various metals
- New technologies are increasing demand for "rare" metals and previously un/underutilized raw materials, sometimes known as "technology metals"
- Public policies (such as the promotion of clean energy, or efforts to promote high-tech industry development) are increasing demand for technology metals and increasing their strategic importance for both national economies and political actors
- In areas where countries have a resource advantage, there is an increasing politicization of raw material exports (in particular in the case of China, though not exclusively)

30-Year Commodity Metals Price Index

Range 6m 1y 5y 10y 15y 20y 25y 30y

Apr 1983 - Apr 2013: 125.650 (217.01 %)

Description: Commodity Metals Price Index, 2005 = 100, includes Copper, Aluminum, Iron Ore, Tin, Nickel, Zinc, Lead, and Uranium Price Indices

Source: International Monetary Fund & indexmundi.com

Diversity of elements needed for energy technologies

Stockage de l'énergie Connectique Economies d'énergie Catalyse (automobile, piles à combustible)

Production et transport de l'électricité Industrie électrique nucléaire Photovoltaïque

Aimants permanents (véhicules électriques, éoliennes, TGV...) Eclairage basse consommation

Metal requirements in 2030 of EU's « Strategic Energy Technologies » plan as a percentage of 2010 global world supply

Key: Te=tellurium, In=indium, Sn=tin, Hf=hafnium, Ag=silver, Dy=dysprosium, Ga=gallium, Nd=neodymium, Cd=cadmium, Ni=nickel, Mo=molybdenum, V=vanadium, Nb=niobium, Cu=copper, Se=selenium, Pb=lead, Mn=manganese, Co=cobalt, Cr=chromium, W=tungsten, Y=yttrium, Zr=zinc and Ti=titanium

Source: « Critical Metals in Strategic Energy Technologies », JRC Scientific and Technical Reports, 2011 – setis.europa.ec.eu

New materials, classic game

	Market Factors		Political Factors		
Metal	Likelihood of rapid demand growth	Limitations to expanding production capacity	Concentration of supply	Political risk	Overall risk
Dysprosium	High	High	High	High	
Neodymium	High	Medium	High	High	
Tellurium	High	High	Low	Medium	High
Gallium	High	Medium	Medium	Medium	
Indium	Medium	High	Medium	Medium	
Niobium	High	Low	High	Medium	
Vanadium	High	Low	Medium	High	Medium
Tin	Low	Medium	Medium	High	
Selenium	Medium	Medium	Medium	Low	
Silver	Low	Medium	Low	High	
Molybdenum	Medium	Low	Medium	Medium	
Hafnium	Low	Medium	Medium	Low	Low
Nickel	Medium	Low	Low	Medium	
Cadmium	Low	Low	Low	Medium	

Source: « Critical Metals in Strategic Energy Technologies », JRC Scientific and Technical Reports, 2011 - setis.europa.ec.eu

Critical materials for the EU as defined in 2010

Geographical concentration of EU critical materials 2010

Result

- Many are calling for a more assertive government role in ensuring raw materials supply, either through reinforcing market mechanisms, or promoting the development of indigenous resources and increasing national stocks of « strategic » raw materials
- BUT, is there a clear trend of skepticism towards the market capitalism model and a turn towards greater state control of natural resources?

Overall approach

Concept of resource scarcity disputed

- Beyond political risk associated with supply concentration, some are concerned about resource scarcity or « peak resources » issues.
- Often, however, concerns over scarcity are alleviated by by market forces that drive new surveying and innovative extraction technologies to improve supply. In other cases, alternative technologies develop to shift demand.

Typical Raw Material Crisis Pattern

Béryllium

Light and heavy rare earths price Cerium Oxide 99%min FOB China - latest 21.5 Lanthanum Oxide 99% FOB China - latest 20.5 Ligh rare earths - \$/kg n. Terbium Oxide 99.9% FOB China - latest 1700 Dysprosium Oxide 99% FOB China - latest 955 Heavy rare earths - \$/kg Source: Thomson Reuters Datastream Reuters graphic/Vincent Flasseur 9/20/2012

- Nevertheless, in cases where market size remains small and alternative technologies unavailable, such as in rare earths, creating a diversity of suppliers can be complicated by market structure. This leaves room for political manipulation of resource supplies.
- Skepticism of market forces to ensure raw material supplies remains in policy-making circles and hedging strategies have emerged in a number of countries, including Japan and France, in order to develop options for indigenous supplies of critical raw materials.
- Recent efforts to survey and eventually exploit sea-bed minerals within Japanese and French EEZs are prime examples, and are motivated in part by such skepticism.

Sea-bed minerals

Cobalt-rich crust

Seafloor Massive Sulfide

Polymetalic Nodules

Rare earth mud

The case of sea-bed mineral development

Source: Ifremer 2011

Rare earth mud

Japan's EEZ

Source: The Asahi Shimbun

France's EEZ

A rush to the seafloor?

- Policies to expand EEZs
- Multiplication of applications to explore international seabed
- Political push in many countries to develop deep-sea tech
- Introduction of private mining operations
- States pressured to act
- Still not an all-out bonanza
- Risks for environment (need for exploitation outstripping efforts to study ecosystems)

Comparing approaches

Japan

- Extension & exploration of EEZ with view towards potential for exploitation
- Exploration in international waters
- Driven by public sector

France

- Extension & exploration of EEZ with view towards exploitation
- Exploration in International waters
- Public-private partnership
 - Wallis & Futuna
- Problem of jurisdiction in overseas collectivities?

Comparing motivations

Japan

- National security
- Resource security
 - Both a negotiating tool and a hedge
- <u>Development of</u> competitive ocean industries
- Environmental preservation

France

- Resource security
- Preserving edge in deepsea tech & remaining competitive in ocean industry
- Environmental preservation

Observations on test hypothesis

- There is a clear concern about the ability of a market capitalist system to ensure security of resource supplies moving forward
- Nevertheless, drive for maritime resources is more of a hedging strategy and is far from replacing mineral supplies through markets and trade
- For countries such as Japan, who also have a strong national security interest in developing their EEZ, and perceive the need to develop competitive ocean industries of their own, allowing *foreign firms to exploit resources in Japan's EEZ remains out of* the question
- Key goal of competitiveness depends on a healthy system of international trade, but also in the ability of a country to ensure a minimum level of its own autonomous activities

A few preliminary recommendations

- Coordinate on environmental protection
 - Work to create and reinforce international norms
 - Environmental data-sharing
 - Tech-sharing remains difficult because of desire for competitiveness of country's industries
- Maintain sea-bed minerals as a hedge, but work to reinforce market mechanisms, trade, economic interdependence as well as international institutions (ISA)
 - Prosperity and progress can be more easily achieved through trade, market forces and intelligent regulation than through nationalization and supply control policies
 - The key will be to convince China and others (including the United States) of such utility

Discussion Comments? Questions? Critiques?