China International Energy Forum 2012 2012.11.15 Haikou

National Energy Policy and the Role of Renewable Energy In Japan

Prof. Tetsuo YUHARA The Canon Institute for Global Studies,Director Adviser of the Cabinet

Outline

- -Review of national energy policy
- -The role of renewable energy and necessary policies
- -Technologies and policies Solar energy (PV and thermal) Wind energy Storage hybrid power generation

-Perspectives on global utilization of renewable energy against global warming

-New approach of Japan— China cooperation

-Summary

Review of National Energy Policy ELECTRICITY

Data Source: National Policy Unit, http://www.npu.go.jp

Expected Role of Renewable Energies by 2030

Compared with current levels (CL: 2010) and current strategy (CS), extensive promotion is necessary. Solar (PV): 19 times to CL and 1.3 times of CS Wind: 21 times to CL and 5 times of CS Hydro: 1.4 times to CL and 1.2 times of CS Others (Bio, Geothermal, Ocean, etc.): 7 times of CL and 1.5 times of CS

Data Source: National Policy Unit, http://www.npu.go.jp

Investigation of Necessity and Potentials

2030			MOE (2	2012.8.3	EE C							
Energy sources		Wind	Geo-	Bio-	0	Ocean		Solar	Wind onshore	Hydro	T- 4-1	
		offshore	thermal	mass	Tide/ wave	Current	Sub total				lotal	
Operating rate %		30	80	80	40	75		12	20			
Sce. 1 0%	Capacity (GW)	8.0	3.9	6.0	4.0	2.0	25	69	52	78	194	
	Share in power %	2.1	2.7	4.2	1.4	1.3	11.7	7.2	9.0	7	35	
Sce. 2 15%	Capacity (GW)	8.0	3.9	6.0	1.5	-	19	63	38	48	168	
	Share in power %	2.1	2.7	4.2	0.5	-	9.5	6.6	6.6	7	30	

The technological potential of onshore wind is estimated as 25 GW (JWPA). Therefore, the plan that renewable energy contribute 35% of power can not be achieved without <u>20 GW of offshore wind and 10 GW of ocean</u> <u>energy.</u>

Costs of power generation technologies

Data Source: National Policy Unit, http://www.npu.go.jp

The power generation costs of renewable energy will be still very high even in 2030 compared with the fossil fired or nuclear.

Examination of Feed-in Tariff

Resource		Price (JPY/KWh)	Period (years)		
Calar DV	>10KW	42.00 (3.4元)	20		
Solar PV	<10KW	42.00	10		
Wind	>20KW	23.10 (1.9元)	20		
w ma	<20KW	57.75	20		
Caathamaal	>15MW	27.30	15		
Geothermal	<15MW	42.00	15		
	>1000KW	25.20			
Small Hydro	200-1000KW	30.45	20		
	<200KW	35.75			
	Methane generation	40.95			
	Waste	17.85			
Biomass	Woods (recycle)	13.65	20		
	Woods (normal)	25.20]		
	Woods (unused)	33.60			

Data Source: http://www.meti. go.jp

The price of Solar PV seems to be a little high. It is based on cost and project risk analysis, and compared with the cases in other countries. 7

Progress of Solar PV in Japan

recimology Roadinap of Solar P v III Japan											
20	02 200	7 2010	2020)	203						
Electricity Cost	0 Yen/kWh 30 Yen/kWh Bulk Si & Compound Compound Cost Red General	Recharg Back 23 Yen/kWh	nd-Connected Higher Degree of Autonomy eable Battery up system	Large System Long Life BOS	Active Grid Control Emergence of New Material						
Tuno	Current e	efficiency %	2017 effici	ency %	2025 effi	2025 efficiency %					
Туре	Module	Cell	Module	Cell	Module	Cell	Efficiency %				
Crystalline Si	~16	25	20	25	25	(30)					
Thin Films	~11	15	14	18	18	20					
CIGS	~11	20	18	25	25	30	Module				
Junction	~25	41	35	35 45 40		50	40~				
DSC	-	11	10	15	15 15 18						
Organic	-	5	10	12	15	15					

Source: NEDO PV2030

Technology Deadman of Solar DV in Janan

Competition vs. Cooperation on Solar PV

-Current status

-Perspectives domestic market creation

R&D institution establishment

Innovation generates new relationship between China and Japan in the field of solar energy

New Approach of Japan China Cooperation

Reverse Innovation

THE AMERICAN MULTINATIONAL APPROACH TO EMERGING MARKETS(EM)

Practice by GE with China (ultrasound machine) 1990s: export with a price over \$100,000 but not fit to China 2002: development of portable unit collaborating with local team in China supported by GE with the price of \$30,000 to 40,000 2007: price down to \$15,000 2008: sales of \$278 Million globally

New Approach of Japan China Cooperation

Smile Curve

Distribution of added value among the production chain for hi-tech industry forms a smile curve. However, the benefit of a company in developing countries tend to be a reverse one. Therefore.....

image from http://ritalogisticsblog.wordpress.com/

New Approach of Japan China Cooperation

イガル価値 企画・開発 SIMILE 調達・購買 製造 販売 商品化 プロセス

「ryoko174の混沌日記」から

http://d.hatena.ne.jp/ryoko174/20120327/1332851928

SHARP

Example of cooperation

Solar Thermal generated electricity – Future dominating technology?

Setting up solar thermal power plants in all of the Gobi desert in the world could supply the global demand.

http://eco.nikkeibp.co.jp/style/eco/report/080530_taiyonetsu/index2.html

http://green-reo.com/natural/taiyou.html

Tokyo Tech beam down CSP Reflecting light to the molten salt receiver by heliostat and central reflecting mirror. Storing energy into the molten salt enable 24 hours power generation.

Progress of Wind Power in Japan

図 1-1 1990 年度から 2011 年度までの単年度および累積導入量

表 1-1 累積導入量と累積台数

年度	1990	1995	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
累積容量[MW]	1	10	144	313	464	681	925	1085	1490	1675	1880	2184	2440	2522
累積基数[基]	9	54	259	434	576	741	920	1059	1316	1413	1531	1679	1807	1840

Source: JWPA

Roadmap of Wind Power in Japan

TOTAL generation 30GW in 2030 50GW in

FL2027ING OFFSHORE

FIXED OFFSHORE

ONSHORE (<25GW)

Due to the limitation of onshore wind potential, the offshore utilization will be essential from 2020 on.

Source: JWPA

図 3-3 JWPA 試算:単年度新規導入量

Storage Hybrid Power Generation

Advantage: stable output reducing load of grid connection Challenges: scale up (stability, cost) safety (fire accident) Key element: storage device

Futamata NaS battery hybrid wind farm(2008~)

http://www.21aomori.or.jp/windpower/institution.html

Next Generation Storage Device

Туре

Rechargeable Battery

Lead-acid, Lithium-ion, Lithium-air, Nickel-hydrogen, NaS, etc.

Capacitor

Chemistry, Double-layer, etc.

SMES

Point of R&D

Scale up: Energy intensity, Cycle life

Safety: Fire, Shock, Explosion

Cost: Commercial use needs a low price of about 15 JPY/Wh

Current situation of R&D

- USA: DOE (basic research) + Venture (commercial use)
- EU: Collaboration among government, industry, and university
- Japan: NEDO basic research
- China: National project (863, 973, etc.)

Self Dependent House to Smart Community

http://www.cocoro-house.com/presidentblogs http://www.meti.go.jp/policy/energy_environment/smart_community/doc/smartcommu.pdf

http://greenpost.way-nifty.com/sinaken/cat1160531/index.html http://www.meti.go.jp/policy/energy_environment/smart_community/doc/smartcommu.pdf

New Scenario (Z650) against Global Warming

Z650 is located in the middle of the two RCP scenarios, therefore it could take the advantage of second best solution, i.e., to be more feasible than RCP2.6, and to have better climate performance than RCP4.5.

Best Energy Mix for Z650

Industrialized countries

- Total Primary Energy is almost constant up to 2100.
- Share of fossil fuel gradually decreases
- Alternatively, share of renewable energy mainly increases

Developing countries

- Total Primary Energy continuously increases up to 2100
- Peak of fossil fuel consumption at 2040
- Both Nuclear and renewable energy increase remarkably

Summary and Suggestion

- Towards large scale utilization of renewable energy Solar PV and wind (especially offshore wind) will be the key
- To deploy the self dependent house and building, and to promote the establishment of smart community
- The R&D competition on PV and rechargeable battery intensifies, the basic research will directly link to production development and promote innovation
- To draw a smile curve based on reverse innovation for establishing a low carbon society in Asia based on healthy competition and cooperation

Net external assets of major countries

From http://www.nikkeibp.co.jp/article/column/20120604/311177/?ST=mobile&P=3

Inward and Outward direct investment by major countries

From http://www.nikkeibp.co.jp/article/column/20120604/311177/?ST=mobile&P=3