Females, the Elderly, and Also Males: Demographic Aging and Macroeconomy in Japan

Sagiri Kitao, University of Tokyo Minamo Mikoshiba, University of Tokyo Hikaru Takeuchi, GPIF

August 5, 2019 Summer Workshop on Economic Theory (SWET)

1 Motivation

2 Model

3 Numerical Analysis Baseline Senarios

4 Conclusion

Age distribution in Japan (2017)

(in thousands)

Source: IPSS (2017)

Population (data and projections)

(in millions)

Source: IPSS (2017)

Old-age dependency ratio (age 65 up/20-64)

Source: IPSS (2017) and United Nations (2015)

Motivation

- How is Japan going to handle a dramatic shift in its demographic structure and a rising fiscal burden associated with old-age transfer programs ?
- $\rightarrow\,$ Japanese government is keen on encouraging labor force participation of females and the elderly.
- $\leftrightarrow\,$ But, the effect is unknown.

In this paper,

- focusing on labor market trend and various scenarios of males, females and the elderly as well as the distribution of employment types.
- quantifying effects affecting macroeconomic variables and fiscal situations in Japan.

Related Literature

- Braun and Joines (2015), Kitao (2015), Hansen and Imrohoroglu (2016)
 - A life-cycle model with endogenous labor supply
 - $\rightarrow\,$ But, abstracts from differences in gender, employment types and productivity difference gap.
- Hoshi and Ito (2014), Imrohoroglu, Kitao and Yamada (2018)
 - Generational accounting models
 - $\rightarrow\,$ PE and exogenous policy.

Labor force participation rates

Source: Labor Force Survey (2015)

Earnings (workers)

Source: Basic Survey on Wage Structure (2015), normalized by age-20 male earnings

Participation rates by employment types

Earnings by gender and employment type

Source: BSWS (2015) and ESS (2015)

1 Motivation

2 Model

3 Numerical Analysis Baseline Senarios

4 Conclusion

Model

What we do

- Quantify how exogenous changes in the labor market affect macroeconomy and fiscal situations.
 - A simplest OLG model of a complete market with genders.
 - Exogenous changes in labor participation, employment types and productivity
 - Earnings profile given by the average labor productivity of each gender and age.
- We **do not** explain life-cycle profiles of labor supply and productivity gaps.
- Do this in a standard model of individuals, competitive firms and the government.

Model : Individual

- Age : $i \in \{1, \cdots, I\}$ (20-104 years old)
- Time : $t \in \{1, \cdots, T\}$ (1990 2500)
- Gender : $g \in \{m, f\}$

Model : Individual

- Demographics
 - $\mu_{i,g,t}$: Number of individuals of age i, gender g, at time t
 - $S_{i,g,t}$: Unconditional survival probability
 - $n_{g,t}$: Growth rate of a new cohort $\mu_{i,g,t}$
 - Use the official demographic projection of the IPSS (medium)
- Accidental bequests are given to all survivors as a lump-sum transfer, b_t

Model : Indivudual

Preference

$$u(c_{i,g,t}) = \frac{c_{i,g,t}^{1-\theta}}{1-\theta}$$

• Life-time utility

$$U_{g,t} = \sum_{i=1}^{I} \beta^{i-1} S_{i,g,t+i-1} \frac{c_{i,g,t+i-1}^{1-\theta}}{1-\theta}$$

- Risk aversion : $\theta = 2.0$
- Discount factor : β set s.t K/Y = 3.2 (average during 2010-2014)

Model : labor market

- Earnings of age *i*, year *t*, gender $g : \epsilon_{i,g,t} \times w_t$
- $\epsilon_{i,g,t}$: average labor productivity
 - Average efficiency units provided by an individual of age i, in year t, gender g
 - Computed based on data of participation rates, employment type and productivity
- w_t : Market wage per efficiency unit = MPL

Model : labor market

- How to compute $\epsilon_{i,g,t}$?
 - Use micro data (LFS, BSWS and ESS) for the age and gender specific distribution of employment types (R/C/S), $\mu_{i,g,t}^R, \mu_{i,g,t}^C, \mu_{i,g,t}^S$ and productivity $y_{i,g,t}^R, y_{i,g,t}^C, y_{i,g,t}^S$

$$\epsilon_{i,g,t} = (y_{i,g,t}^R \mu_{i,g,t}^R + y_{i,g,t}^C \mu_{i,g,t}^C + y_{i,g,t}^S \mu_{i,g,t}^S) / \mu_{i,g,t}$$

Model : Efficiency Units : $\epsilon_{i,g,t}$

Normalized by the male level at 20

Model : the government

- Revenues
 - Proportional tax
 - Consumption tax : $au_{c,t}$ 8 %
 ightarrow 10 % in 2020
 - Capital income tax : $\tau_{a,t}$ 35%
 - Labor income tax : $\tau_{w,t}$ (determined in eq)
 - Debt B_{t+1} : 156 % of GDP (in 2015, fixed %)
- Expenditures
 - Public pensions : $p_{i,g,t} = \kappa_t \frac{W_{i,g,t}}{I^R 1}$
 - Normal retirement age $I_{...}^R$: 65 years old
 - Average labor income : $\frac{W_{i,g,t}}{I^R-1}$
 - Replacement rate κ_t : set s.t total benefits are about 10 % of GDP
 - Debt service : $B_t(1+r_t)$
 - Other government expenditures G_t : 20 % of GDP

Model : the government

$$G_t + (1+r_t)B_t + \sum_{i=I^R}^{I} \sum_g p_{i,g,t}\mu_{i,g,t} = \tau_{w,t}w_t \sum_{i,g} \mu_{i,g,t}\epsilon_{i,g,t} + \tau_{a,t}r_t \sum_{i,g} \mu_{i,g,t}(a_{i,g,t}+b_t) + \tau_{c,t} \sum_{i,g} \mu_{i,g,t}c_{i,g,t} + B_{t+1}$$

Model : firms

• Production

$$Y_t = Z_t K_t^{\alpha} N_t^{1-\alpha}$$

• TFP
$$Z_t$$
: growth at 1 % in the baseline
• $K_t = \sum_{i,g} \mu_{i,g,t}(a_{i,g,t} + b_t) - B_t$
• $N_t = \sum_{i,g} \mu_{i,g,t} \epsilon_{i,g,t}$
• $\alpha = 0.4, \ \delta = 0.07$

Model : Indivuduals' problem

$$V_t(i,g,a_t) = \max_{c_t,a_{t+1}} \{ u(c_t) + \beta s_{i+1,g,t+1} V_{t+1}(i+1,g,a_{t+1}) \}$$

subject to

$$(1 + \tau_{c,t})c_t + a_{t+1} = (1 - \tau_{w,t})\epsilon_{i,g,t}w_t + [1 + (1 - \tau_{a,t})r_t](a_t + b_t) + p_{i,g,t}$$

where $p_{i,g,t}$ denotes pension and is zero for individuals aged below I^R

1 Motivation

2 Model

What we do

- Endogenous
 - Individuals' consumption and saving
 - Macro variables (K, Y, w, r)
 - Government tax revenues and expenditures, equilibrium tax

Exogenous

- Demographics, participation, productivity \rightarrow determine N
- Baseline
 - Assume the current participation and labor productivity will remain the same
 - Consider alternative scenarios

Baseline

Baseline model : K and N

Aggregate capital

Aggregate labor supply

* Normalized by 2015 levels

* Aggregate capital is stationarized by the TFP growth rate.

Baseline model : w and r

Baseline model : Equilibrium tax rate on labor

Equilibrium tax rate on labor

Senarios

- Females differ from males in :
 - Participation rates
 - Employment types (regular, contingent, self-employed)
 - Productivity
 - \rightarrow Assume a gradual increase / convergence towards males
- The elderly

Senarios

- Participation rates
 - Use 2018 projections of the Japan Institute for Labor Policy and Training (JILPT) up to 2040

Labor force participation : data and projection

* LFS (2015) data and JILPT projections (2025,2040)

Labor force participation : data and projection

Male

Female

* LFS data (2002 and 2015) and JILPT projections (2025 and 2040)

Female labor supply: employment types

* LFS data (2002 and 2015)

Female labor supply: decomposition

* LFS data (2002 and 2015)

	Scenario	
\bigcap	LFP-1	Rise in participation : JILPT projections
	LFP-2	LFP-1 + gradual convergence of employment types to males
	LFP-3	LFP-2 + gradual convergence of productivity to males

- A main factor of rise of aggregate labor supply is not only a rise in labor force participation, but also changes in employment type and productivity.
- Although savings initially decline to smooth consumption, aggregate capital will eventually be higher than in the baseline.

- More participation by female will significally reduce the fiscal burden.
- Impact from lower wage < higher labor supply

(relative to the baseline of the same year)

	LFP-1 Participation	LFP-2 +Emp. type	LFP-3 +Productivity
Agg. labor supply			
2030	+5.6%	+12.1%	+22.4%
2045	+7.8 %	+18.8%	+37.3%
Agg. output			
2030	+3.3%	+6.9%	+11.8%
2045	+6.7%	+16.1%	+31.1%

(relative to the baseline of the same year)

	LFP-1 Participation	LFP-2 + Emp. type	LFP-3 +Productivity
Wage			
2030	-2.2%	-4.7%	-8.6%
2045	-1.0%	-2.3%	-4.8%
2060	+0.3%	+ 0.9%	+0.9%
Eq. tax rate			
2030	— 1.1ppt	-2.3ppt	-4.0ppt
2045	— 1.5ppt	— 3.4ppt	— 5.8ppt

Scenarios : the elderly and males

Scenario	
LFP-1	Rise in participation : JILPT projections
LFP-2	LFP-1 + gradual convergence of employment types to males
LFP-3	LFP-2 + gradual convergence of productivity to males
LFP-4	Same as LFP-1 but only 65 and below
LFP-5	Same as LFP-1 but both males and females

Scenarios : the elderly and males

Scenarios : the elderly and males

(relative to the baseline of the same year)

	LFP-1 Female: all ages	LFP-4 Female age <65	LFP-5 Male and female All aAges
Agg. labor supply			
2030	+5.6%	+4.7%	+8.5%
2045	+7.8%	+6.0%	+11.9%
Agg. output			
2030	+3.3%	+3.0%	+4.4%
2045	+6.7%	+5.5%	+9.4%
Eq. tax rate			
2030	-1.1ppt	-0.9ppt	-1.4ppt
2045	— 1.5ppt	-1.2ppt	-2.1ppt

1-4 difference is limited. Most elderly female work on a contingent job at very low wages.

1 Motivation

2 Model

3 Numerical Analysis Baseline Senarios

Conclusion

- Females and the elderly can indeed be savers
- But : we need more than a simple increase in participation. A rise in labor supply through changes in employment types and productivity is a key
 - Output in 2045 :
 - +6.7% (participation \uparrow only)
 - +16.1% (+ employment type)
 - +31.1% (+ productivity)
 - Eq. tax rate in 2045 :
 - -1.5 ppt (participation \uparrow only)
 - -3.4 ppt (+ employment type)
 - -5.8 ppt (+ productivity)

Remarks : next step

- Explain participation (and hours) and wage to study policy implications.
 - Attanasio, et al (2008), Bundell, et al (2016)
 - Blundell, et al (2019) : Use panel of the UK to quantify effects of job training on female labor supply (especially post-births of children)