Recurrent Bubbles and Economic Growth

Pablo A. Guerron-Quintana, Tomohiro Hirano, and Ryo Jinnai

Boston College The University of Tokyo Hitotsubashi University

CIGS (4 June 2018)

Motivation

- Hysteresis and super hysteresis.
- Renewed attention;
 - Great Stagnation hypothesis (Hansen, Summers),

- Blanchard, Cerutti, and Summers (2015).
- Bubbles may be important.
 - Japan's lost decades.
 - ▶ Jorda, Schularick, and Taylor (2015).
- Construct a model; bring it to the data.

Plan

- 1. Model
- 2. Comparative Statics

- 3. Estimation
- 4. Conclusion

Model

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Otherwise standard model with

- 1. liquidity constraint (Kiyotaki and Moore 2012),
- 2. variable capacity utilization (Greenwood et. al. 1998),
- 3. learning-by-doing (Arrow 1962; Sheshinski 1967; Romer 1986).

Household's Structure

- A continuum of households with measure one.
- Each household has a unit measure of members.
- Some become investors; others become savers.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Household's Problem

Household's utility

$$E_0\left[\sum_{t=0}^{\infty}\beta^t\left(\pi\log\left[c_t^i\right] + (1-\pi)\log\left[c_t^s\left(1-I_t\right)^{\eta}\right]\right)\right]$$

・ロト ・ 日本・ 小田・ 小田・ 小田・

- Member's roles ex ante unknown.
- Realize after separated.
- Equally divide the assets; give state-contingent plans.

Budget Constraints

Investor

$$x_{t}^{i}+i_{t}+q_{t} \underbrace{n_{t+1}^{i}}_{\text{gross equity purchase}} = q_{t}i_{t}+\left[u_{t}r_{t}+q_{t}\left(1-\delta\left(u_{t}\right)\right)\right]n_{t}.$$

Saver

$$x_{t}^{s} + q_{t}n_{t+1}^{s} = w_{t}l_{t} + [u_{t}r_{t} + q_{t}(1 - \delta(u_{t}))]n_{t}.$$

Potluck party at night

$$\pi x_t^i + (1 - \pi) \, x_t^s = \pi c_t^i + (1 - \pi) \, c_t^s.$$

Equity holding at night

$$n_{t+1} = \pi n_{t+1}^i + (1 - \pi) n_{t+1}^s$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Liquidity Constraints

Investors face

$$\underbrace{n_{t+1}^{i}}_{ ext{gross equity purchase}} \geq \left(1-\phi\right) \left[i_{t}+\left(1-\delta\left(u_{t}
ight)
ight)n_{t}
ight].$$

- If $\phi = 1$, can sell everything.
- If $\phi = 0$, dividends $(u_t r_t n_t)$ are the sole liquidity.
- Intrinsically useless (liquid) assets may have a positive value.

Fiat money in KM; bubbles in our model.

Capacity Utilization

Capital can be intensively used, which means

more capital service;

faster depreciation;

$$K_{t+1} = \underbrace{\pi i_t}_{\text{gross investment}} + \left(1 - \underbrace{\delta(u_t)}_{\text{depreciation rate}}\right) K_t$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Learning-By-Doing

- Competitive firms maximize profits.
- Cobb-Douglas production function

$$Y_{t} = \underbrace{\mathcal{A}_{t}}_{\text{tochoology level}} \left(u_{t} \mathcal{K}_{t} \right)^{\alpha} \left(\mathcal{L}_{t} \right)^{1-\alpha}$$

technology level

- Individual firms take A_t as exogenous ("Big K, little k" trick).
- Growth is sustained by externality.

Regimes

Bubbly and fundamental regimes.

- *M* units of bubbly assets in bubbly regime.
- ► No bubbly assets in fundamental regime.
- Helicopter drop of bubbly assets when $f \rightarrow b$.

- Sudden disappearance when $b \rightarrow f$.
- Markov switching.

Regimes

period	0	1	2	3	4	5	6	7	8	9	•••
regime	f	f	b	b	b	b	f	f	b	b	• • •
bubbly assets	0	0	М	Μ	М	М	0	0	Μ	М	• • •

Table: example

<□ > < @ > < E > < E > E のQ @

Bubbly Assets; Pros and Cons

Intrinsically useless, no dividends (cons)

- May disappear (cons)
- Perfectly liquid (pros)
- Savers may find liquidity service attractive enough.

- Liquidity service depends on the resale value.
- Multiple equilibria.

l b go

Parameters

Parameter Values

	description	value	target
β	discount rate	0.99	standard
ζ	elasticity of $\delta\left(\cdot ight)$	0.33	Comin and Gertler (2006)
α	capital share	0.33	standard
π	fraction of investors	0.06	Shi (2015)
$\delta\left(0 ight)$	depreciation when idol	0.001	frictionless growth=1.005
$\delta\left(1 ight)$	depreciation at full capacity	0.005	hand-picked
η	curvature in leisure	2.67	frictionless hours=0.27
Ā	scale parameter	0.49	equilibrium condition
σ_b	prob. of $b \to f$	0.015	hand-picked
σ_{f}	prob. of $f o b$	0.015	hand-picked

() go

Comparative Statics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Permanent Fundamental

• Turn off the regime switch for a while.

Always fundamental.

Fundamental Equilibrium

Non-linear relation when liquidity constraint binds.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fundamental Equilibrium

Competing effects of marginal liquidity provision.

- The economy starts with *b*.
- ▶ Transitions to *f* with prob. 1.5% per quarter.

(ロ)、(型)、(E)、(E)、 E) の(の)

Stays in *f* forever (Weil 1987).

Multiple equilibria when liquidity constraint is tight.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Bubble is "special." Fundamental is "normal."

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

High growth with bubble? Lucky you!

▶ welfare

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Turn on two-way regime switch.
- ▶ Both $b \rightarrow f$ and $f \rightarrow b$ with prob. 1.5% quarterly.

(ロ)、(型)、(E)、(E)、 E) の(の)

High growth in bubbly period; low in the other.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Inter-temporal (inter-regime) substitution at work.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Recurrent v.s. Stochastic

Discrepancy in fundamental regime.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Recurrent v.s. Stochastic

Both wealth effect and price effect at work.

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ(?)

Takeaways

The economy may grow fast in the bubbly period.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Takeaways

Not necessarily means unconditionally high growth.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

Takeaways

Bubbleless growth is slow just because people **expect** bubbles.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Takeaways (Growth and Volatility)

Bubbles will be unpopular in the advanced economy.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ = 三 - のへで

Takeaways (Growth and Volatility)

Bubbles may be welcomed in the developing economy.

Takeaways (Growth and Volatility)

Seemingly puzzling views not so puzzling in our model.

Estimation

Estimation (Method)

Structural estimation detecting bubbles.

- Data: GDP growth and consumption-investment ratio.
- In a first pass;
 - estimate bubble and fundamental regimes,
 - estimate persistence and volatility of shocks (added),

- retain rest of parameters.
- Absence of endogenous states facilitates estimation.

Estimation (U.S.)

Regime switches from bubble \rightarrow fundamental \rightarrow bubble.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Conclusion

- Recurrent bubbles.
- Two-way dynamic effects $(b \leftarrow f \text{ and } f \leftarrow b)$.

- Super-hysteresis.
- Structural estimation.

Appendix

<□ > < @ > < E > < E > E のQ @

If bubbles arise in the future, why not now?

- We exclude it by assumption.
- ► No bubble markets in the fundamental regime.
- Neither spot nor future.
- No way to purchase bubbly assets (literally).

Depreciation Function

 $\delta'\left(u_{t}\right) > 0$, $\delta''\left(u_{t}\right) > 0$, and $u_{t}\delta''\left(u_{t}\right)/\delta'\left(u_{t}\right) = 0.33$.

Depreciation Function

Advanced economy both invests and crashes a lot.

Welfare implication is similar.

Bubbles are disliked in the advanced economy.

