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Abstract

We construct and estimate a heterogeneous-firm business cycle model where firms
face Knightian uncertainty about their profitability and learn it through production.
The cross-sectional mean of firm-level uncertainty is high in recessions because firms
invest and hire less. The higher uncertainty reduces agents’ confidence and further
discourages economic activity. This feedback mechanism endogenously generates prop-
erties traditionally explained through additional shocks or rigidities: countercyclical
labor and financial wedges, co-movement driven by demand shocks, and amplified and
hump-shaped dynamics. We find that endogenous idiosyncratic confidence reduces the
empirical role of standard rigidities and changes inference about sources of fluctuations
and policy experiments.

1 Introduction

Is firms’ confidence about their business conditions important for understanding aggregate

fluctuations? To answer this question, we construct a heterogeneous-firm business cycle

model in which firms face uncertainty about their own profitability and need to learn it

through production. The learning process generates countercyclical uncertainty that feeds

from, and back into, economic activity. We find that this feedback loop generates properties

that make our model behave as a standard business cycle model with (i) countercyclical labor

wedge and financial spread, (ii) positive co-movement of aggregate variables in response to

either supply or demand shocks, and (iii) strong internal propagation with amplified and

hump-shaped dynamics.
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on Macroeconomics of Uncertainty and Volatility, and Wharton for helpful comments.
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Traditionally, macroeconomists have employed a variety of shocks and frictions to produce

these key business cycle patterns. For example, labor wedge shocks are commonly cited as

the explanation for the measured countercyclical “wedge” between the marginal rate of

substitution of consumption for labor and the marginal product of labor1 and aggregate

uncertainty shocks are often used to explain the countercyclical excess return of uncertain

assets, such as capital, over the risk free rate.2 Additional rigidities, such as sticky prices

and wages, are usually required to break the Barro and King (1984) critique and make other

types of shocks, besides productivity or intratemporal labor supply shocks, generate positive

co-movements of macro aggregates. To generate persistent and hump-shaped dynamics,

arbitrary frictions such as consumption habit and investment adjustment costs are often

added to the model. That our model can generate these key properties without relying on

additional shocks or rigidities suggests that endogenous uncertainty could be a parsimonious

mechanism for business cycle models that would at least partially replace these features.

The goal of this paper is to theoretically and quantitatively evaluate this hypothesis.

There are two key ingredients for our mechanism. First, learning occurs through pro-

duction. In particular, by producing at a larger scale, the firm gets to see more signals

about the business prospects of the firm. We introduce two unobservable shocks into a

firm’s production. The first shock is a standard, persistent productivity shock that affects

the marginal return. The second is a transitory shock that does not scale up with the level

of inputs. While what matters for optimal investing and hiring decisions is the realization of

the productivity shock, the path of firm’s output and inputs is not perfectly revealing about

its productivity because it is confounded by the transitory disturbance.

In the model, the level of inputs endogenously determines the informativeness of output

about the idiosyncratic productivity level. Intuitively, when a firm allocates less resources

into production, its estimate about its persistent productivity is imprecise because the level

of output is largely determined by the realization of the transitory shock. Conversely, its

estimate becomes more accurate when it uses more resources because output mostly reflects

the realization of productivity. This results in a procyclical signal-to-noise ratio at the

firm level. It follows that recessions are periods of a high cross-sectional mean of firm-level

uncertainty because firms on average invest and hire less.

The second key ingredient is that uncertainty should matter for the productive inputs.

When firms do not observe their profitability, the optimal choice of inputs is naturally

made under an uncertain evaluation of their return. We model uncertainty as ambiguity,

or Knightian uncertainty. In contrast to models of risk, we can study the effect of Knigh-

1See Shimer (2009) and Chari et al. (2007) for evidence and discussion of labor wedges.
2See Cochrane (2011) for a review of the evidence on countercyclical excess returns.
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tian uncertainty on inputs using linear methods, which in turn facilitates aggregation and

estimation. Ambiguity aversion is described by the recursive multiple priors preferences,

axiomatized in Epstein and Schneider (2003b), that capture agents’ lack of confidence in

probability assessments. This preference representation makes agents act as if they evaluate

plans according to a worst case scenario drawn from a set of multiple beliefs. A wider set of

beliefs corresponds to a loss of confidence.

In our model, ambiguity averse agents cope with estimation uncertainty by first estimat-

ing the underlying productivity process using a standard Kalman filter and then considering

a set of probability distributions around the estimates. In particular, when facing a larger

estimation uncertainty, the firm is less confident about the conditional mean of the underlying

persistent profitability. The lower confidence makes the firm behave as if the worst-case mean

becomes worse. This is simply a manifestation of precautionary behavior, which lowers the

certainty equivalent of the return to production, but, compared to risk, has the advantage

that it allows for first-order effects of uncertainty on decisions.

The two ingredients generate a feedback loop at the firm level: lower production leads

to more estimation uncertainty, which in turn shrinks the optimal size of productive inputs.

Importantly, this feedback arises from any shock that starts to move the economic activity.

It may be for example a shock to productivity, to demand or a government spending change.

We show how countercyclical uncertainty shows up as ‘excess volatility’, or wedges, at

the firm level. Specifically, in periods of low production, the estimation uncertainty is larger

and this lowers the worst-case estimate of profitability. As a consequence, the firm lowers

its demand for inputs. From the perspective of the econometrician that measures, under the

true data generating process, equilibrium objects such as the marginal rate of substitution

between consumption and labor, marginal product of labor or realized return on capital,

these factor demands are excessively low. They can be instead rationalized as labor and

investment wedges, or taxes on inputs, which, in a reduced form, seem higher in recessions.

Importantly, when uncertainty is modeled as ambiguity with multiple priors that differ

in their mean, the law of large numbers imply that sets of beliefs converge, but that

idiosyncratic uncertainty cannot be diversified away. Intuitively, the agents who do not

know the distribution of firms’ productivity (and hence profit) evaluate choices as if mean

productivity is low. An agent who owns a portfolio of many firms then acts as if the

entire portfolio has a low mean payoff. This means that the confidence about idiosyncratic

conditions does not vanish in the aggregate.

The linearity of decision rule is crucial for a tractable aggregation. Indeed, once ag-

gregated, these reduced-form taxes will survive as aggregate countercyclical taxes. The

emergence of the labor wedge is particularly important for the business cycle dynamics.
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Through it the model is able to generate positive co-movement in aggregate variables, such

as consumption, investment and hours, not only out of productivity shocks, but in general

out of any type of aggregate shock, including demand shocks.

We quantitatively evaluate the role of endogenous uncertainty using a calibrated version

of the baseline model. Our main findings are as follows. First, we find that endogenous

uncertainty is a powerful propagation mechanism. A positive shock that raises economic

activity increases the level of confidence, which in turn further affects economic activity,

leading to an amplified and hump-shaped impulse response.

Second, consistent with the data, our model generates countercyclical labor wedge and

ex-post excess return. During recessions, ambiguity increases endogenously and thus leads

to an unusually low equilibrium labor supply. The increase in ambiguity also makes capital

less attractive to hold. Investors holding an ambiguous asset are thus compensated by the

higher measured excess return. The countercyclical labor and financial wedges do not arise

from separate labor supply or premia shocks but instead are generated by any underlying

shock that moves economic activity.

Third, the model generates positive co-movements in response to demand shocks. Con-

sider, for example, a positive shock to government spending. In standard RBC models,

consumption sharply declines and hours worked rise due to the negative income effect. In

our model, since firms produce more, they become more confident and are willing to hire and

invest more. The higher confidence leads to a positive wealth effect for the representative

agent, who owns the portfolio of firms. This positive effect can be strong enough to overturn

the initial negative one and to make consumption actually rise.

Fourth, firms have an incentive to actively use their productive inputs to learn about their

profitability. We show that this experimentation incentive has a first-order effect in our setup

and we characterize its cyclical properties. We find that experimentation exerts a procyclical

influence on aggregates in the short run, turning experimentation into an amplifying factor,

and a countercyclical one in the medium term, where it dampens fluctuations.

Due to easy aggregation, we can estimate using likelihood based methods quantitative

models with a large state space, such as Christiano et al. (2005). Our estimated model

includes shocks to aggregate TFP and government spending, as well as a financial wedge

shock, analyzed for example in Christiano et al. (2015). We use standard observables for US

aggregate data: the growth rate of output, hours worked, investment and consumption, as

well as inflation and nominal interest rate. In addition, we use the Baa corporate spread as

an observable proxy, assumed to be measured with error, for the financial wedge shock.

The estimated model provides evidence that endogenous confidence changes significantly

the inference on the role of rigidities and shocks driving fluctuations. In terms of rigidities,
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learning reduces the need of additional frictions for fitting the data. In particular, compared

to the rational expectations (RE) version, the habit formation parameter is lowered by 25%,

the investment adjustment cost becomes negligible, the average Calvo adjustment period of

prices falls from 4 to 2 quarters, and for wages from 25 quarters to 1 quarter. The reason

for these smaller estimated frictions is that the learning mechanism provides strong internal

propagation and induces by itself co-movement in response to the financial wedge shock.

In terms of model comparison, adding endogenous uncertainty allows the model to fit

the data significantly better. The reason is twofold. First, as described above, learning

emerges as a parsimonious friction, as opposed to the array of other rigidities. Second,

while in the RE version the observed spread is mostly accounted as measurement error, the

model-implied spread with learning tracks well the empirical one. This happens because the

observed countercyclical spread is now consistent with co-movement and thus the estimation

prefers observed contractionary wedge shocks during recessions. At the same time, agents

lose confidence during recessions, which in our model endogenously contributes further to

the countercyclicality of the spread and improves the model fit.

In the estimated model, endogenous uncertainty changes the propagation mechanism

to the point that the financial wedge shock, disciplined by the observed spread, becomes

an important driver of fluctuations. This illustrates that endogenous confidence can make

demand shocks a relevant source of fluctuations even in the absence of traditionally used

rigidities. At the same time, generating time-variation in uncertainty from an endogenous

mechanism means that policy matters for its evolution. We compare some counterfactual

models in which a Taylor rule responds to the financial spread to underscore the importance

of modeling a policy-variant uncertainty process.

The paper is organized as follows. In Section 2, we discuss relation to literature. In

Section 3 we introduce our heterogeneous-firm quantitative model. In Section 4 we present

the model’s equilibrium characterization and solution. We discuss the main results based

on a calibrated version in Section 5. In Section 6 we add additional rigidities to estimate a

model using US aggregate data and also also provide some firm-level supportive evidence.

2 Relation to literature

Our paper is related to a rapidly growing literature on time-varying uncertainty. There are

models that use exogenous increases in the volatility of firm-level productivity to generate

recessions, such as Bloom (2009), Arellano et al. (2012), Bachmann and Bayer (2013),

Christiano et al. (2014), Bloom et al. (2014) and Schaal (2015). Another strand of literature
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analyzes the effects of aggregate uncertainty shocks, such as Fernández-Villaverde et al.

(2011), Basu and Bundick (2012), Bidder and Smith (2012), Born and Pfeifer (2014), Ilut

and Schneider (2014), Fernández-Villaverde et al. (2015) and Leduc and Liu (2015). There

are two main differences to this literature. First, we do not rely on additional real or

nominal rigidities to generate contractionary effects of higher uncertainty and positive co-

movement.3 The reason is that in our model the level of input (such as labor supply) is chosen

under imperfect information, and thus under uncertainty, about the underlying productivity

process. Second, in our economy changes in uncertainty are endogenous and hence affect the

propagation of any aggregate shocks and outcomes of policy experiments.

We differ from other papers in the literature on endogenous uncertainty and learning

in business cycles, such as Veldkamp (2005), van Nieuwerburgh and Veldkamp (2006),

Fajgelbaum et al. (2015), Ordoñez (2013), Saijo (2014), in two major aspects. One is that

we focus attention on imperfect information at the idiosyncratic level. We are motivated

by the fact that firm-level volatilities are empirically much larger than fluctuations at the

aggregate. This fact suggests that uncertainty about idiosyncratic fundamentals may be

larger and hence quantitatively more important than uncertainty about the macro-level

process. In addition, because firms learn about their individual-specific characteristics, the

impact of imperfect information is unlikely to be substantially affected by an introduction

of market for information or a release of official statistics.4

Our formulation of uncertainty at the firm level has important modeling implications.

First, the additive noise shock has reasonable interpretations at the firm-level. This shock

may arise either as a noisy signal about firm demand or from aggregating productive units

at the firm level.5 Second, our competitive equilibrium is constrained Pareto optimal.

Differently from recent work such as Fajgelbaum et al. (2015) or Ordoñez (2013), this is

a model without information externalities since learning occurs at the individual firm level

and not from observing the aggregate economy.6 Third, in our model the firm has an

incentive to experiment since it controls the action that produces information. We thus

3In Angeletos et al. (2014) co-movement is possible, out of correlated higher-order beliefs shocks,
without additional rigidities because labor is assumed to be chosen before observing profitability. Arellano
et al. (2012) also make a similar timing assumption and generate countercyclical labor wedge through an
uncertainty shock. In our model the endogenous propagation mechanism makes any type of shock, including
various types of demand shocks, potentially generate labor and financial wedges as well as co-movement.

4At the same time, our approach can incorporate learning not only about idiosyncratic but also aggregate
conditions, and as such, our results can be viewed as a lower bound on the overall business cycle effects of
endogenous uncertainty.

5Applying this logic to additive noise about aggregate productivity requires instead additional assump-
tions on the observability of consumption bundles or the size of the units that are aggregated (see van
Nieuwerburgh and Veldkamp (2006)).

6For example, the increased economic activity, and the associated average reduction in uncertainty,
produced by a government spending increase can not be welfare increasing in our model.
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further contribute to the literature on learning by showing how experimentation at the firm

level affects the equilibrium dynamics of a business cycle model.

The second major difference from the learning literature is that we show that endogenous

confidence not only leads to more persistence and amplification, as in Fajgelbaum et al.

(2015) and Saijo (2014), but that in the process it produces countercyclical endogenous

labor and financial wedges. As a consequence, we contribute to the business cycle literature

by proposing a mechanism that alters the Barro and King (1984) critique of positive co-

movement of aggregates.7 In addition, this co-movement may now be accompanied by

countercyclical premia, which is a key insight of the asset pricing literature.

We also build on the literature on recursive multiple priors, introduced by Gilboa and

Schmeidler (1989), and extended to intertemporal choice by Epstein and Wang (1994) and

Epstein and Schneider (2003b). Ilut and Schneider (2014) and Bianchi et al. (2014) study

tractable business cycle model where time-variation in confidence about aggregate conditions

arises from exogenous ambiguity or volatility shocks. The present paper instead considers

time-variation in confidence about idiosyncratic shocks that emerges entirely endogenously

and which thus changes the propagation mechanism of standard shocks.

Methodologically, this paper develops tractable linear methods to study the effects of

such endogenous uncertainty about in a heterogeneous-firm model. An important property

of the model is that this idiosyncratic uncertainty does not vanish in the aggregate. As such,

this paper is connected to the decision-theoretical literature on the law of large numbers

developed in Marinacci (1999) and Epstein and Schneider (2003a).

3 The model

Our baseline model is a real business cycle model augmented with two key features: Agents

are ambiguity averse and face Knightian uncertainty about the firm-level profitability pro-

cesses. After presenting the environment, we discuss in detail the information friction that

gives rise to equilibrium fluctuations in confidence.

7Recent line of attacks to break Barro and King (1984) critique include: heterogeneity in labor supply and
consumption across employed and non-employed (Eusepi and Preston (2015)), variable capacity utilization
together with a large preference complementarity between consumption and hours (Jaimovich and Rebelo
(2009)), and the large literature on countercyclical markups through nominal rigidities (such as in the
quantitative models of Justiniano et al. (2010) or Christiano et al. (2014)).
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3.1 Environment

Households

There is a representative household that has recursive multiple priors utility. Collect the

exogenous state variables, to be described later, in a vector st ∈ S. A household consumption

plan C gives, for every history st, the consumption of the final good Ct (st) and the amount

of hours worked Ht (st). For a given consumption plan C, utility is defined recursively by

Ut(C; st) = lnCt − ϕ
H1+η
t

1 + η
+ β min

p∈Pt(st)
Ep[Ut+1(C; st, st+1)], (3.1)

where β is the subjective discount factor, ϕ is a scaling parameter that determines hours

worked, and η is the inverse of Frisch labor supply elasticity. Pt(st) is a set of conditional

probabilities about next period’s state st+1 ∈ St+1. We specify the evolution of this set in

section 3.2.2.8

The household maximizes utility subject to the budget constraint

Ct +Bt +

∫
P e
l,tθl,tdl ≤ WtHt +Rt−1Bt−1 +

∫
(Dl,t + P e

l,t)θl,t−1dl + Tt,

where Bt is the one-period risk-free bond, Wt is the real wage, Rt is the risk-free interest

rate, and Tt is a transfer. Dl,t and P e
l,t are the dividend payout and the price of a unit of

share θl,t of firm l, respectively.

Firms

There is a continuum of firms, indexed by l ∈ [0, 1], which act in a perfectly competitive

manner. They use capital Kl,t−1, which is utilized at rate Ul,t, and hire labor Hl,t to produce

goods Yl,t according to the production function

Yl,t = At{zl,t(Ul,tKl,t−1)α(γtHl,t)
1−α + γtνl,t}, νl,t ∼ N(0, σ2

ν), (3.2)

where γ is the growth rate of labor augmenting technical progress. The scale of the

idiosyncratic i.i.d. shock νl,t grows at rate γ, which ensures that the shock does not vanish

8The recursive formulation ensures that preferences are dynamically consistent. Details and axiomatic
foundations are in Epstein and Schneider (2003b). If the set is singleton we obtain standard separable log
utility with those conditional beliefs. Otherwise, agents are not willing to integrate over the beliefs and
narrow down the set to a singleton. In response, households take a cautious approach to decision making
and act as if the true data generating process is given by the worst-case conditional belief.
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along the balanced growth path. zl,t is an idiosyncratic technology shock that follows9

zl,t = (1− ρz)z̄ + ρzzl,t−1 + εz,l,t, εz,l,t ∼ N(0, σ2
z), (3.3)

and At is an aggregate technology shock that follows

lnAt = ρA lnAt−1 + εA,t, εA,t ∼ N(0, σ2
A).

Firms cannot directly observe the realizations of idiosyncratic shocks zl,t and νl,t. This

informational assumption leads to a non-invertibility problem: Firms cannot tell whether an

unexpectedly high realization of output is due to an increase in individual technology or a

favorable transitory disturbance. Instead, they need to form the estimates using all other

available information, including the path of output and inputs. In contrast, they perfectly

observe the aggregate shock At.

Firms choose {Ul,t, Kl,t, Hl,t, Il,t} to maximize shareholder value

E∗0

∞∑
t=0

M t
0Dl,t, (3.4)

where we use E∗0 to denote expectation under the worst case probability. Random variables

M t
0 denote prices of t-period ahead contingent claims based on conditional worst case

probabilities and is given by

M t
0 = βtλt,

where λt is the marginal utility of consumption at time t by the representative household.

Dl,t is the dividend payout given by

Dl,t = Yl,t −WtHl,t − Il,t − a(Ul,t)Kl,t−1,

where Il,t is investment and a(Ul,t) is the cost of utilization.10 Their capital stock follows the

law of motion

Kl,t = (1− δ)Kl,t−1 + Il,t.

9We assume that the idiosyncratic shock zl,t follows a normal process, a technical assumption that is
useful in solving the learning problem because it makes the information friction linear.

10We specify: a(U) = 0.5χ1χ2U
2 +χ2(1−χ1)U +χ2(0.5χ1− 1), where χ1 and χ2 are parameters. We set

χ2 so that the steady-state utilization rate is one. The cost a(U) is increasing in the rate of utilization and
χ1 determines the degree of the convexity of utilization costs. In a linearized equilibrium, the dynamics are
controlled by the value of χ1.
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Interpretation of the additive shock

We generate a procyclical signal-to-noise ratio by adding an unobservable additive shock

νl,t to the production function. In Appendix 8.1, we offer an additional interpretation of

this shock based on noisy demand signals, in which firms learn more about the demand

of their goods when they produce and sell more. In that version of the model, firms are

subject to unobservable idiosyncratic shocks to the weight attached to their goods in the

CES aggregator for final goods. It is natural to interpret the shock as a shock to the quality

or demand of goods produced by an individual firm l. The additive shock, which vanishes

in the aggregate due to the law of large numbers, is replaced with an i.i.d. observation error

of the underlying idiosyncratic shock; agents observe noisy signals about the demand, whose

precision is increasing in the level of individual production.

Market clearing and resource constraint

We impose the market clearing conditions for the labor market and the bond market:

Ht =

∫ 1

0

Hl,tdl, Bt = 0.

The resource constraint is given by

Ct + It +Gt +

∫ 1

0

a(Ul,t)Kl,t−1dl = Yt

where It ≡
∫ 1

0
Il,tdl and Gt is the government spending. We assume that the government

balances budget each period (Gt = −Tt). We also assume Gt +
∫ 1

0
a(Ul,t)Kl,t−1dl = gtYt

where gt follows

ln gt = (1− ρg)ḡ + ρg ln gt−1 + εg,t, εg,t ∼ N(0, σ2
g).

Timing

The timing of events within a period t is as follows:

Stage 1 : Pre-production stage

• Agents observe the realization of aggregate shocks (At and gt).

• Given forecasts about the idiosyncratic technology and its associated worst-case

scenario, firms make utilization decisions and hire labor (Ul,t and Hl,t). The

household supply labor Ht and the labor market clears at the wage rate Wt.
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Stage 2 : Post-production stage

• Idiosyncratic shocks zl,t and νl,t realize (but are unobservable) and production

takes place.

• Given output and input, firms update estimates about their idiosyncratic tech-

nology and use it to form forecasts for production next period.

• Firms make investment Il,t and pay out dividends Dl,t. The household makes

consumption and asset purchase decisions (Ct, Bt, and θl,t).

3.2 Uncertainty and preferences

3.2.1 Learning about idiosyncratic productivity

Firms form estimates about the idiosyncratic shock zl,t from the observables. Since the

problem is linear and Gaussian, Bayesian updating using Kalman filter is optimal from

the statistical perspective of minimizing the mean square error of the estimates. To ease

notation, we set the trend growth rate γ to zero.11 We denote Fl,t ≡ (Ul,tKl,t−1)αH1−α
l,t . After

production at period t, the measurement equation of the Kalman filter is given by

Yl,t/At = Fl,tzl,t + νl,t,

and the transition equation is given by

zl,t = (1− ρz)z̄ + ρzzl,t−1 + εz,l,t. (3.5)

Note that, unlike the standard time-invariant Kalman filter, the coefficient in the mea-

surement equation, Fl,t, is time-varying.12 The key property of our filtering system is that

the signal-to-noise ratio is procyclical, which follows from the fact that the input Fl,t is

procyclical. The flip side implication of this property is that uncertainty is countercyclical:

the posterior variance of idiosyncratic technology zl,t rises during recessions. Intuitively, when

a firm puts less resources into production, its estimate about its productivity is imprecise

because the level of output is largely determined by the realization of the transitory shock.

Conversely, its estimate is accurate when it uses more resources because output mostly

reflects the realization of productivity.

11The learning problem of the model with positive growth is provided in Appendix 8.2 along with other
equilibrium conditions.

12However, also note that, after production, the coefficient is pre-determined, which allows us to use
Kalman filter.
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To characterize the filtering problem, we start by deriving the one-step-ahead prediction

from the period t− 1 estimate z̃l,t−1|t−1 and its associated error variance Σl,t−1|t−1. We have

z̃l,t|t−1 = (1− ρz)z̄ + ρz z̃l,t−1|t−1,

Σl,t|t−1 = ρ2
zΣl,t−1|t−1 + σ2

z .

Then, given observables (output Yl,t and aggregate productivity At) firms update their

estimates according to

z̃l,t|t = z̃l,t|t−1 +Gainl,t(Yl,t/At − z̃l,t|t−1Fl,t), (3.6)

where Gainl,t is the Kalman gain and is given by

Gainl,t =

[
F 2
l,tΣl,t|t−1

F 2
l,tΣl,t|t−1 + σ2

ν

]
F−1
l,t . (3.7)

The updating rule for variance is

Σl,t|t =

[
σ2
ν

F 2
l,tΣl,t|t−1 + σ2

ν

]
Σl,t|t−1. (3.8)

Intuitively, the error variance is increasing in the un-informativeness of the observation,

which is the variance of noise divided by the total variance. We can see that, holding Σl,t|t−1

constant, the posterior variance Σl,t|t increases as input Fl,t decreases.

The dynamics of the idiosyncratic technology zl,t according to the Kalman filter can thus

be described as

zl,t+1 = (1− ρz)z̄ + ρz(z̃l,t|t + ul,t) + εz,l,t+1, (3.9)

where ul,t is the estimation error of zl,t and ul,t ∼ N(0,Σl,t|t).

3.2.2 Ambiguity

We assume that the representative agent that owns the firms perceives ambiguity about the

idiosyncratic shock zl,t. The agent uses observed data to learn about the hidden technology

by using the Kalman filter to obtain a benchmark probability distribution. Ambiguity is

modeled as a one-step ahead set of conditional beliefs Pt(st) in (3.1), which here consists

of alternative probability distribution surrounding the benchmark controlled by a bound

on the relative entropy distance. Thus, our ambiguity-averse agents continue to use the

ordinary Kalman filter to estimate the latent technology and evaluate plans according to the
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worst-case means that are implied by the posterior estimates.

The agent is not confident in the benchmark Kalman filter estimate z̃l,t in (3.9) and

considers a set of probability distributions, of the form

zl,t+1 = (1− ρz)z̄ + ρz z̃l,t|t + µ∗l,t+1 + ρzul,t + εz,l,t+1, (3.10)

where µl,t+1 ∈ [−al,t, al,t]. From the perspective of the agent, a change in posterior variance

translates into a change in uncertainty about the one-step-ahead realization of technology.

As in Bianchi et al. (2014), the change in uncertainty, in turn, affects the set of possible

µl,t+1 and thus the worst-case mean.

More precisely, agents only consider the conditional means µ∗l,t+1 that are sufficiently

close to the long run average of zero in the sense of relative entropy:

(µ∗l,t+1)2

2ρ2
zΣl,t|t

≤ 1

2
η2
a, (3.11)

where the left hand side is the relative entropy between two normal distributions that share

the same variance ρ2
zΣl,t|t, but have different means (µ∗l,t+1 and zero), and ηa is a parameter

that controls the size of the entropy constraint. Agents compare the normal distributions

with variance ρ2
zΣl,t|t because we assume that they only treat the estimation error ut as

ambiguous. They are fully confident in the law of motion in equation (3.5) and treat the

technology shock εz,l,t+1 as risk. The relative entropy can be thought of as a measure of

distance between the two distributions. When uncertainty Σl,t|t is high, it becomes difficult

to distinguish between different processes. As a result, agents become less confident and

contemplate wider sets µl,t+1 of conditional probabilities.

The worst-case belief can be easily solved for at the equilibrium consumption plan: the

worst-case expected idiosyncratic productivity is low. In particular, equation (3.11) implies

that the worst-case mean is given by

−al,t = −ηaρz
√

Σl,t|t. (3.12)

Thus, the agent’s cautious behavior faced with the set Pt(st) of beliefs results in acting as if

the conditional mean of each firm’s idiosyncratic technology is given by the worst-case mean

in (3.12). We denote conditional moments under these worst case belief by stars.

We make two additional remarks. The first concerns the role of experimentation. In

Bayesian decision making, experimentation is valuable because it raises expected utility by

improving posterior precision. Ambiguity-averse agents also value experimentation since it

affects utility by tightening the set of conditional probability considered. In our model,
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firms take into account the impact of the level of input on worst-case mean when they

make decisions. Although we allow active learning by firms, our model can still be solved

using standard linear methods. When we present our quantitative results, we assess the

contribution of experimentation by comparing our baseline results with those under passive

learning, i.e. where agents do not actively experiment.

The second remark is to note that the shareholder value, under which firms take optimal

decisions in equation (3.4), depends on the worst case expectations E∗0 . This is because

state prices reflect the representative household’s ambiguity. An important feature is that,

unlike the case of risk, the idiosyncratic uncertainty that shows up in these state prices does

not vanish under diversification. Uncertainty affects ambiguity-averse household’s utility by

lowering the worst-case mean and hence the household acts as if the mean of each individual

firm’s technology is lower. As a result, ambiguity is not diversified away in the aggregate

and uncertainty lowers the mean of the expected aggregate technology.13

4 Equilibrium characterization and solution

We start by discussing the recursive representation of the model. We then build on the

framework to describe the solution method we use to solve for the equilibrium law of motion.

Finally, we characterize the endogenous wedges that arise from equilibrium fluctuations in

uncertainty.

4.1 Recursive competitive equilibrium

As in Angeletos et al. (2014), it is useful to divide the agents’ problem into two stages;

stage 1 (pre-production stage) and stage 2 (post-production stage). To ease exposition,

we abstract from utilization momentarily. We collect exogenous aggregate state variables

(such as aggregate TFP) in a vector X with a cumulative transition function F (X ′|X).

The endogenous aggregate state is the distribution of firm-level variables. A firm’s type is

identified by the posterior mean estimate of productivity z̃l, the posterior variance Σl, and its

capital stock Kl. The worst-case TFP is not included because it is implied by the posterior

mean and variance. We denote the cross-sectional distribution of firms’ type by ξ1 and ξ2.

ξ1 is a stage 1 distribution over (z̃l,Σl, Kl) and ξ2 is a stage 2 distribution over (z̃′l,Σ
′
l, Kl).

13See Marinacci (1999) or Epstein and Schneider (2003a) for formal treatments of the law of large numbers
for i.i.d. ambiguous random variables. There they show that sample averages must (almost surely) lie in
an interval bounded by the highest and lowest possible mean, and these bounds are tight in the sense that
convergence to a narrower interval does not occur.

14



ξ′1, in turn, is a distribution over (z̃′l,Σ
′
l, K

′
l) at stage 1 in the next period.14

First, consider the household’s problem. The household’s wealth can be summarized by

a portfolio
−→
θl which consists of share θl for each firm and the risk-less bond holdings B. We

use V h
1 and V h

2 to denote the household’s value function at stage 1 and stage 2, respectively.

We use m to summarize the income available to the household at stage 2. The household’s

problem at stage 1 is

V h
1 (
−→
θl , B; ξ1, X) = max

H

{
− ϕH

1+η

1 + η
+ E∗[V h

2 (m̂; ξ̂2, X)]

}
s.t. m̂ = WH +RB +

∫
(D̂l + P̂l)θldl

(4.1)

where we momentarily use the hat symbol to indicate random variables that will be resolved

at stage 2. The household’s problem at stage 2 is

V h
2 (m; ξ2, X) = max

C,
−→
θl ′,B′

{
lnC + β

∫
V h

1 (
−→
θl
′, B′; ξ′1, X

′)dF (X ′|X)

}
s.t. C +B′ +

∫
Plθ
′
ldl ≤ m

ξ′1 = Γ(ξ2, X)

(4.2)

In problem (4.1), households choose labor supply based on the worst-case stage 2 value (recall

that we use E∗ to denote worst-case conditional expectations). The problem (4.2), in turn,

describes the household’s consumption and asset allocation problem given the realization of

income and aggregate states. In particular, they take as given the law of motion of the next

period’s distribution ξ′1 = Γ(ξ2, X), which in equilibrium is consistent with the firm’s policy

function. Importantly, in contrast to the stage 2 problem, a law of motion that describes the

evolution of ξ2 from (ξ1, X) is absent in the stage 1 problem. Indeed, if there is no ambiguity

in the model, agents take as given the law of motion ξ2 = Υ(ξ1, X), which in equilibrium is

consistent with the firm’s policy function and the true data generating process of the firm-

level TFP. Since agents are ambiguous about each firm’s TFP process, they cannot settle

on a single law of motion about the distribution of firms. Finally, the continuation value at

stage 2 is governed by the transition density of aggregate exogenous states X.

Next, consider the firms’ problem. We use vf1 and vf2 to denote the firm’s value function

14See also Senga (2015) for a recursive representation of an imperfect information heterogeneous-firm
model with time-varying uncertainty.
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at stage 1 and stage 2, respectively. Firm l’s problem at stage 1 is

vf1 (z̃l,Σl, Kl; ξ1, X) = max
Hl

E∗[vf2 (ˆ̃z′l,Σ
′
l, Kl; ξ̂2, X)]

s.t. Updating rules (3.6) and (3.8)
(4.3)

and firm l’s problem at stage 2 is

vf2 (z̃′l,Σ
′
l, Kl; ξ2, X) = max

Il

{
λ(Yl −WHl − Il) + β

∫
vf1 (z̃′l,Σ

′
l, K

′
l ; ξ
′
1, X

′)dF (X ′|X)

}
s.t. K ′l = (1− δ)Kl + Il

ξ′1 = Γ(ξ2, X)

(4.4)

where we simplify the exposition by expressing a firm’s value in terms of the marginal utility

λ of the representative household. Similar to the household’s problem, a firm’s problem at

stage 1 is to choose the labor demand so as to maximize the worst-case stage 2 value. Note

that the posterior mean z̃′l will be determined by the realization of output Yl at stage 2 while

the posterior variance Σ′l is determined by Σl and the input level at stage 1. In problem

(4.4), the firm then chooses investment taking as given the realization of output and the

updated estimates of its productivity. Note that, as in the household’s problem, firms take

as given the (equilibrium) law of motion of the distribution of firms in the stage 2 problem

but not in the stage 1 problem.

The discussion above highlights one of the key features of our model; the level of labor

input is chosen before the realization of firm-level productivity and that this timing arises

naturally from imperfect information about the underlying productivity process. This

labor-in-advance feature allows us to circumvent the Barro and King (1984) critique and

hence generate feedback effects of time-varying uncertainty consistent with business cycle

co-movement without additional rigidities.

We conclude this subsection by providing a brief definition of the recursive competitive

equilibrium of our model. The recursive competitive equilibrium is a collection of value

functions, policy functions, and prices such that

1. Households and firms optimize; (4.1) – (4.4).

2. The labor market, goods market, and asset markets clear.

3. The law of motion ξ′1 = Γ(ξ2, X) is induced by the firms’ policy function Il(z̃
′
l,Σ

′
l, Kl; ξ2, X).
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4.2 Log-linearized solution

We solve for the equilibrium law of motion using standard log-linear methods. This is possible

for two reasons. First, since the filtering problem firms face is linear, the law of motion of

the posterior variance can be characterized analytically (Saijo (2014)). Because the level

of inputs has first-order effects on the level of posterior variance, linearization captures the

impact of economic activity on confidence. Second, we consider ambiguity about the mean

and hence the feedback from confidence to economic activity can be also approximated

by linearization. In turn, log-linear decision rules facilitate aggregation because the cross-

sectional mean becomes a sufficient statistic for tracking aggregate dynamics.

We follow Ilut and Schneider (2014) and solve for the equilibrium law of motion using a

guess-and-verify approach:

(a) guess the worst case beliefs p0.

(b) solve the model assuming that agents have agents have expected utility and beliefs p0.

(c) compute the agent’s value function V .

(d) verify that the guess p0 indeed achieves the minima.

In what follows we explain step (b) by deriving log-linearized expressions for the expected

worst-case output at stage 1 and the realized output at stage 2.15 We use the example to

illustrate that uncertainty about the firm-level TFP has a first-order effect at the aggregate.

We first find the worst-case steady state by evaluating a deterministic version of the

filtering problem and standard first-order conditions under the guessed worst-case belief.

Potential complications arise because the worst-case TFP depends on the level of economic

activity. Since the worst-case TFP, in turn, determines the level of economic activity, there

could be multiple steady states. We circumvent this multiplicity by treating the posterior

variance of the level of idiosyncratic TFP as a parameter and by focusing on the steady state

that is implied by that posterior variance.

Next, we log-linearize the model around the worst-case steady state. To do this, we first

log-linearize the expected worst-case output of individual firm l at stage 1:

E∗t Ŷ
0
l,t = Ẑ0

t + E∗t ẑ
0
l,t + F̂ 0

l,t, (4.5)

and the realized output of individual firm l at stage 2:

Ŷ 0
l,t = Ẑ0

t + ẑ0
l,t + F̂ 0

l,t, (4.6)

15We provide a general description of the procedure in Appendix 8.3.
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where we use x̂0
t = xt − x̄0 to denote log-deviations from the worst-case steady state and

set the trend growth rate γ to zero to ease notation. The worst-case individual output

(4.5) is the sum of three components: the current level of aggregate TFP, the worst-case

individual TFP, and the input level. The realized individual output (4.6), in turn, is the

sum of aggregate TFP, the realized individual TFP, and the input level.

We then aggregate the log-linearized individual conditions (4.5) and (4.6) to obtain the

cross-sectional mean of worst-case individual output:

E∗t Ŷ
0
t = Â0

t + E∗t ẑ
0
t + F̂ 0

t , (4.7)

and the cross-sectional mean of realized individual output:

Ŷ 0
t = Â0

t + ẑ0
t + F̂ 0

t , (4.8)

where we simply eliminate subscript l to denote the cross-sectional mean, i.e., x̂0
t ≡

∫ 1

0
x̂0
l,tdl.

So far we have characterized the dynamics of output under the worst-case scenario. Our

final step is to characterize the dynamics under the true data generating process (DGP). To

do this, we feed in the cross-sectional mean of individual TFP, which is constant under the

true DGP, into (4.7) and (4.8). Using (4.7), the cross-sectional mean of worst-case output is

given by

E∗t Ŷt = Ât + E∗t ẑt + F̂t, (4.9)

where we use x̂t = xt− x̄ to denote log-deviations from the steady-state under the true DGP.

Using (4.8), the realized aggregate output is given by

Ŷt = Ât + F̂t, (4.10)

where we used ẑt = 0 under the true DGP. Importantly, E∗t ẑt in (4.10) is not necessarily zero

outside the steady state. To see this, combine (3.10) and (3.12) and log-linearize to obtain

an expression for E∗t ẑl,t:

E∗t ẑl,t = εz,z ˆ̃zl,t−1|t−1 − εz,ΣΣ̂l,t−1|t−1. (4.11)

From (3.8), the posterior variance is negatively related to the level of input F :

Σ̂l,t−1|t−1 = εΣ,ΣΣ̂l,t−2|t−2 − εΣ,F F̂l,t−1, (4.12)

The elasticities εz,z, εz,Σ, εΣ,Σ, and εΣ,F are functions of structural parameters and are all
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positive. We combine (4.11) and (4.12) to obtain

E∗t ẑl,t = εz,z ˆ̃zl,t−1|t−1 − εz,ΣεΣ,ΣΣ̂l,t−2|t−2 + εz,ΣεΣ,F F̂l,t−1. (4.13)

Finally, we aggregate (4.13) across all firms:

E∗t ẑt = −εz,ΣεΣ,ΣΣ̂t−2|t−2 + εz,ΣεΣ,F F̂t−1, (4.14)

where we used
∫ 1

0
ˆ̃zl,t−1|t−1dl = 0.16

Notice again that the worst-case conditional cross-sectional mean simply aggregates

linearly the worst-case conditional mean, −al,t, of each firm. Since the firm-specific worst-

case means are a function of idiosyncratic uncertainty, which in turn depend on the firms’

scale, equation (4.14) shows that the average level of economic activity, F̂t−1, has a first-order

effect on the cross-sectional average of the worst-case mean. For example, this means that

during recessions, firms on average produce less, which leads to lower confidence about their

firm-level TFP. This endogenous reduction in confidence further reduces equilibrium hours

worked and other economic activity.

4.3 Wedges from uncertainty

Co-movement and the labor wedge

Endogenous uncertainty leads to co-movement and a countercyclical labor wedge. This can

be analyzed by considering the optimal labor tradeoff of equating the marginal cost to the

expected marginal benefit under the worst-case belief E∗t

ϕHη
t = E∗t (λtMPLt) (4.15)

In the standard model, there is no expectation on the right-hand side. As emphasized by

Barro and King (1984), there hours and consumption move in opposite direction unless there

is a TFP or a labor supply shock (a shock to ‘ϕ’).

Instead, in our model, there can be such co-movement. Suppose that there is a period

of low confidence. From the negative wealth effect there is a low consumption, so the

standard effect would be to see high labor supply as a result of the high marginal utility of

consumption λt. However, because the firm chooses hours as if productivity is low, there is

a counter substitution incentive for hours to be low.

16This follows from aggregating the log-linearized version of (3.6) and evaluating the equation under the
true DGP. Intuitively, since the cross-sectional mean of idiosyncratic TFP is constant, the cross-sectional
mean of the Kalman posterior mean estimate is a constant as well.
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To see how the model generates countercyclical labor wedge, note that an increase in am-

biguity due to a reduction in labor supply looks, from the perspective of an econometrician,

like an increase in the labor income tax. The labor wedge can now be easily explained by

implicitly defining the labor tax τt as

ϕHη
t = (1− τt)λtMPLt

Using the optimality condition in (4.15), the labor tax is

τt = 1− E∗t (λtMPLt)

λtMPLt
(4.16)

Consider first the linear rational expectations case. There the role of idiosyncratic

uncertainty disappears and the labor tax in equation (4.16) is constant and equal to zero.

The reason is that our timing assumption that labor is chosen after the aggregate shocks

are realized and observed at the beginning of the period makes the optimality condition in

(4.15) take the usual form of an intratemporal labor decision.17

In our model, the role of idiosyncratic uncertainty does not vanish and instead it shows up

in the as if expected return to working, formed under the worst-case belief E∗t . Thus, even

if labor is chosen after aggregate shocks are realized and observed, the average idiosyncratic

uncertainty has a first-order effect on the cross-sectional average of the worst-case mean, as

detailed in section 4.2.

Consider now the econometrician that measures realized hours, consumption and the

marginal product of labor as of time t. While agents take the labor decision under E∗t , the

econometrician measures these equilibrium objects under the data generating process which

uses the average µ = 0. The difference between the worst-case distribution and the average

realization under the econometrician’s data generating process produces a labor wedge,

which, in log-linear deviations, is inversely proportional to the time-varying confidence.

In a period of low confidence, the ratio between the expected benefit to working under the

worst-case belief compared to the econometrician’s measure of λtMPLt is typically lower.

Thus the econometrician rationalizes the ‘surprisingly low’ labor supply by a high labor tax τt.

In turn, the low confidence is generated endogenously from a low level of average economic

activity, as reflected in the lower cross-sectional average of the worst-case mean, as given

17If we would assume that labor is chosen before the aggregate shocks are realized, there would be a
fluctuating labor tax in (4.16) even in the rational expectations model. In that model, the wedge is τt = 1−
Et−1(λtMPLt)

λtMPLt
, where, by the rational expectations assumptions, Et−1 reflects that agents form expectations

using the econometrician’s data generating process. Crucially, in such a model, the labor wedge τt will not
be predictable using information at time t− 1, including the labor choice, such that Et−1τt = 0. In contrast,
our model with learning produces predictable, countercyclical, labor wedges.

20



by equation (4.14). Thus, the econometrician will find a systematic negative relationship

between economic activity and the labor income tax. This relationship is consistent with

empirical studies that suggest that in recessions labor falls by more than what can be

explained by the marginal rate of substitution between labor and consumption and the

measured marginal product of labor (see for example Shimer (2009) and Chari, Kehoe, and

McGrattan (2007)). This countercyclical labor wedge does not arise from separate labor

supply shocks but instead it is generated by any underlying shock that moves labor supply.

Finally, for an ease of exposition, we have described here the behavior of the labor wedge

by ignoring the potential effect of experimentation on the optimal labor choice. This effect

adds an additional reason why labor moves ‘excessively’, from the perspective of an observer

that only uses equation (4.15) to understand labor movements. As discussed in section 5.2,

experimentation amplifies the effects of uncertainty during the short-run, and thus leads to

even more variable labor wedges, while it dampens fluctuations in the medium-run.

Excess return

A similar logic applies to the countercyclical ex-post excess return. The Euler conditions for

capital and risk-free assets state

λt = βE∗t [λt+1R
K
t+1] = βE∗t [λt+1Rt]

Under our linearized solution, E∗tR
K
t+1 = Rt, where E∗tR

K
t+1 is the expected return on

capital under the worst-case belief. During low confidence times, demand for capital will be

‘surprisingly low’. This is rationalized by the econometrician, measuring RK
t+1 under the true

DGP, as a high ex-post excess return RK
t+1−Rt. In the linearized solution, the excess return,

similarly to the labor tax, is inversely proportional to the time-varying confidence. In times

of low economic activity, when confidence is low, the measured excess return is high.

Thus, the model can generate a countercyclical labor wedge at times when the measured

premia on uncertain assets is high.18 This arises from any type of shock that moves the

economic activity.

5 Quantitative results

We are interested in studying the role of endogenous firm-level uncertainty in business cycles.

In this section we evaluate the empirical performance of the calibrated version of our model

18The pricing logic can be extended to defaultable corporate bonds. This will likely generate countercyclical
excess bond premia, as documented for example by Gilchrist and Zakraǰsek (2012).
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Table 1: Parameters for the calibration exercise

γ α β η δ χ1 ηa Σ̄ ḡ ρz σz ρA ρg
1.004 0.3 0.99 0 0.025 0.15 0.4 0.1 0.2 0.5 0.4 0.95 0.95

and contrast its quantitative implications with those of a standard RBC model. We find the

parsimony of this model a useful laboratory for the purpose of facilitating comparison with

the standard RBC paradigm. We perform a more ambitious quantitative exercise in Section

6, where we introduce further nominal and real rigidities and estimate the model using a

likelihood-based method.

5.1 Parameterization

Table 1 summarizes the parameters used in our exercise. In order to facilitate comparison

of our model with a standard RBC model, we use common values used in the literature

whenever possible.

The magnitude of the feedback loop between uncertainty and economic activity is

determined by three factors. The first factor is the variability of inputs which is determined

by the elasticities of labor supply and capital utilization. Regarding the labor supply

elasticity, it is well known that standard real business cycles models understate the volatility

of hours compared to the data. Motivated by this tension, we set the inverse Frisch elasticity

η equal to zero following the indivisible labor model by Hansen (1985) and Rogerson (1988).

We set the parameter that relates utilization rate to depreciation (χ1) so that in equilibrium

utilization rate is slightly less volatile than output.19

Second, the parameters that are related to the idiosyncratic processes control how changes

in inputs translate to changes in the posterior variance. We choose ρz = 0.5 and σz = 0.4

for the idiosyncratic TFP process. Idiosyncratic TFP is less persistent than the aggregate,

which is in line with the finding in Kehrig (2015). The values imply a cross-sectional standard

deviation of TFP of 0.46 and is in line with the estimates found in Bloom et al. (2014)

using the establishment-level data. Recall from the Discussion in section 4.2 that we re-

parameterize the model so that we take the worst-case steady state posterior variance Σ̄0

of idiosyncratic TFP as a parameter. This posterior variance, together with ρz and σz, will

pin down the standard deviation of the additive shock σν . David et al. (2015) estimate the

posterior variance of a firm-specific shock (in the context of our model, a TFP shock) to

19In the data, the standard deviation of the capacity utilization index, provided by the Federal Reserve
Board of Governors, is more than twice as the standard deviation of GDP.
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be around 8–13%. We choose the worst-case steady state posterior variance so that at the

zero-risk steady state the posterior variance Σ̄ is 10%.20

Finally, the size of the entropy constraint ηa determines how changes in the posterior

variance translate into changes in confidence. To gauge the size of ambiguity that agents

face, we use the cross-sectional mean of the dispersions of firm-level capital return forecasts

across analysts from the Institutional Brokers’ Estimate System (I/B/E/S) data. Specifically,

we compute the min-max range of forecasts, defined as (max-min)/mean, for each firms and

take the cross-sectional average.21 For example, if there are three analysts for a firm X and

the analyst 1’s return on capital forecast is 8%, the analyst 2’s forecast is 10%, and the

analyst’s forecast is 12%, then this will deliver a min-max range of 40%.22 Averaged across

the period 1985–2014, the cross-sectional mean of min-max range of forecasts is 43%. The

model counterpart of the min-max range by analysts is the cross-sectional mean of min-max

range of the capital return forecast implied by the set of productivity process (3.10) at the

zero-risk steady state, where the minimum forecast is based on the worst-case mean µ∗l = −al
and the maximum forecast is based on the best-case mean µ∗l = al. We set ηa = 0.4, which

generates the steady-state min-max range of forecasts of 39%.23

Our parameterization implies that the cross-sectional mean of the worst-case individual

TFP at the zero-risk steady state is about 94 percent of the actual realized level. The Kalman

gain at the zero-risk steady state, normalizing the level of input to one, is 0.47. To put this

in perspective, the gain implies that an observation from quarters ago will receive a weight

(1− 0.47)4 ≈ 0.08. Thus, learning is fairly precise and quick under our parameterization.

5.2 Impulse response analysis

Figure 1 plots the impulse response to a positive TFP shock.24 In addition to the response

from the baseline model (labeled ‘Baseline’), we also report the responses from the model

with passive learning (labeled ‘Passive’), in which the firm does not internalize the effect

of its input choice on its future uncertainty, and the standard rational expectation (RE)

RBC model (labeled ‘RE’). The solution to the RE model is obtained by simply setting

20The zero-risk steady state is the ergodic steady state of the economy where optimality conditions take
into account uncertainty and the data is generated under the econometrician’s DGP. Appendix 8.3 provides
additional details.

21We are grateful to Tatsuro Senga for providing us the statistics.
22During 1985–2014, the average number of firms sampled each year is 1460 and the average number of

analysts surveyed for each firm is 9.8 in the I/B/E/S data set.
23Larger ambiguity leads to a higher min-max range of the capital return forecasts. For example, setting

ηa = 0.3, holding other parameters fixed, generates a min-max range of 29% and ηa = 0.5 generates a 50%
range. Ilut and Schneider (2014) argue that a reasonable upper bound for ηa is 2, based on the view that
agents’ ambiguity should not be “too large”, in a statistical sense, compared to the variability of the data.

24We show the response to 0.1% increase in TFP.
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Figure 1: Impulse response to an aggregate TFP shock
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Figure 2: Impulse response to a government spending shock
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the entropy constraint ηa to zero. In this case, agents think in terms of single probabilities

and the model reduces to a rational expectation model. Note that when ηa = 0, firm-level

learning cancels out in the aggregate due to linearization and the law of large numbers.

Compared to the RE version, our model generates amplified and hump-shaped response in

output, investment, and hours. These dynamics are due to the endogenous variation in firms’

confidence. In response to a positive TFP shock, firms (on average) increase their inputs,

such as hours and the capital utilization rate. The increase in inputs lowers uncertainty

which implies that firms contemplate a narrower set of conditional probabilities; the worst-

case scenarios become less worse. As a result, the agent acts as if the mean idiosyncratic

productivities are higher and this may further stimulate economic activity. At the same

time, from the perspective of the econometrician, labor supply and the demand for capital

are surprisingly high. Thus, both labor wedge and ex-post excess return on capital decline.

Finally, we compare our baseline impulse response with the response from the passive

learning model. Initially the output and hours responses of the baseline model with active

learning are larger than those of passive learning. In the medium run, however, the responses

of passive learning become larger. This is due to a dynamic interaction of two opposing

forces. On one hand, higher production during booms increases the value of experimentation

because it raises the marginal benefit of an increase in the expected worst-case technology.

On the other hand, there is an offsetting effect coming from a reduction in posterior variance.

Since the level of posterior variance is downward convex in the level of inputs, the marginal

reduction in posterior variance due to an increase in inputs is smaller during booms. During

the initial period of a positive technology shock, the first effect dominates the second. As

the economy slows down, the second effect becomes more important.

Figure 2 shows the impulse response to a 1% increase in government spending. In the

standard RBC model, due to the negative wealth effect hours increase but consumption

decline. In our model, an increase in government spending, due to its effects of raising hours

worked, also raises firms’ confidence, which further stimulates economic activity. As a result,

output, hours, and investment increases are larger. The negative response of consumption

is overturned after five periods due to the positive income effect generated by the increase

in confidence. Thus, a demand shock, such as the government spending shock may lead to

positive comovement in consumption and labor.

5.3 Business cycle moments

Table 2 reports the HP-filtered second moments. To facilitate comparison with the standard

RBC model, we assume that the only source of aggregate disturbance is the TFP shock.
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Table 2: HP-filtered moments

Data Our model RE
Standard deviations
σ(y) 1.11 1.11 0.41
σ(c)/σ(y) 0.72 0.05 0.09
σ(i)/σ(y) 3.57 3.40 3.40
σ(h)/σ(y) 1.64 1.00 0.92
Correlations with labor wedge
σ(y, τl) -0.83 -0.98 0
σ(h, τl) -0.97 -0.98 0
Autocorrelations
σ(yt, yt−1) 0.89 0.88 0.68
σ(∆yt,∆yt−1) 0.39 0.49 -0.05

Notes: Both data and model moments are in logs, HP-filtered (λ = 1600) if the variables are in levels, and
multiplied by 100 to express them in percentage terms. The model moments are the median values from
200 replications of simulations of 120 periods (after throwing away the initial 50 periods). The sample
period for the data is 1985Q1–2014Q4. We choose the standard deviation of the aggregate TFP shock so
that the output standard deviation in the baseline model matches the data. The government spending
shock is set to zero.

First, with endogenous uncertainty the output standard deviation is more than twice

larger than the RE version. The baseline model is also successful in generating a larger

standard deviation of hours relative to output. The low volatility of hours has been a major

shortcoming of RBC theories. Our model is less successful in reproducing the volatilities of

consumption and investment. Second, our model can replicate the strong negative correlation

of economic activity and the labor wedge. Third, our model gives a closer match in terms of

autocorrelations. The baseline model generates higher autocorrelations in levels and, more

importantly, positive autocorrelations in growth rates of output. As pointed out by Cogley

and Nason (1995) and Rotemberg and Woodford (1996), a standard RBC model cannot

generate persistence in output growth due to its weak internal propagation mechanism.

6 Empirical investigation: Bayesian estimation and

firm-level evidence

In the previous section, we investigated the quantitative potential of endogenous uncertainty

using a calibrated version of the model. In this section, we embed the learning mechanism
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into two DSGE models and conduct Bayesian likelihood estimations on US data. We ask two

main questions. First, does endogenous uncertainty still play a key role when conventional

rigidities are introduced? In turn, how important are those conventional rigidities when our

learning mechanism is in place? Second, how does endogenous uncertainty affect inference

about the source of business cycles and outcomes of policy experiments? We conclude the

section by providing some firm-level data that supports the key implication of our model.

6.1 Models with conventional rigidities

We estimate two DSGE models: a flexible-price and a sticky-price model. In the flexible-

price model, we augment the baseline model introduced in the previous section with two

real rigidities. Specifically, we modify the representative household’s utility (3.1) to allow

for habit persistence in consumption:

Ut(C; st) = ln(Ct − bCt−1)− ϕH
1+η
t

1 + η
+ β min

p∈Pt(st)
Ep[Ut+1(C; st, st+1)],

where b > 0 is a parameter, and introduce an investment adjustment cost into the capital

accumulation equation:

Kl,t = (1− δ)Kl,t−1 +

{
1− κ

2

(
Il,t
Il,t−1

− γ
)2}

Il,t, (6.1)

where κ > 0 is a parameter.

In the sticky-price model, in addition to the consumption habit and investment ad-

justment cost, we consider Calvo-type price and wage stickiness along with monopolistic

competition.25 We assume a Taylor-type reaction function by the central bank:

Rt

R̄
=

(
Rt−1

R̄

)ρR[(πt
π̄

)φπ(Yt
Ȳ

)φY ]1−ρR
εR,t, εR,t ∼ N(0, σ2

R,t),

where π̄ is the inflation target, R̄ = π̄γ/β, and Ȳ is output along the balanced growth path.

ρR, φπ, and φY are parameters and εR,t is a monetary policy shock.

25To avoid complications arising from directly embedding infrequent price adjustment into firms, we follow
Bernanke et al. (1999) and assume that the monopolistic competition happens at the “retail” level. Retailers
purchase output from firms in a perfectly competitive market, differentiate them, and sell them to final-goods
producers, who aggregate retail goods using the conventional CES aggregator. The retailers are subject to
the Calvo friction and thus can adjust their prices in a given period with probability 1 − ξp. To introduce
sticky wages, we assume that households supply differentiated labor services to the labor packer with a CES
technology who sells the aggregated labor service to firms. Households can only adjust their wages in a given
period with probability 1− ξw.
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Finally, we introduce a “financial wedge” shock ∆k
t to agents’ Euler equation for capital

accumulation (Christiano et al. (2015)):

1 = (1−∆k
t )E

∗
tMt+1R

k
t+1,

where Mt+1 ≡M t+1
0 /M t

0 and Rk
t+1 is the return on capital. We assume the process for ∆k

t :

∆k
t = (1− ρ∆)∆̄k + ρ∆∆k

t−1 + ε∆,t, ε∆,t ∼ N(0, σ2
∆).

Combining the Euler equation for the risk-free asset, 1 = E∗tMt+1Rt, with that for capital

accumulation and rearranging, we obtain ∆k
t ' E∗tR

k
t+1−Rt. As discussed in Christiano et al.

(2015), the financial wedge could reflect variations in costs of financial intermediation such

as bankruptcy costs or changes in the desirability of corporate bonds due to, for example,

liquidity concern. In addition, our model generates the wedge through endogenous variation

in confidence. We include the financial wedge shock because of a wide perception that

financial frictions played a key role during the Great Recession. Our main focus is to explore

how endogenous uncertainty affects the propagation of the financial wedge shock.

6.2 Bayesian estimation

Because the aggregate law of motion is linear, we can use standard Bayesian techniques

as described in An and Schorfheide (2007) to estimate the model. The sample period is

1985Q1–2014Q4. The data is described in Appendix 8.5. For the flexible-price model, the

vector of observables are

[∆ lnYt,∆ lnHt,∆ ln It,∆ lnCt, Spreadt],

where Spreadt is the Baa corporate bond yield relative to the yield of Treasury bond with

ten-year maturity.26 We assume that the model counterpart of Spreadt is the excess-return

on capital so that Spreadt = Rk
t − Rt−1.27 For the sticky-price model, we add inflation and

26We also used the spread constructed in Gilchrist and Zakraǰsek (2012) and obtained similar results.
27To understand what causes variations in the spread, it is useful to decompose it into three components:

Spreadt = (E∗
t−1R

k
t −Rt−1) + (Rkt − E

′

tR
k
t ) + (E

′

tR
k
t − E∗

t−1R
k
t ), (6.2)

where we use E
′

t to use worst-case expectations at the end of stage 1 (after the realization of period t aggregate
shock but before the realization of idiosyncratic shocks). The financial wedge shock ∆k

t causes variations
in the first component, changes in confidence cause variations in the second component, and innovations to
aggregate shocks (such as TFP shocks) cause variations in the third component.
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the Federal funds rate to the observables:

[∆ lnYt,∆ lnHt,∆ ln It,∆ lnCt, ln πt, lnRt, Spreadt].

We fix a small number of parameters prior to estimation. The depreciation rate of

capital δ is set to 0.025. The steady-state share of government spending to output is

0.2. We set θp and θw so that the steady-state price and wage markups are both 10%.

The prior distributions for other structural parameters are collected in Table 3 and 4. For

most parameters, we choose relatively loose priors. We reparametrize the parameter that

determines the size of ambiguity (ηa) and instead estimate 0.5ηa. We set a Beta prior for

0.5ηa, centered around the calibrated value in the previous section, so that the lowest value

corresponds to rational expectations and the highest value corresponds to the upper bound

ηa = 2 suggested by Ilut and Schneider (2014). Since all our estimation exercises have less

structural shocks than observables, we add i.i.d. measurement error to observables except for

the interest rate. At the posterior mean, measurement error explains 1 percent of variation

of a particular observable while at one standard deviation it explains 5 percent.28

6.3 Results

Parameter estimates

Table 3 and 4 report the posterior distributions of the two models (labeled ‘Baseline’). For

comparison, we also report estimates of the rational expectations versions of the models

(labeled ‘RE’). Two key results emerge. First, aggregate data prefers sizable amount of

ambiguity. The posterior estimates of the parameter that determines the size of the entropy

constraint, ηa, are 1.24 and 1.32 for flexible-price and sticky-price models, respectively. The

posteriors imply that agents contemplate a set of conditional means whose bounds are given

by roughly ±1 standard deviations around the benchmark Kalman filter estimate.

Second, when we allow for endogenous ambiguity, the estimated degrees of real and

nominal rigidities are smaller than in the rational expectations versions. In the sticky-price

model, the Calvo probability of not being able to adjust the price decreases from ξp = 0.76

to ξp = 0.56 and the Calvo wage probability decreases from ξw = 0.96 to ξw = 0.02. To

put these into perspective, in the RE version of the model, prices are adjusted on average

every 1/(1− 0.76) ≈ 4 quarters and wages are adjusted every 1/(1− 0.96) = 25 quarters. In

contrast, in our baseline model prices are adjusted every 1/(1−0.56) ≈ 2 quarters and wages

are adjusted roughly every quarter. Compared to the RE version, the estimated frequency of

28The only exception to this is a measurement error for the spread; at one standard deviation it explains
20 percent of the variation.
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Table 3: Estimated parameters: preference, technology, and policy

Prior Posterior mode
Flexible price Sticky price

Type Mean Std Baseline RE Baseline RE
100(γ − 1) Growth rate N 0.5 0.3 0.48 0.47 0.57 0.34

[0.42, 0.55] [0.39, 0.56] [0.50, 0.62] [0.26, 0.43]

100(β−1 − 1) Discount factor G 0.25 0.05 1.01 1.01 0.27 0.19
[0.15, 0.34] [0.13, 0.26]

100(π̄ − 1) Net inflation N 0.5 0.3 – – 0.72 0.45
[0.58, 0.82] [0.17, 0.80]

α Capital share B 0.3 0.05 0.19 0.25 0.41 0.33
[0.14, 0.31] [0.21, 0.33] [0.33, 0.45] [0.28, 0.38]

η Inverse Frisch elasticity G 1 0.4 0.38 0.03 0.26 0.79
[0.23, 0.55] [0.01, 0.08] [0.14, 0.39] [0.89, 2.13]

χ1 Utilization cost G 0.7 0.3 0.46 0.08 0.22 1.27
[0.24, 0.85] [0.04, 0.23] [0.16, 0.31] [0.42, 2.00]

b Consumption habit B 0.4 0.1 0.53 0.40 0.47 0.62
[0.34, 0.65] [0.27, 0.53] [0.38, 0.62] [0.49, 0.71]

κ Investment adj. cost G 3 2 0.00 0.09 0.06 0.30
[0.00, 0.00] [0.07, 0.21] [0.05, 0.08] [0.20, 0.49]

ξp Calvo price B 0.5 0.2 – – 0.56 0.76
[0.52, 0.59] [0.71, 0.80]

ξw Calvo wage B 0.5 0.2 – – 0.02 0.96
[0.00, 0.03] [0.94, 0.97]

ρR Interest smoothing B 0.7 0.1 – – 0.57 0.35
[0.53, 0.64] [0.28, 0.45]

φπ Inflation response N 1.5 0.15 – – 1.91 2.10
[1.77, 2.12] [1.88, 2.28]

φY Output response N 0.1 0.05 – – 0.07 0.00
[0.06, 0.08] [-0.01, 0.00]

ρz Idiosyncratic TFP B 0.5 0.05 0.62 – 0.62 –
[0.46, 0.72] [0.57, 0.65]

σz Idiosyncratic TFP G 0.4 0.1 0.80 – 0.83 –
[0.68, 1.11] [0.72, 0.92]

0.5ηa Entropy constraint B 0.2 0.1 0.62 0 0.66 0
[0.46, 0.72] [0.60, 0.80]

Σ̄ SS posterior variance G 0.1 0.05 0.05 – 0.12 –
[0.03, 0.11] [0.03, 0.24]

Notes: B refers to the Beta distribution, N to the Normal distribution, G to the Gamma distribution, IG
to the Inverse-gamma distribution. 95% posterior intervals are in brackets and are obtained from 200,000
draws using the random-walk Metropolis-Hasting algorithm.
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Table 4: Estimated parameters: shocks and measurement errors

Prior Posterior mode
Flexible price Sticky price

Type Mean Std Baseline RE Baseline RE
ρA Aggregate TFP B 0.6 0.2 0.98 0.99 0.93 0.93

[0.93, 1.00] [0.99, 1.00] [0.89, 0.95] [0.90, 0.96]

ρg Government spending B 0.6 0.2 0.70 0.28 0.94 0.70
[0.21, 0.95] [0.12, 0.88] [0.72, 0.99] [0.26, 0.96]

ρ∆ Financial wedge B 0.6 0.2 0.53 0.27 0.98 0.94
[0.44, 0.62] [0.09, 0.59] [0.94, 1.00] [0.91, 0.95]

100σA Aggregate TFP IG 1 1 0.28 0.35 0.22 0.26
[0.23, 0.35] [0.26, 0.43] [0.19, 0.27] [0.22, 0.34]

100σg Government spending IG 1 1 0.50 0.78 0.90 0.44
[0.34, 0.94] [0.37, 1.01] [0.72, 1.10] [0.29, 0.67]

100σ∆ Financial wedge IG 0.1 1 0.10 0.03 0.05 0.06
[0.09, 0.12] [0.02, 0.04] [0.04, 0.06] [0.05, 0.07]

100σR Monetary policy IG 0.1 1 – – 0.04 0.03
[0.03, 0.05] [0.02, 0.04]

100σY Meas. error output IG 0.060 0.13 0.29 0.03 0.45 0.32
[0.11, 0.40] [0.02, 0.32] [0.40, 0.54] [0.22, 0.37]

100σH Meas. error hours IG 0.073 0.16 0.44 0.56 0.58 0.39
[0.38, 0.53] [0.46, 0.62] [0.47, 0.62] [0.33, 0.47]

100σI Meas. error investm. IG 0.18 0.40 1.07 0.99 1.21 1.06
[0.86, 1.32] [0.79, 1.16] [1.08, 1.39] [0.91, 1.26]

100σC Meas. error consum. IG 0.050 0.11 0.41 0.35 0.39 0.33
[0.35, 0.47] [0.31, 0.42] [0.33, 0.44] [0.29, 0.40]

100σspread Meas. error spread IG 0.018 0.08 0.01 0.20 0.01 0.28
[0.00, 0.03] [0.18, 0.24] [0.01, 0.05] [0.26, 0.34]

100σπ Meas. error inflation IG 0.024 0.11 – – 0.23 0.28
[0.19, 0.25] [0.25, 0.33]

Log marginal likelihood 2336 2262 3489 3413

Notes: See notes for Table 3.
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Figure 3: Estimated impulse response to a financial wedge shock in the flexible-price model
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Notes: Black solid line is the baseline impulse response and the red dashed line is the response where we

set the entropy constraint ηa = 0 while holding other parameters at their estimated values.

price change is thus more in line with the micro evidence presented in Bils and Klenow (2004).

The degree of consumption habit decreases by 25% (b = 0.62 to b = 0.47) and the investment

adjustment cost falls from κ = 0.3 to κ = 0.06. In the flexible-price model, while consumption

habit slightly increases with endogenous uncertainty, the investment adjustment cost falls

from κ = 0.09 to zero.29

Propagation of the financial wedge shock

We argue that the reason why our model requires smaller rigidities than the RE version

is because our learning mechanism provides strong internal propagation and induces co-

movement in response to the financial wedge shock.

To understand this, Figure 3 shows the estimated impulse response to a financial wedge

shock in the flexible-price model. In addition to the baseline impulse response (labeled ‘Base-

line’), we also display the response for a version of the model in which we set ηa = 0 and freeze

29The intuition for the increase in the habit parameter in the flexible-price model is as follows. As we will
see below, while endogenous uncertainty induces co-movement in response to a financial wedge shock in the
medium run, consumption moves in the opposite direction in the short run. Because in our baseline flexible-
price model the financial wedge shock accounts for a non-trivial variation of consumption, the estimation
tries to mitigate this initial negative co-movement by increasing the habit. In the sticky-price model, such
force is absent because all quantities move in the same direction from the initial period.
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Figure 4: Estimated impulse response to a financial wedge shock in the sticky-price model
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Notes: See notes for Figure 3.

the remaining parameters to the baseline estimated values (labeled ‘RE counterfactual’). In

the baseline, output, investment, and hours falls but consumption increase in the short run.

In the medium-run, however, consumption also falls because of the decline in confidence. At

the same time, the model generates hump-shaped dynamics even though the estimated real

rigidities are small. In the RE counterfactual, on the other hand, consumption and other

variables move in the opposite direction and the impulse response is monotonic.30

Figure 4 shows that similar forces are at work in the sticky-price model. However, all

quantities fall immediately because countercyclical markups provide an additional wedge

that breaks the Barro and King (1984) critique. At the same time, our model requires

less nominal rigidities because endogenous uncertainty partly acts as a substitute to the

countercyclical markups in generating co-movement.

Model fit

The final row of Table 4 reports the log marginal likelihoods, computed by the Geweke’s

modified harmonic mean estimator, across different model specifications. For both flexible-

30A different way to evaluate the impact of our learning mechanism is to examine the impulse response in
the RE model, in which the parameters are re-estimated subject to the constraint ηa = 0. We find that the
model is still unable to produce co-movement.
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Table 5: Fit of observables

Model Statistic Output Hours Investment Consumption Inflation Spread

σ(data) 0.60 0.73 1.79 0.50 0.24 0.18
Panel A: Flexible price

Baseline σ(model) 0.60 0.45 1.21 0.21 – 0.18
ρ(data, model) 0.94 0.83 0.86 0.62 – 1.00

RE σ(model) 0.60 0.30 1.43 0.28 – 0.04
ρ(data, model) 1.00 0.76 0.87 0.77 – -0.37

Panel B: Sticky price

Baseline σ(model) 0.60 0.40 1.20 0.33 0.19 0.18
ρ(data, model) 0.75 0.69 0.82 0.67 0.53 1.00

RE σ(model) 0.57 0.58 1.17 0.35 0.32 0.25
ρ(data, model) 0.92 0.88 0.86 0.80 0.52 0.19

Notes: σ(data) and σ(model) refer to standard deviations of the observables and the model counterparts,
respectively, expressed in percentage points. ρ(data, model) is the correlation between data and the model.

price and sticky-price models, the model fit, measured in terms of log marginal likelihoods,

is improved when our endogenous uncertainty mechanism is activated. To understand this

result, in Table 5 we report the summary statistics of our observables and their model

counterparts at the posterior mean, computed by the Kalman smoothing algorithm. The

fit of endogenous variables except for the spread in the baseline flexible-price and sticky-

price models is similar to the RE versions. The last column of Panel A shows that while

the baseline flexible-price model perfectly matches the movement of the spread, in the RE

version the model generates less than a quarter of the variation and it is negatively correlated

with data. Panel B shows that the baseline sticky-price model also perfectly reproduces the

movement of the spread. In contrast, the fit is much worse in the RE version. Indeed, Table

4 shows that measurement errors for spreads are much larger in the RE versions for both

flexible-price (0.20 vs. 0.01) and sticky-price (0.28 vs. 0.01) models.

Figure 5 visualizes this result by plotting the spread along with the flexible-price model

counterpart computed from the Kalman smoother. The model-implied spread, labeled

‘Baseline’, tracks the data while the spread from the RE model, labeled ‘RE’, does not.

There are two reasons for the success of our baseline model. First, with endogenous

uncertainty the financial wedge shock can now generate co-movement and thus the estimation

prefers contractionary wedge shocks during recessions. Second, agents lose confidence during

recessions, which further contribute to the countercyclicality of the spread. This endogenous
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Figure 5: Credit spread: data and model
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Notes: We plot the Baa corporate bond spread along with the flexible-price model counterpart computed

from the Kalman smoother. Thick black solid line is the data, thin blue line (marked with x) is the spread

from the baseline model, thick red dashed line is the spread generated by endogenous variation in

confidence, and thin green dashed line is the spread from the rational expectations model.

variation in the spread is labeled ‘Baseline (ambiguity only)’.31 The plot of the spreads

from the sticky-price model (not shown) also shows a similar pattern. We conclude that

the ability of our model to generate countercyclical spreads, due to the financial wedge

shock being countercyclical and the endogenous variation in confidence, is the key reason

the estimation favors our learning mechanism.

Variance decomposition

To see how the introduction of endogenous uncertainty alters inference about the source of

business cycles, Table 6 reports the contributions of TFP and financial wedge shocks. Panel

A shows the variance decomposition for the flexible-price model. In the RE version, the TFP

shock accounts for almost all variations of macro variables. In contrast, in our baseline model,

the financial wedge shock explains a non-trivial fraction of business cycles since the shock can

now generate co-movement; it accounts for 14 and 16 percents of volatilities in output and

hours, respectively. Panel B shows that, with nominal rigidities, the financial wedge shock

accounts for a sizable fraction of variations in quantities even in the RE version. For example,

31This endogenous variation in the spread corresponds to the second component in the previous
decomposition of the spread (6.2).
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Table 6: Theoretical variance decomposition

Model Shock Output Hours Investm. Consum. Inflation Interest rate

Panel A: Flexible price

Baseline TFP 0.86 0.84 0.83 0.92 – –
Financial wedge 0.14 0.16 0.16 0.08 – –

RE TFP 0.99 0.98 0.99 1.00 – –
Financial wedge 0.00 0.01 0.01 0.00 – –

Panel B: Sticky price

Baseline TFP 0.27 0.18 0.20 0.38 0.09 0.16
Financial wedge 0.73 0.81 0.76 0.61 0.88 0.84

RE TFP 0.84 0.77 0.88 0.78 0.12 0.10
Financial wedge 0.15 0.23 0.12 0.22 0.88 0.90

Notes: We report the percent of variance at the business cycle frequency (6–32 quarters) that can be
explained by each shock. For the interest of space, we omit the percent of variance explained by
government spending and monetary policy shocks.

the shock explains 15 and 23 percents of variations in output and hours, respectively. With

endogenous uncertainty, however, the financial wedge shock becomes the dominant source

of the business cycle. For example, the shock now explains 73 and 81 percents of variations

in output and hours, respectively. The financial wedge shock accounts for a large share of

variation in inflation and interest rates for both the baseline and the RE models.

In Appendix 8.4, we show that the inclusion of the spread in the estimation is the key

reason why in our model the financial wedge shock becomes an important driver of the

business cycle. Intuitively, the financial wedge shock needs to be large since the spread is

volatile and countercyclical. Without endogenous uncertainty, however, this comes at the

cost of generating counterfactual predictions for other macro variables.

Policy implications of endogenous uncertainty

Finally, the fact that in our model uncertainty is endogenous has important policy impli-

cations. To illustrate this point, we evaluate the impact of modifying the Taylor rule to

incorporate an adjustment to the credit spread.32 Table 7 reports the standard deviation of

output growth as we maintain all parameters as their baseline estimated values but change

the Taylor rule coefficient on the credit spread φspread from the original value of zero in

the estimated sticky-price model. The standard deviation decreases as the monetary policy

responds more aggressively to the spread movements. For example, the standard deviation

32Such a policy was proposed by Taylor (2008), among others. Cúrdia and Woodford (2010) and Christiano
et al. (2010) study the effects of similar policies using DSGE models.
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Table 7: Changing the Taylor rule coefficient on the credit spread

Std. of output growth
φspread Baseline Fixed uncertainty

0 0.60 0.60
-0.5 0.59 0.60
-1.0 0.57 0.60
-1.5 0.52 0.63

Notes: The standard deviation of output growth as the Taylor rule coefficient on the credit spread φspread is
changed from the original value (φspread = 0). All other parameter values are fixed to the estimated values.
“Baseline” refers to the baseline sticky-price model with endogenous uncertainty. “Fixed uncertainty”
refers to a counterfactual economy where the path of uncertainty is fixed exogenously to the original one.

decreases from 0.60 to 0.52 when the coefficient φspread decreases from 0 to −1.5.

The reduction in output variability comes from stabilizing the endogenous variation in

uncertainty. To see this, we also show the effects of policy changes in the counterfactual

economy where the path of uncertainty is fixed to the original one (labeled “Fixed uncer-

tainty”). In this economy, changes in φspread have smaller effects and even have a different

sign. Indeed, the standard deviation increases from 0.60 to 0.63 when the coefficient φspread

decreases from 0 to −1.5. The comparison of these counterfactual models underscores the

importance for policy analysis of modeling time-variation in uncertainty as an endogenous

response that in turn further affects economic decisions.

6.4 Firm-level evidence

The estimated business cycle model with conventional rigidities suggests that endogenous

countercyclical idiosyncratic uncertainty may be an important propagation mechanism at

the aggregate level. We conclude our empirical investigation by changing focus and report

some cross-sectional evidence.

Our theory predicts that, through learning, a larger scale of production leads to lower

uncertainty. We use here firm-level data to test this prediction. We use panel data of

analysts’ forecast error on each firm’s return on capital from the I/B/E/S data. The data

set spans annually from 1977–2014 and is constructed in Senga (2015).33 We define each

firm’s forecast errors as (realized return - mean forecast)/mean forecast. We proxy the scale

of production by the size of total assets held by each firm. Our hypothesis is that, cross-

33We thank Tatsuro Senga for conducting and sharing the analysis in this section and for numerous advice
on the data set.

38



Table 8: Forecast errors are smaller for larger firms

Percentile 0–10 10–25 25–50 50–75 75–90 90–100
Mean error 0.93 0.62 0.51 0.38 0.32 0.25
Median error 0.35 0.21 0.16 0.12 0.09 0.08

Notes: The table reports the cross-sectional mean (second row) and the cross-sectional median (third row)
of the forecast errors on capital returns, grouped according to the total asset held by each firm.

Table 9: Forecast errors are smaller for older firms

Age 1–10 11–20 21–30 31–
Mean error 0.65 0.40 0.30 0.27
Median error 0.22 0.13 0.10 0.08

Notes: The table reports the cross-sectional mean (second row) and the cross-sectional median (third row)
of the forecast errors on capital returns, grouped according to the age. We proxy firm age by the number of
years since the firm’s first year of appearance in the I/B/E/S data set.

sectionally, the size of forecast errors are smaller the larger the scale of production. Table 8

documents that the data provides empirical support for our hypothesis.

We also consider a test that is more loosely connected to our theory. Our theory builds on

the idea that firms learn about their fundamentals through production, suggesting that old

firms face less uncertainty. Indeed, in Table 9, we show that the forecast error are smaller for

older firms. While our model does not feature entry and exit and hence cannot directly speak

to the relationship between firm age and uncertainty, the result in Table 9 is encouraging as

it provides suggestive evidence for our learning mechanism.

Finally, we point out that the time-series implications of our model are supported by the

data as well. Our theory predicts that the cross-sectional average of uncertainty increases

during recessions. Senga (2015) shows that the average level of capital return forecast errors

across firms is strongly countercyclical and rose sharply during the Great Recession.

7 Conclusion

In this paper we construct a tractable heterogeneous-firm business cycle model in which

firms face Knightian uncertainty about their own profitability and need to learn it through
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production. The feedback loop between economic activity and confidence makes our model

behave as a standard linear business cycle model with (i) countercyclical labor wedge and

financial spread, (ii) positive co-movement of aggregate variables in response to either supply

or demand shocks, and (iii) strong internal propagation with amplified and hump-shaped

dynamics. When the model is estimated using US data, our learning process drives out the

role of traditional rigidities and changes inference about the source of aggregate fluctuations

and outcomes of policy experiments. We conclude that endogenous idiosyncratic uncertainty

is a quantitatively important mechanism for understanding business cycles.
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8 Appendix (For online publication)

8.1 A model of learning about firm-specific demand

In this section, we show that the baseline model with additive shock in the production

function (3.2) can be reinterpreted as a model where firms learn about their demand from

noisy signals.

There is a continuum of firms, indexed by l ∈ [0, 1], which produce intermediate goods

and sell them to a large representative “conglomerate”. The conglomerate, who holds

shares of the intermediate firms, acts in a perfectively competitive manner and combine

the intermediate goods to produce final goods. To ease exposition, we momentarily abstract

from all aggregate shocks, labor-augmenting technological growth, and utilization.

The conglomerate combines intermediate output Yl,t according to the following CES

aggregator:

Yt =

[ ∫ 1

0

z
σ−1
σ

l,t Y
σ−1
σ

l,t dl

] σ
σ−1

, σ > 1

where zl,t follows an AR(1) as in (3.3). In turn, intermediate goods Yl,t are produced

according to

Yl,t = Kα
l,t−1H

1−α
l,t .

We assume that all agents, including the conglomerate and households, cannot observe the

realization of zl,t. Instead, after the production of final and intermediate goods they observe

noisy signals

sl,t = Yl,tzl,t + ν̃l,t, ν̃l,t ∼ N(0, σ2
ν̃) (8.1)

where ν̃l,t is an observation error. Agents use all available information, including the path

of signals sl,t and intermediate output Yl,t, to form estimates about the realization of zl,t.

In this context, it is natural to think zl,t as a “quality” of intermediate good l that is

difficult to observe. Alternatively, since the final good could directly be used for consumption,

zl,t can be interpreted as an unobservable demand for a variety l. Crucially, (8.1) implies

that the signal-to-noise ratio is increasing in the level of output Yl,t. It is plausible that

firms learn more about the quality or demand, zl,t, of their goods when they produce and

sell more. For example, when a restaurant serves more customers it generates more website

reviews and hence people learn more about the quality of their meals.

Intermediate firms l choose price Pl,t and inputs to maximize the shareholder value

E∗0

∞∑
t=0

M t
0Dl,t.

44



Dl,t is the dividend payout to the conglomerate given by

Dl,t =
Pl,t
Pt
Yl,t −WtHl,t − Il,t,

where Pt is the price of the final good given by

Pt =

[∫ 1

0

P 1−σ
l,t dl

] 1
1−σ

.

The conglomerate, in turn, choose intermediate inputs Yl,t and shares θl,t to maximize the

shareholder value

E∗0

∞∑
t=0

M t
0Dt,

where Dt is the dividend payout to the households

Dt = Yt +

∫
(Dl,t + P e

l,t)θl,t−1dl −
∫
P e
l,tθl,tdl.

The household side of the economy is the same as in the baseline model except that the

households hold shares θt of conglomerates instead of shares θl,t of intermediate firms.

We now reintroduce aggregate shocks and utilization and describe the timing of the event

at period t.

Stage 1 : Pre-production stage

• Agents observe the realization of aggregate shocks (At and gt).

• Given forecasts about zl,t and its associated worst-case scenario, firms make uti-

lization decision, hire labor, and choose price (Ul,t, Hl,t, and Pl,t). The household

supply labor Ht and the labor market clears at the wage rate Wt.

• Firms produce intermediate output Yl,t and sells it to the conglomerates at price

Pl,t.

Stage 2 : Post-production stage

• zl,t realize (but are unobservable) and production of the final goods Yt takes place.

Agents observe noisy signals sl,t.

• Firms and conglomerates update estimates about zl,t and use it to form forecasts

for production next period.
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• Firms make investment Il,t and pay out dividends Dl,t to the conglomerates. The

conglomerates make asset purchase decisions θl,t and pay out dividends Dt to the

households. Finally, households make consumption and asset purchase decisions

(Ct, Bt, and θt).

In the perfect competition limit (σ → ∞), this version of the model is observationally

equivalent to the baseline model at the aggregate level. The introduction of the conglomerate

is important for two reasons. First, it prohibits households from inferring zl,t from utility

by directly consuming intermediate goods Yl,t. Second, it generates countercyclical ex-post

excess return on equity held by the household. This is because dividend payout by the

conglomerate to the household (Dt) is based on the realized return on capital. Note that

the dividend payout by the intermediate firms to the conglomerate (Dl,t) is not based on the

realized return since the production and market clearing of Yl,t happens before the realization

of zl,t.

8.2 Equilibrium conditions for the estimated model

As we describe below in Appendix 8.3, we express equilibrium conditions from the perspective

of agents at both stage 1 and stage 2. At stage 1, we need not only equilibrium conditions

for variable determined before production (such as utilization and hours), but also those for

variables determined after production (such as consumption and investment). At stage 2,

we treat variables determined before production as pre-determined. To do this, we index

period t variables determined at stage 1 by t− 1 and period t variables determined at stage

2 by t. We then combine stage 1 and stage 2 equilibrium conditions by using the certainty

equivalence property of linearized decision rules.

We scale the variables in order to introduce stationary:

ct =
Ct
γt
, yl,t =

Yl,t
γt
, kl,t−1 =

Kl,t−1

γt
, il,t =

Il,t
γt
, fl,t =

Fl,t−1

γt
, wt =

Wt

γt
, λ̃t = γtλt, µ̃l,t = γtµl,t,

where µl,t is the Lagrangian multiplier on the capital accumulation equation of firm l.

We first describe the stage 1 equilibrium conditions. An individual firm l’s problem is to

choose {Ul,t, Kl,t, Hl,t, Il,t} to maximize

E∗t

∞∑
s=0

βt+sλt+s[P
W
t+sYl,t+s −Wt+sHl,t+s − Il,t+s − a(Ul,t+s)Kl,t+s−1],

where PW
t is the price of whole-sale goods produced by firms and λt, and its detrended
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counterpart λ̃t, is the marginal utility of the representative household:

λ̃t =
γ

ct − bct−1

− βbE∗t
1

γct+1 − bct
, (8.2)

subject to the following three constraints. The first constraint is the production function:

yl,t = At{E∗t−1zl,tfl,t + νl,t}, (8.3)

where fl,t is the input,

fl,t = (Ul,tkl,t−1)αH1−α
l,t . (8.4)

The worst case TFP E∗t zl,t+1|t+1 is given by

E∗t zl,t+1|t+1 = (1− ρz)z̄ + ρz z̃l,t|t − ηaρz
√

Σl,t|t. (8.5)

and the Kalman filter estimate z̃l,t|t evolves according to

z̃l,t|t = z̃l,t|t−1 +Gainl,t(yl,t/At − z̃l,t|t−1fl,t), (8.6)

where Gainl,t is the Kalman gain and is given by

Gainl,t =

[
f 2
l,tΣl,t|t−1

f 2
l,tΣl,t|t−1 + σ2

ν

]
f−1
l,t . (8.7)

The second constraint is the capital accumulation equation:

γkl,t = (1− δ)kl,t−1 +

{
1− κ

2

(
γil,t
il,t−1

− γ
)2}

il,t (8.8)

and the last constraint is the law of motion for posterior variance:

Σl,t|t = (1−Gainl,tfl,t)Σl,t|t−1. (8.9)

As described in the main text, firms take into account the impact of their input choice on

worst-case probabilities.

The first-order necessary conditions for firms’ input choices are as follows:
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• FONC for Σl,t|t

ψl,t =βE∗t

[
1

2
λ̃t+1P

W
t+1At+1ηaρzΣ

− 1
2

l,t|tfl,t+1

+ ψl,t+1

{
σ2
νρ

2
z

f 2
l,t+1(ρ2

zΣl,t|t + σ2
z) + σ2

ν

−
σ2
νρ

2
z(ρ

2
zΣl,t|t + σ2

z)f
2
l,t+1

{f 2
l,t+1(ρ2

zΣl,t|t + σ2
z) + σ2

ν}2

}]
,

(8.10)

where ψl,t is the Lagrangian multiplier for the law of motion of posterior variance.

• FONC for Ul,t

λ̃tP
W
t α

yl,t
Ul,t

+ ψl,t
2ασ2

ν(ρ
2
zΣl,t−1|t−1 + σ2

z)f
2
l,t

{f 2
l,t(ρ

2
zΣl,t−1|t−1 + σ2

z) + σ2
ν}2Ul,t

=λ̃t{χ1χ2Ul,t + χ2(1− χ1)}kl,t−1

(8.11)

• FONC for Hl,t

λ̃t(1− α)PW
t

yl,t
Hl,t

+ ψl,t
2(1− α)σ2

ν(ρ
2
zΣl,t−1|t−1 + σ2

z)f
2
l,t

{f 2
l,t(ρ

2
zΣl,t−1|t−1 + σ2

z) + σ2
ν}2Hl,t

= λ̃tw̃t, (8.12)

where w̃t is the real wage: w̃t ≡ wt/Pt.

• FONC for kl,t

γλ̃t = βE∗t (1−∆k
t )λ̃t+1

Rk
t+1

πt+1

, (8.13)

where the return on capital is defined as

Rk
t =

[
PW
t α

yl,t
kl,t−1

+ ql,t(1− δ)− a(Ul,t)

+ ψkl,t
2ασ2

ν(ρ
2
zΣl,t−1|t−1 + σ2

z)f
2
l,t

{f 2
l,t(ρ

2
zΣl,t−1|t−1 + σ2

z) + σ2
ν}2kl,t−1

]
× πt
ql,t−1

,

(8.14)

where

ql,t = µ̃l,t/λ̃t, (8.15)

ψkl,t = ψl,t/λ̃t. (8.16)
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• FONC for il,t

γλ̃t =γµ̃l,t

[
1− κ

2

(
γil,t
il,t−1

− γ
)2

− κ
(
γil,t
il,t−1

− γ
)
γil,t
il,t−1

]
+ βE∗t

[
µ̃l,t+1κ

(
γil,t+1

il,t
− γ
)(

γil,t+1

il,t

)2] (8.17)

We eliminate l-subscripts to denote cross-sectional means (e.g., yt ≡
∫ 1

0
yl,tdl).

Firms sell their wholesale goods to monopolistically competitive retailers. Conditions

associated with Calvo sticky prices are

P n
t = λ̃tP

W
t yt + ξpβE

∗
t

(
πt+1

π̄

)θp
P n
t+1 (8.18)

P d
t = λ̃tyt + ξpβE

∗
t

(
πt+1

π̄

)θp−1

P d
t+1 (8.19)

p∗t =

(
θp

θp − 1

)
P n
t

P d
t

(8.20)

1 = (1− ξp)(p∗t )1−θp + ξp

(
π̄

πt

)1−θp
(8.21)

ỹt = p̃
−θp
t yt (8.22)

p̃t = (1− ξp)(p̃t)−θp + ξp

(
π̄

πt

)−θp
(8.23)

Conditions associated with Calvo sticky wages are

v1
t = v2

t (8.24)

v1
t = (w∗t )

1−θw λ̃tHtw̃t + ξwβE
∗
t

(
πwt+1w

∗
t+1

π̄w∗t

)θw−1

v1
t+1 (8.25)

v2
t =

θw
θw − 1

(w∗t )
−θw(1+η)H1+η

t + ξwβE
∗
t

(
πwt+1w

∗
t+1

π̄w∗t

)θw(1+η)

v2
t+1 (8.26)

1 = (1− ξw)(w∗t )
1−θw + ξwE

∗
t

(
π̄

πwt

)1−θw
(8.27)

πwt = πtw̃t/w̃t−1 (8.28)
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Households’ Euler equation:

γλ̃t = βE∗t λ̃t+1Rt/πt+1 (8.29)

Monetary policy rule:

Rt

R̄
=

(
Rt−1

R̄

)ρR[(πt
π̄

)φπ(yt
ȳ

)φY ]1−ρR
εR,t (8.30)

Resource constraint:

ct + it = (1− gt)yt (8.31)

The 30 endogenous variables we solve are:

kt, yt, it, ct, Ht, Ut, ft, λ̃t, µ̃t, ψt, Rt, R
k
t , qt, ψ

k
t , E

∗
t zt+1, z̃t|t,Σt|t, Gaint,

PW
t , P n

t , P
d
t , p

∗
t , πt, ỹt, p̃t, v

1
t , v

2
t , w̃t, w

∗
t , π

w
t

We have listed 30 conditions above, from (8.2) to (8.31). Of the above 30 endogenous

variables, those that are determined at stage 1 are:

Ht, Ut, ft, v
1
t , v

2
t , w̃t, w

∗
t , π

w
t

We now describe the state 2 equilibrium conditions. To avoid repetitions, we only list

conditions that are different from the state 1 conditions.

(8.3):

yl,t = At{fl,t−1 + νl,t}, yl,t+s = At+s{E∗t zl,t+sfl,t+s−1 + νl,t+s},

where s ≥ 1.

(8.4):

fl,t = (Ul,tkl,t)
αH1−α

l,t

(8.6):

z̃l,t|t = z̃l,t|t−1 +Gainl,t(yl,t/At − z̃l,t|t−1fl,t−1)

(8.7):

Gainl,t =

[
f 2
l,t−1Σl,t|t−1

f 2
l,t−1Σl,t|t−1 + σ2

ν

]
f−1
l,t−1

(8.9):

Σl,t|t = (1−Gainl,tfl,t−1)Σl,t|t−1
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(8.10):

ψl,t =βE∗t

[
1

2
λ̃t+1P

W
t+1At+1ηaρzΣ

− 1
2

l,t|tfl,t

+ ψl,t+1

{
σ2
νρ

2
z

f 2
l,t(ρ

2
zΣl,t|t + σ2

z) + σ2
ν

−
σ2
νρ

2
z(ρ

2
zΣl,t|t + σ2

z)f
2
l,t

{f 2
l,t(ρ

2
zΣl,t|t + σ2

z) + σ2
ν}2

}]

(8.11):

E∗t

[
λ̃t+1P

W
t+1α

yl,t+1

Ul,t
+ ψl,t+1

2ασ2
ν(ρ

2
zΣl,t|t + σ2

z)f
2
l,t

{f 2
l,t(ρ

2
zΣl,t|t + σ2

z) + σ2
ν}2Ul,t

]
=E∗t λ̃t+1{χ1χ2Ul,t + χ2(1− χ1)}kl,t

(8.12):

E∗t

[
λ̃t+1(1− α)PW

t+1

yl,t+1

Hl,t

+ ψl,t+1

2(1− α)σ2
ν(ρ

2
zΣl,t|t + σ2

z)f
2
l,t

{f 2
l,t(ρ

2
zΣl,t|t + σ2

z) + σ2
ν}2Hl,t

]
= E∗t λ̃t+1w̃t

(8.14):

Rk
t =

[
PW
t α

yl,t
kl,t−1

+ ql,t(1− δ)− a(Ul,t−1)

+ ψkl,t
2ασ2

ν(ρ
2
zΣl,t−1|t−1 + σ2

z)f
2
l,t−1

{f 2
l,t−1(ρ2

zΣl,t−1|t−1 + σ2
z) + σ2

ν}2kl,t−1

]
× πt
ql,t−1

(8.25):

v1
t = (w∗t )

1−θwE∗t λ̃t+1Htw̃t + ξwβE
∗
t

(
πwt+1w

∗
t+1

π̄w∗t

)θw−1

v1
t+1

(8.28):

πwt = E∗t πt+1w̃t/w̃t−1

8.3 Solution procedure

Here we describe the general solution procedure of the model. The procedure follows the

method used in the example in Section 4.2. First, we derive the law of motion assuming that

the model is a rational expectations model where the worst case expectations are on average

correct. Second, we take the equilibrium law of motion formed under ambiguity and then

evaluate the dynamics under the econometrician’s data generating process. We provide a
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step-by-step description of the procedure:

1. Find the worst-case steady state.

We first compute the steady state of the filtering problem (3.6), (3.7), (3.8), and (3.10),

under the worst-case mean (3.12) to find the firm-level TFP at the worst-case steady

state, z̄0. We then solve the steady state for other equilibrium conditions evaluated at

z̄0.

2. Log-linearize the model around the worst-case steady state.

We can solve for the dynamics using standard tools for linear rational expectation

models. We base our discussion based on the method proposed by Sims (2002).

We first need to deal with the issue that idiosyncratic shocks realize at the beginning

of stage 2. Handling this issue correctly is important, since variables chosen at stage 1,

such as input choice, should be based on the worst-case TFP, while variables chosen at

stage 2, such as consumption and investment, would be based on the realized TFP (but

also on the worst-case future TFP). To do this, we exploit the certainty equivalence

property of linear decision rules. We first solve for decision rules as if both aggregate

and idiosyncratic shocks realize at the beginning of the period. We call them “pre-

production decision rules”. We then solve for decision rules as if (i) both aggregate

and idiosyncratic shocks realize at the beginning of the period and (ii) stage 1 variables

are pre-determined. We call them “post-production decision rules”. Finally, when we

characterize the dynamics from the perspective of the econometrician, we combine the

pre-production and post-production decision rules and obtain and equilibrium law of

motion.

To obtain pre-production decision rules, we collect the linearized equilibrium condi-

tions, which include firm-level conditions, into the canonical form:

Γpre
0 ŷpre,0t = Γpre

1 ŷpre,0t−1 + Ψpreωt + Υpreηpret ,

where ŷpre,0t is a column vector of size k that contains all variables and the conditional

expectations. ŷpre,0t = ypret − ȳ0 denotes deviations from the worst-case steady state

and ηt are expectation errors, which we define as ηpret = ŷpre,0t − E∗t−1ŷ
pre,0
t such that

E∗t−1η
pre
t = 0. We define ωt = [el,t et]

′, where el,t = [εz,l,t ul,t νl,t]
′ is a vector of

idiosyncratic shocks and et is a vector of aggregate shocks of size n. For example, for

the baseline model introduced in Section 3, et is a 2× 1 vector of aggregate TFP and

government spending shocks.
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The vector ŷpre,0t contains firm-level variables such as firm l’s labor input, Hl,t. In

contrast to other linear heterogeneous-agent models with imperfect information such

as Lorenzoni (2009), all agents share the same information set. Thus, to derive the

aggregate law of motion, we simply aggregate over firm l’s linearized conditions and

replace firm-specific variables with their cross-sectional means (e.g., we replaceHl,t with

Ht ≡
∫ 1

0
Hl,tdl) and set el,t = 0, which uses the law of large numbers for idiosyncratic

shocks.

We order variables in ŷpre,0t as

ŷpre,0t =

ŷpre,01,t

ŷpre,02,t

ŝpre,0t

 ,
where ŷpre,01,t is a column vector of size k1 of variables determined at stage 1, ŷpre,02,t is a

column vector of size k2 of variables determined at stage 2, and ŝpre,0t = [ŝpre,01,t ŝpre,02,t ]′,

where s1,t = z̄ − E∗t−1zt and s2,t = z̄ − z̃t|t.

The resulting solution of pre-production decision rules is obtained applying the method

developed by Sims (2002):

ŷpre,0t = Tpreŷpre,0t−1 + Rpre[03×1 et]
′, (8.32)

where Tpre and Rpre are k × k and k × (n+ 3) matrices, respectively.

The solution of post-production decision rules can be obtained in a similar way by first

collecting the equilibrium conditions into the canonical form

Γpost
0 ŷpost,0t = Γpost

1 ŷpost,0t−1 + Ψpostωt + Υpostηpostt ,

and is given by

ŷpost,0t = Tpostŷpost,0t−1 + Rpost[03×1 et]
′, (8.33)

where

ŷpost,0t =

ŷpost,01,t

ŷpost,02,t

ŝpost,0t

 ,
and Tpost and Rpost are k × k and k × (n+ 3) matrices, respectively.

3. Characterize the dynamics from the econometrician’s perspective.
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The above law of motion was based on the worst-case probabilities. We need to derive

the equilibrium dynamics under the true DGP, where the cross-sectional mean of firm-

level TFP is z̄. We are interested in two objects: the zero-risk steady state and the

dynamics around that zero-risk steady state.

(a) Find the zero-risk steady state.

This the fixed point ȳ where the decision rules (8.32) and (8.33) are evaluated at

the realized cross-sectional mean of firm-level TFP z̄:

ȳpre − ȳ0 = Tpre(ȳ − ȳ0),

ȳpost − ȳ0 = Tpost(ȳ − ȳ0) + Rpost[s̄ 0(n+1)×1]′,
(8.34)

where

ȳ =

 ȳpre1

ȳpost2

s̄post

 .
Note that we do not feed in the realized firm-level TFP to the pre-production

decision rules since idiosyncratic shocks realize at the beginning of stage 2.

We obtain s̄ from

s̄ = [Tpost
3,1 Tpost

3,2 Tpost
3,3 ](ȳ − ȳ0) + s̄0,

where Tpost
3,1 , Tpost

3,2 , and Tpost
3,3 are 2 × k1, 2 × k2, and 2 × 2 submatrices of Tpost,

respectively:

Tpost =

Tpost
1,1 Tpost

1,2 Tpost
1,3

Tpost
2,1 Tpost

2,2 Tpost
2,3

Tpost
3,1 Tpost

3,2 Tpost
3,3

 ,
where Tpost

1,1 , Tpost
1,2 , Tpost

1,3 , Tpost
2,1 , Tpost

2,2 , and Tpost
2,3 are k1×k1, k1×k2, k1×2, k2×k1,

k2 × k2, and k2 × 2 matrices, respectively.

(b) Dynamics around the zero-risk steady state.

Denoting ŷt ≡ yt − ȳ the deviations from the zero-risk steady state, we combine

the decision rules (8.32) and (8.33) evaluated at the true DGP and the equations
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for the zero-risk steady state (8.34) to characterize the equilibrium law of motion:

ŷpret = Tpreŷt−1 + Rpre[03×1 et]
′, (8.35)

ŷpostt = Tpost[ŷpre1,t ŷ2,t−1 ŝt−1]′ + Rpost[ˆ̃st 0 et]
′, (8.36)

ˆ̃st = [Tpost
3,1 Tpost

3,2 Tpost
3,3 ][ŷpre1,t ŷ2,t−1 ŝt−1]′ + Rpost

3,3 [03×1 et]
′, (8.37)

and

ŷt =

 ŷpre1,t

ŷpost2,t

ŝpostt

 . (8.38)

Rpost
3,3 is a 2× n submatrix of Rpost:

Rpost =

Rpost
1,1 Rpost

1,2 Rpost
1,3

Rpost
2,1 Rpost

2,2 Rpost
2,3

Rpost
3,1 Rpost

3,2 Rpost
3,3

 ,
where Rpost

1,1 , Rpost
1,2 , Rpost

1,3 , Rpost
2,1 , Rpost

2,2 , Rpost
2,3 , Rpost

3,1 , and Rpost
3,2 are k1 × 2, k1 × 1,

k1 × n, k2 × 2, k2 × 1, k2 × n, 2× 2, and 2× 1 matrices, respectively.

We combine equations (8.35), (8.36), (8.37), and (8.38) to obtain the equilibrium

law of motion. To do so, we first define submatrices of Tpre and Rpre:

Tpre =

Tpre
1

Tpre
2

Tpre
3

 ,
where Tpre

1 , Tpre
2 , and Tpre

3 are k1 × k, k2 × k, and 2 × k matrices, respectively,

and

Rpre =

Rpre
1,1 Rpre

1,2

Rpre
2,1 Rpre

2,2

Rpre
3,1 Rpre

3,2

 ,
where Rpre

1,1 , Rpre
1,2 , Rpre

2,1 , Rpre
2,2 , Rpre

3,1 , and Rpre
3,2 are k1 × 3, k1 × n, k2 × 3, k2 × n,

2× 3, and 2× n matrices, respectively.

We then define matrices T and R. A k × k matrix T is given by

T =

Tpre
1

T2

T3

 ,
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where T2 and T3 are k2 × k2 and 2× 2 matrices, respectively, given by

T2 = [Q2,1 Q2,2 + Tpost
2,2 + Rpost

2,1 Tpost
3,2 Q2,3 + Tpost

2,3 + Rpost
2,1 Tpost

3,3 ],

T3 = [Q3,1 Q3,2 + Tpost
3,2 + Rpost

3,1 Tpost
3,2 Q3,3 + Tpost

3,3 + Rpost
3,1 Tpost

3,3 ],

and Q2,1, Q2,2, and Q2,3 are k2 × k1, k2 × k2, and k2 × 2 submatrices of Q2,

where Q2 ≡ (Tpost
2,1 + Rpost

2,1 Tpost
3,1 )Tpre

1 , so that Q2 = [Q2,1 Q2,2 Q2,3]. Similarly,

Q3,1, Q3,2, and Q3,3 are k3 × k1, k3 × k2, and k3 × 2 submatrices of Q3, where

Q3 ≡ (Tpost
3,1 + Rpost

3,1 Tpost
3,1 )Tpre

1 , so that Q3 = [Q3,1 Q3,2 Q3,3].

A k × n matrix R is given by

R =

Rpre
1,2

R2

R3

 ,
where

R2 = Tpost
2,1 Rpre

1,2 + Rpost
2,1 (Tpost

3,1 Rpre
1,2 + Rpost

3,3 ) + Rpost
2,3 ,

R3 = Tpost
3,1 Rpre

1,2 + Rpost
3,1 (Tpost

3,1 Rpre
1,2 + Rpost

3,3 ) + Rpost
3,3 .

The equilibrium law of motion is then given by

ŷt = Tŷt−1 + Ret.

8.4 Bayesian estimation: the role of the credit spread

We argue that the inclusion of the spread in the estimation is the key reason why in our model

the financial wedge shock becomes an important driver of the business cycle. To see this,

we first re-estimate our flexible-price and sticky-price models and their RE versions without

using the credit spread in the estimation. The column labeled “No spread used” in Table 10

reports the contributions of the financial wedge shock in explaining the variance of output.

First, consider the flexible-price model (Panel A). In line with the main estimation that uses

the spread, in the RE version the financial wedge shock can only explain a negligible share

of output variance. This is not surprising, since in the main estimation the measurement

error for the spread was quite large. In contrast to the main estimation, however, the

contribution of the financial wedge shock is negligible even with endogenous uncertainty. The

intuition is as follows. In the flexible-price model, the model cannot generate co-movement
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Table 10: Output variance explained by the financial wedge shock: the role of credit spread

No meas. error
Model Spread not used in spread
Panel A: Flexible price
Baseline 0.00 0.13
RE 0.00 0.04
Panel B: Sticky price
Baseline 0.48 0.72
RE 0.15 0.15

Notes: We report the percent of variance of output at the business cycle frequency (6–32 quarters) that
can be explained by the financial wedge shock. “Spread not used” refers to results from estimations where
the credit spread is not used as an observable. “No meas. error in spread” refers to results from
estimations where the credit spread is observed without a meaurement error.

of consumption and hours in response to the financial wedge shock in the short run (see

Figure 3). The likelihood estimator thus tries to reduce the size of the financial wedge shock

as much as possible.34 This is feasible since the credit spread is not used in the estimation.

Next, consider the sticky-price model (Panel B). As in the flexible-price model, the result

of the RE version is in line with the main estimation. With endogenous uncertainty, the

financial wedge shock becomes more important but its contribution to output variance is

smaller than the main estimation (48 percent vs. 73 percent). In the data, the credit spread

is strongly countercyclical, which pushes the estimation towards assigning a larger role to

the financial wedge shock when the spread is used as an observable.

We also consider what happens when we estimate our models with no measurement error

in the spread (Table 10, “No meas. error in spread”). For both flexible-price and sticky-price

models, the results of the baseline models with endogenous uncertainty are very similar to

those from the main estimation. This is because the estimated measurement errors for the

spread for the baseline models are very small in the main estimation to begin with. For the

RE version of the flexible-price model, the financial wedge shock explains a small fraction of

output (4 percent) and it comes at the cost of countercyclical consumption; the correlation

between output growth and consumption growth is -0.19. For the sticky-price RE model, the

financial wedge shock explains 15 percent of output variance but the estimated real rigidities

are large; the consumption habit is b = 0.92 and the investment adjustment cost is κ = 2.42.35

The large real rigidities lead to macro quantities being too smooth. For example, the model

34Indeed, the estimated parameters for the financial wedge shock process are ρ∆ = 0.36 and 100σ∆ = 0.04,
compared to ρ∆ = 0.53 and 100σ∆ = 0.10 in the main estimation.

35The estimated nominal rigidities are similar to those found in the main estimation.
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substantially understates the standard deviations of output growth and consumption growth

(0.50 and 0.23, respectively, in the model versus 0.60 and 0.50, respectively, in the data).

To summarize, we find that in our model the financial wedge shock becomes an important

source of business cycle when the credit spread, measured with or without error, is used in

the estimation. Intuitively, the financial wedge shock needs to be large since the spread is

volatile and countercyclical. Without endogenous uncertainty, however, this comes at the

cost of generating counterfactual predictions for other macro variables.

8.5 Data sources

We use the following data:

1. Real GDP in chained dollars, BEA, NIPA table 1.1.6, line 1.

2. GDP, BEA, NIPA table 1.1.5, line 1.

3. Personal consumption expenditures on nondurables, BEA, NIPA table 1.1.5, line 5.

4. Personal consumption expenditures on services, BEA, NIPA table 1.1.5, line 6.

5. Gross private domestic fixed investment (nonresidential and residential), BEA, NIPA

table 1.1.5, line 8.

6. Personal consumption expenditures on durable goods, BEA, NIPA table 1.1.5, line 4.

7. Nonfarm business hours worked, BLS PRS85006033.

8. Civilian noninstitutional population (16 years and over), BLS LNU00000000.

9. Effective federal funds rate, Board of Governors of the Federal Reserve System.

10. Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year Treasury

Constant Maturity (Baa spread), downloaded from Federal Reserve Economic Data,

Federal Reserve Bank of St. Louis.

We then conduct the following transformations of the above data:

11. Real per capita GDP: (1)/(8)

12. GDP deflator: (2)/(1)

13. Real per capita consumption: [(3)+(4)]/[(8)×(12)]

14. Real per capita investment: [(5)+(6)]/[(8)×(12)]

15. Per capita hours: (7)/(8)
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