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Abstract

This paper proposes a simple perturbation approach for dynamic models with
agents who differ in their perception of exogenous shocks. The method character-
izes linear dynamics around a steady state when that steady state differs from any
individual agent’s long run expectation. It applies when agents agree to disagree, as
well as when they differ in aversion to Knightian uncertainty and hence behave as if
they hold different worst case beliefs. It thus provides a simple way to study effects of
uncertainty on behavior in linear models. Our leading example looks at precautionary
savings, asset premia and gains from insurance in a borrower-lender model with agents
who differ in uncertainty aversion.

1 Introduction

In this paper we analyze a general class of dynamic models with agents that have hetero-

geneous perceptions over the probability distributions of the exogenous shocks. The agents

otherwise share structural knowledge of the economy, so that they know the mapping from

shocks to endogenous variables. Thus, disagreement about probability distributions of shocks

translates into a disagreement about endogenous variables that is determined in equilibrium.

We propose a perturbation approach to show how to characterize the linear dynamics of such

a heterogeneous beliefs model.

Our approach allows for disagreement that is not only temporary but survives even in

the long run. When the disagreement about future endogenous variables matters for steady

state, the solution strategy has to jointly determine the dynamics and the steady state.

∗We thank seminar and conference participants at Minnesota, UCL and the SED 2015 in Warsaw for
helpful comments.
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Indeed, while heterogeneity affects the steady state, the latter in turn affects the intensity

with which these beliefs about endogenous variables matter, through their equilibrium laws

of motion. Disagreement in the long run affects the applicability of perturbation methods.

The reason is that typically in dynamic models in which future endogenous variables enter

the intertemporal conditions, we cannot determine the steady state separately from the

policy functions.

To solve jointly for the steady states and for the elasticities, we propose a solution

strategy that uses standard linear forward-looking rational expectations solution methods.

The strategy consists of the following fixed-point approach. First, guess how the future

endogenous variables respond to the exogenous shocks over which there is disagreement.

Second, stack all individual optimality conditions, where the intertemporal ones involve agent

specific beliefs directly about exogenous shocks and indirectly through the conjectured laws

of motion of future endogenous variables. Then find a candidate steady state, which we refer

to as the zero-risk steady state, that solves these equilibrium conditions. Third, compute all

derivatives of the optimality conditions at the steady state and find elasticities for the policy

functions. To solve for this step we can appeal to standard linear rational expectations model

solution methods. To do that, we propose adding a vector of agent-specific forward-looking

endogenous variables that capture the heterogeneity in beliefs. Finally, we verify the initial

guess on the elasticities. If the guess is correct, then agents are forming heterogeneous, but

model-consistent, expectations of the future endogenous variables.

Our proposed approach of solving dynamic heterogeneous beliefs models applies to two

broad types of economies. One is an expected utility model in which agents agree to

disagree. There disagreement is wired in as a-priori assumed differences of perceptions about

probability distributions. A second economy is one where the heterogeneity of beliefs arises

endogenously because agents differ in their aversion to Knightian uncertainty (ambiguity).

Ambiguity aversion is described by the recursive multiple priors preferences that capture

agents’ lack of confidence in probability assessments.

To describe how linear methods can be applied for models in which agents differ in their

perceived uncertainty about the exogenous shocks, we start from a general recursive model

with heterogeneity in ambiguity. There optimizing agents act as if they use different worst-

case beliefs to evaluate future plans. When we focus attention on models with ambiguity

about conditional means, the equilibria will look like in models of disagreement. The key

property of the ambiguity model is that agents act as if the true data generating process

(DGP) is given by the worst-case beliefs that support the equilibrium allocation. This means

that the degree of disagreement is endogenous, since it will depend on equilibrium laws of

motion that map beliefs about exogenous shocks into beliefs about endogenous variables.
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While at the equilibrium allocations these beliefs will look to an outside observer as dogmatic

differences, the ambiguity model is one in which policy interventions that affect equilibrium

choices will also alter this disagreement.

The endogeneity of disagreement shows up in our proposed solution approach in two

major ways. First, even in models where agents have ex-ante exogenously specified differences

of perceptions about the probability distributions of shocks, the equilibrium effects of

these perceptions will be in general a function of the other model parameters. A second

manifestation is in models where agents face ambiguity but otherwise have ex-ante the same

degree of confidence. If in equilibrium agents take trading positions of different signs, the

ex-ante homogeneity manifests as ex-post heterogeneity of worst-case beliefs. For example,

as we will analyze in one of our application, when credit is in nominal terms, the worst-case

beliefs are different even if ex-ante agents shared the same uncertainty about inflation: the

lender acts as if future inflation is high while the borrower acts as if future inflation is low.

The general logic of the proposed strategy to solve for heterogeneous ambiguity in

linear models starts by finding the linear equilibrium laws of motion. This entails the

following. First, we conjecture the worst case mean of each agent as a linear function of

state variables. Conditional on this worst-case belief, the model is always observationally

equivalent with an expected-utility (EU) model. If there is heterogeneity in these beliefs,

then the observationally equivalent EU model is one with belief disagreement. Second, given

these beliefs, we solve for the loglinearized model. This step usually requires jointly finding

the steady state and the law of motion. Third, we verify the initial conjecture from a first

order expansion of value function. Having solved for the equilibrium policy functions, the

last step is to determine the actual dynamics of model by using the true Data Generating

Process (DGP) of shocks to simulate and compute moments.1

The second part of the paper consists of using our proposed strategy to solve a model

of uncertainty sharing in which two types of agents engage in financial trading to smooth

consumption. Each agent receives an endowment stream. The assets consist of a one-period

non-contingent bond, whose trading is subject to a convex borrowing cost, and a tree, which

pays dividends and has collateral value by lowering leverage. We illustrate heterogeneity

in uncertainty by assuming that one type, called type A, perceives his endowment to be

uncertain while the endowment stream for the second type, called type B, is known to be

constant. In the baseline version agent A is also more patient than agent B, a feature than

we turn off for some experiments.

1It is useful to note that the discrepancy between true and perceived moments is sometimes important.
Indeed, the econometrician that analyzes data produced by the model will measure premia or ’wedges’, such
as ex-post excess returns on uncertain assets, between equilibrium objects determined under the two different
measures.
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We analyze two versions of modeling uncertainty sharing, which we compare to the case

where uncertainty does not affect decision rules. In the expected utility version, uncertainty

refers only to risk, where all agents agree on the same probability distribution of shocks as

given by the true DGP. For this ’risky’ model, we need to use nonlinear solution for the

policy functions to analyze the general equilibrium effects of heterogeneous uncertainty. In

the second version, the uncertain endowment stream is also ambiguous. In particular, the

type A agent entertains a set of probability distributions about the conditional mean of

his endowment, while type B knows the true DGP. For this ’ambiguity’ model, we use our

proposed solution strategy to show that we can study equilibrium effects of the heterogeneous

uncertainty using linearization methods. In particular, we guess and verify what is the worst-

case belief of agent A. Under this belief, which differs from the true DGP, the model looks

like one with belief disagreement.

We develop several exercises to help understand the economics of the model. First, we

confirm that the qualitative equilibrium effects of uncertainty are similar, when modeled

either as risk or ambiguity. Moreover, we find that for an appropriately chosen width of the

set of beliefs of agent A the steady state of the two uncertainty versions is the same and that

policy rules behave very similarly. In particular, when compared to the deterministic case,

uncertainty generates in the ergodic steady state gains from trade that come in addition to

the difference in patience. This is reflected in the higher equilibrium steady state leverage

and debt. The precautionary saving motive of agent A, coming either in the form of risk

or worst-case belief, incentivizes agent A to lend more. This not only raises the quantity of

debt but also the bond price so that uncertainty aversion leads to a lower interest rate. From

the perspective of the borrower, the higher collateral value of the tree means that agent B

is willing to pay a higher price for the tree.

Second, we focus on the ambiguity model to study time-variation in uncertainty. An

advantage of the linearity behind the solution method is that we can expand easily the state

space. We study shocks to the ambiguity, or, in the language of heterogeneous beliefs, shocks

to the degree of disagreement between the two agents. We analyze a one-time increase in

agent A’s ambiguity about his future income. This results in a strong desire to save from

agent A which leads to a fall in his consumption, a reduction in the interest rate and an

increase in debt. At the same time, the tree price increases as its collateral value is higher.

The transitional dynamics back to steady state differ whether the shock leads to an initial

negative real rate.

Third, we modify our baseline model so that there is no heterogeneity in patience. In this

case, in the deterministic steady state there are no gains from trade. This means that there

is zero debt and, importantly, that the asset and consumption allocations are indeterminate.
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Standard perturbation methods that rely on approximations around the deterministic steady

state cannot handle such a case and need to impose some prior differences between agents

to make these allocations determinate. The purpose of this exercise is to highlight that

our strategy does not use the deterministic steady state and instead involves solving jointly

for the equilibrium elasticities and the zero-risk steady state. In the latter there will be

differences between agents because of the heterogeneity in uncertainty.

The key property that emerges is that ambiguity generates gains from trade. The less

confident agent, of type A, is concerned about future income and wants to save. Indeed, we

show analytically how heterogeneity in ambiguity works like differences between subjective

discount factors. Importantly, the resulting difference is endogenous. Changes in the

environment will lead to agent A behaving as if his subjective discount factor has changed.

Part of the a-priori assumed heterogeneity in beliefs is the selection of the identity of

the agent whose income is uncertain. However, the proposed approach can be extended

to economies in which agents self-select in equilibrium into types whose beliefs will ex-post

differ. To illustrate this, the fourth experiment we consider is a version of the baseline model

in which we introduce nominal credit and ambiguous inflation. Ambiguity is modeled as a

set of conditional means for inflation. In equilibrium, the lender is concerned that the mean

for inflation is high, because this lowers the future continuation utility by eroding the real

value of the nominal bond. Thus, agent A, the lender, acts as if the probability distribution

for future inflation is the one with the highest mean. At the same time, agent B, who in

equilibrium becomes the borrower, is concerned that future inflation is low since this raises

the real value of the repayments the agent has to make, which lowers his continuation value.

We find that the endogenous disagreement generated by inflation uncertainty lowers

significantly the gains from trade, since both agents now perceive lower real returns to their

trading strategies. The uncertainty premium lowers the price of nominal bonds and it leads

to less debt. The price of the tree also decreases due to the lower value of collateral.

The paper is organized as follows. Section 2 proposes a solution approach for a general

class of recursive models with heterogeneous perceptions of exogenous shocks. There we first

characterize models with heterogeneous ambiguity and then describe a representation of a

recursive model with heterogeneous beliefs. Section 3 introduces an application consisting

of a model of uncertainty sharing, whose economic intuition is discussed in section 4 based

on a numerical example.
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2 Solving heterogeneous beliefs models by lineariza-

tion

In this section we first introduce a general class of recursive models with heterogeneity in

ambiguity. We then move towards a representation of a recursive model with heterogeneous

beliefs by noting the observational equivalence of the ambiguity model with an expected

utility (EU) model, given the worst-case beliefs. Once we focus on ambiguity about

conditional means, we develop an approach to solve for this EU model with disagreement

using log-linearization. The approach usually requires finding jointly the steady state and the

equilibrium law of motion. We show that there is an easy implementation that uses standard

solution methods, implementable in packages such as Dynare, for an as if linear forward-

looking rational expectations representation. In the heterogeneous ambiguity model we need

to verify the conjectured worst-case belief by analyzing the equilibrium value functions. This

step is not required for EU models, which can be solved using our solution approach, but

which impose dogmatic disagreement. Once the linear policy functions are determined, the

equilibrium dynamics of the model are found by simulating under the true DGP.

2.1 Generalized recursive model

Let Zt denote a k× 1 vector of exogenous state variables, Xt an m× 1 vector of endogenous

state variables and Yt a n× 1 vector of other endogenous variables.

There are I agents, each agent i with a vector of actions, denoted by Di. These actions

are part of X or Y and include the consumption choice Ci. Let Bi (X, Y, Z) denote the agent

i′s constraint set.

Given the evolution of Z, the evolution of the endogenous state variables is given by

X ′ = T (X, Y, Z)

An example of such law of motion is the capital accumulation equation, where X will

include capital. An important component is the law of motion of the vector of ambiguities,

ai ∈ X, given by some transition

ai = Ai (X,Z)

As detailed below, the vector of ambiguities controls the size of the belief sets for each

agent, and in turn for each shock. In particular, each agent is characterized by belief sets
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such that one-step ahead conditional mean of innovation to the jth shock Zj belongs to the

interval
[
−aij, aij

]
. In principle, the ambiguity process can be a function of the endogenous

state-variables X, as it would happen for example in models of learning.

Finally, the model economy consists of additional restrictions that determine the other

endogenous variables, Y, through some relationship

Γ (X, Y, Z) = 0

An example would be market clearing conditions in the goods or asset markets.

The recursive equilibrium consists of functions for the endogenous variables X ′ (X,Z),

Y (X,Z), value functions V i (X.Z) that satisfy three conditions.

First, agents optimize. In particular, we describe agents’ preferences by the recursive

multiple priors according to which

V i (X,Z) = max
Di∈Bi(Y,X,Z)

{
ui(Ci) + β min

|µij |≤Ai
j(X,Z)

Eµ
[
V i(X ′, Z ′)

]}
(1)

s.t. X ′ = T (X, Y, Z) (2)

Agents’ valuation of state variables X and Z is given by V i (X,Z) , which is obtained by

maximizing per period utility ui(Ci) and the continuation value over the available actions

Di from the budget set Bi (Y,X,Z) .

A key element of the setup is that each agent has a set of beliefs over the one-step ahead

conditional mean, denoted by µij, of the innovation to each shock Zj. This set is given by

the restriction that |µij| ≤ Aij (X,Z), where the ambiguity vector Ai is potentially specific to

each agent.

In the recursive representation in (1), agents react to the ambiguity (Knightian un-

certainty) about the conditional probability distributions of the shocks by taking optimal

actions as if the true data generating is characterized by each shock Zj having the probability

distribution with the lowest mean µij out of the set of beliefs. The fact that agents have

different sets thus gives rise to heterogeneity in beliefs. Finally, in order the forecast the

next period state variables, agents use the law of motion in (2).

Second, the endogenous variables are determined according to the restrictions summa-

rized by Γ (Y,X,Z) = 0.

Third, the dynamics of this equilibrium need to be characterized under some law of

motion for the exogenous variables Z. In the two steps above we have found the decision

rules and laws of motion that arise from agents’ aversion to uncertainty, as expressed by the

optimization of the recursive multiple priors preference. Given these functions X ′ and Y,

7



the realized equilibrium outcomes are obtained feeding in the true exogenous Markov state

process for Z.

2.2 Recursive equilibrium with general beliefs

The general system consists of three types of equations. There are n equations that determine

the other endogenous variables as an implicit function of the state variables:

f (Xt, Xt−1, Yt, Zt) = 0 (n equations)

There are m equations that capture intertemporal behavior by agents. In a model

with heterogeneous beliefs, we need to distinguish between what belief is used for form

expectations. We say there mi equations involving beliefs of agent i, where
∑

imi = m.

Ei
t

[
gi (Xt, Xt−1, Yt, Yt+1, Zt)

]
= 0 (mi equations)

Notice that the expectation operator uses the conditional distribution that emerges as the

worst-case distribution from the minimization in the utility represented in (1). Once the

worst-case belief is determined, or guessed, the model becomes observationally equivalent

with an expected utility model with heterogeneity in beliefs.

There are k equations that describe the law of motion of the exogenous variables. We

introduce the risk directly on innovations to the log state variables:

logZt = (I − P ) log Z̄ + P logZt−1 + εt (3)

We assume that I − P is invertible so the mean of a stationary solution to this difference

equation is log Z̄.

We assume that agents may disagree about the exogenous variables, but they share

structural knowledge of the economy, that is, they agree on the mapping from exogenous to

endogenous variables.

For a general definition of equilibrium, suppose that each agent has in mind a probability

distribution over Zt, possibly different from (3). A recursive equilibrium is given by functions

X ′ (X,Z) and Y (X,Z) such that the equations above are satisfied for all (X,Z). The
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resulting system of functional equations is

f (X ′ (X,Z) , X, Y (X,Z) , Z) = 0,

Ei
[
gi (X ′ (X,Z) , X, Y (X,Z) , Y (X ′ (X,Z) , Z ′) , Z) |Z

]
= 0,

where in the second equation Z ′ is uncertain and expectations in equation i are computed

using agent i’s conditional distribution over it. These are m + n functional equations in

m+ n functions.

2.2.1 Recursive equilibrium: zero risk steady state

If agents’ beliefs differ in conditional means, then they will disagree in steady state. Denote

steady state value by bars. Suppose also there are no shocks, but agents differ in conditional

beliefs at the steady state Ei
[
Z ′|Z̄

]
. The steady state is then characterized by

f
(
X̄, X̄, Ȳ , Z̄

)
= 0,

gi
(
X̄, X̄, Ȳ , Y

(
X̄, Ei

[
Zi|Z̄

])
, Z̄
)

= 0,

In general, the beliefs Ei
[
Z ′|Z̄

]
matter both directly, in the second equation, and through

their effects on future endogenous variables.

2.3 Recursive equilibrium: log-linear approximation

Disagreement at the steady state affects the applicability of perturbation methods. Indeed, if

future endogenous variables Y enter into the intertemporal conditions, we cannot determine

the steady state separately from the policy function Y (X,Z) . This problem is relevant for

example in models with an intertemporal Euler equation of a long lived agent, where Y

typically includes consumption, and it is not possible to find consumption in closed form.

It does not occur for example in models with 2 period lived agents, where we have a closed

form solution for consumption as a function of X and Z.

2.3.1 Loglinear approximation

We shoot for approximate solutions that are loglinear expansions around the steady state.

Denote log deviation by lower case letters with hats, that is, X = X̄ex̂ and so on. We
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conjecture solutions

Xt = X̄ exp (εxxx̂+ εxz ẑ)

Yt = Ȳ exp (εyxx̂+ εyz ẑ)

Here x̂ corresponds to the lagged deviation of X from steady state and ẑ corresponds to the

current deviation of Z from steady state. The undetermined coefficients are therefore m+n

constants, and (m+ n) (m+ k) elasticities.

If all we want is loglinear approximate solutions, we do not have to model explicitly all

features of beliefs: all that matters is differences in conditional means. We assume

Ei
t logZt+1 = (I − P ) log Z̄ + P logZt + Ai logZt

This assumes that conditional means can be written as a linear function of exogenous state

variables. The matrix Ai determines the belief adjustment relative to the true law of motion

(3). In the exogenous ambiguity case, an ambiguity state variable would be part of Zt and

we can then use different Ai matrices to pick different worst cases.

In a rational expectations setup, we can solve the constants separately from the elastic-

ities. This is not possible here since agents disagree in steady state about what happens

to the state variables next period. However, we can still loglinearize to obtain as many

equations as coefficients we need to determine.

Loglinearizing the first set of equations, we have (writing the jth partial derivative as fj

and dropping arguments):

0 = f
(
X̄, X̄, Ȳ , Z̄

)
+ X̄f1 (εxxx̂+ εxz ẑ) + X̄f2x̂+ Ȳ f3 (εyxx̂+ εyz ẑ) + Z̄f4ẑ.

This delivers n equations for constants, and n× (m+ k) on elasticities in the usual way.

Loglinearizing the second set of equations, for each i, we have

0 = gi
(
X̄, X̄, Ȳ , Ȳ exp(εyzA

i log Z̄
)
, Z̄) + X̄g1 (εxxx̂+ εxz ẑ) + X̄g2x̂

+ Ȳ g3 (εyxx̂+ εyz ẑ) + Ȳ g4
[
εyx(εxxx̂+ εxz ẑ) + εyz

(
P + Ai

)
ẑ
]

+ Z̄g5ẑ

This delivers m equations from the constant terms, and m × (m+ k) equations from

matching coefficients on the state variables. Note that all the derivatives fj and gj also

depend on the constants.
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2.3.2 Proposed solution strategy: implementation

To solve jointly for the constants and the elasticities, we propose a solution strategy that

uses standard linear forward-looking rational expectations solution methods. The strategy

consists of the following steps:

1. Guess the elasticities of the other endogenous variables,Y, with respect to the endoge-

nous and exogenous state variables, εyx and εyz, respectively. This step is useful so that

the agents have a guess on the law of motion of future endogenous variables, which

they need to forecast.

2. Solve for candidate steady state from constant terms

f
(
X̄, X̄, Ȳ , Z̄

)
= 0

gi(X̄, X̄, Ȳ , Ȳ exp(εyzA
i log Z̄), Z̄) = 0

Given the guessed elasticities, this is a nonlinear equation system of dimension m+ n.

3. Compute all derivatives at steady state and find elasticities

This becomes finding a linear system of dimension(m+ n) (m+ k) .

To solve for this step we can appeal to standard linear rational expectations model

solution methods. To do that, we propose adding a vector of forward-looking endoge-

nous variables Ỹ i
t+1, with a size equal to the number of Y variables that enter as leads

in the expectation equations gi(.).

In particular, we modify the model to read

0 = f (Xt, Xt−1, Yt, Zt) (4)

0 = Et

[
gi(Xt, Xt−1, Yt, Ỹ

i
t+1, Z̄)

]
(5)

logZt = (I − P ) log Z̄ + P logZt−1 + εt (6)

where the new defined variable follows

Ỹ i
t = Ȳ exp(εyx

(
logXt−1 − log X̄

)
+ εyz

(
logZt − log Z̄ + Ai logZt−1

)
) (7)

The variable Ỹ i
t thus controls for the forward looking variable Yt. but from the

perspective of each agent i. The heterogeneity of beliefs shows up in introducing agent-

specific Ỹ i
t variables. The law of motion for this variable follows from the guess in
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step 1: it responds to the endogenous and exogenous state variables according to

elasticities εyx and εyz. Importantly, the agent specific matrix Ai, which determines

the belief adjustment about the exogenous state Z, relative to the true law of motion,

affects the belief about the endogenous variable through the elasticity εyz.

4. Finally, for the solution of the economy represented by the equations in (4)-(7) to be

the equilibrium in which we have imposed structural knowledge of the economy, we

need to check the consistency of these beliefs. This amounts to check if the guess of

the elasticities εyx and εyz is correct. If the guess is correct, then agents are forming

model-consistent expectations of the future endogenous variables.

Having reached consistency of beliefs about the structure of the economy, the dynamics

and the steady state of the rational expectations model described by the equilibrium

conditions in (4)-(7) produces the dynamics and the zero-risk steady state of our economy

with heterogeneous beliefs. Indeed, this system contains: (i) the original static equations

f(.) in (4), (ii) the forward looking equations Etg
i(.) in (5), where expectations about

future endogenous variables are agent specific. These functions contain the agent specific

views about future variables, reflected in the guessed laws of motion (7); (iii) dynamics are

determined by the true law of motion for the exogenous state, as in (6). At the fixed point

for the elasticities (εyx, εyz) agent i’s expectation of next period’s endogenous variables, as

described by equation (7), is consistent with the linearization of the overall system at the

zero risk steady state.

3 A model of partial insurance

We present here a model of uncertainty sharing. Agents face uncertain endowment streams

and engage in financial trading to optimally smooth consumption.

3.1 The model

Agents and beliefs

There are two types, denoted by A and B, of infinite lived agents. Each agent maximizes

Ej
0

[
∞∑
t=0

βtj
c1−γt

1− γ

]
(8)
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where γ is the CRRA coefficient and βj is the potentially agent specific subjective discount

factor. Each agent will receive a stream of endowment of goods. The beliefs of each agent

about these streams are as follows. Type B agents always get ȳB and all agents know this.

At date t, type A agents believe they get yt+1 = ȳA exp (−at) . The confidence of agent A is

potentially time varying, in the sense that at is stochastic. However, this belief simply reflects

the concern of agent A, who is not confident about his own income. In fact, according to

the true data generating process type A agents get yt+1 = ȳA. Type B agents are confident:

they know the true DGP and thus know not only that their income yBt = ȳB but also that

agent A endowment is constant at yAt = ȳA.

The model is casted as one of heterogeneous beliefs, in which for simplicity we have

assumed that agent B knows the true DGP and agent A is more pessimistic about his

income. A way to interpret agent A′s belief is an as if pessimism that results from the

ambiguity he perceived about his income. In that case, the set of beliefs about the one-

step ahead conditional mean of his log-income is given by [−at, at] and the worst-case belief

is simply the lower bound, given by −at. This leads to agent A maximizing the present

discounted value in (8) under the worst-case belief that yt+1 = ȳA exp (−at) .

Assets

There are two assets in this economy. One is a one period noncontingent debt, traded at

price qt. The second is a tree, which pays each period a constant dividend d,is sold at price

pt and there are no short sales allowed.

There is a financial friction in this economy: in order for a borrower that owns θt of the

tree to be able to support a leverage `t, defined as −qtbt/ptθt, there is an additional cost to

the borrower given by k (`t) qtbt. The property of the borrowing cost k (`) are that: k (`) = 0

for ` ≤ 0; k (`) , k′ (`) , k′′ (`) > 0 for ` > 0.

The date t budget constraint of each agent is given by

ct + ptθt + qtbt (1 + k (`t)) = yt + (pt + d) θt−1 + bt−1 (9)

The left hand side reflects expenditures on consumption, tree shares and debt. If leverage

is positive, this entails the additional cost described above. The right hand side gives the

available resources: the realized endowment of goods plus the dividend and market value of

the owned shares, as well as the default-free bonds that mature this period.

Optimality conditions
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The optimality of bond holdings leads to the following Euler equations for bond pricing

qt = βAE
A
t

[(
cAt+1

cAt

)−γ]
= βBE

B
t

[(
cBt+1

cBt

)−γ]
+ qt (k (`t) + `tk

′ (`t)) (10)

The first equality reflects the choice of agent A. This agent in equilibrium is the lender,

i.e. bAt > 0. This choice arises even in the case where the discount factors are the same

βA = βB. The reason is that the pessimism of agent A works like a desire for precautionary

savings, which is larger than for agent B and thus drives up the price at which agent A is

willing to hold bonds. In turn, as shown by the second equality, the borrower will hold the

debt in equilibrium because of the leverage cost. Indeed, if not for this cost, the confident

agent B will want to sell as much of the bonds as possible at the seemingly high price qt

obtained from the strong desire of agent A to save. The marginal cost of borrowing, given

by the last two terms in equation (10) lower the perceived bond price for the borrower until

equilibrium is achieved and both agents are happy to satisfy the bond-market clearing at an

interior solution. The marginal cost consists of the higher cost of an additional unit of debt,

for a given leverage `t plus the higher cost arising from the marginal increase in leverage, for

a given size of debt.

We are looking for equilibria in which only type B agents hold the tree. This means

that for the pricing of the tree we have to characterize just one Euler equation, given by the

optimality of agent B:

pt = βEB
t

[(
cBt+1

cBt

)−γ
(pt+1 + dt+1)

]
+ `2tk

′ (`t) pt (11)

The tree is priced under agent B′s belief and the value of the tree is higher due to the

collateral benefit, given by the last component of equation (11). We must therefore check

that the type A does not want trees. The reason that this may be the case is that the

tree looks too expensive from the perspective of agent A, who is more pessimistic about the

future outcome of the economy.

3.2 Recursive equilibrium

The market clearing conditions for this economy are as follows. In the goods market

cAt + cBt = ȳAt + ȳB − qtbtk (`t)
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where we assume that the borrower cost represents wasted resources. The debt market states

that bonds are in zero net supply:

bAt + bBt = 0

For the market for trees, we use the condition that only agent B owns trees.

The state variables are therefore the type A endowment yAt , the stochastic ambiguity a

and the distribution of asset holdings. From the debt market condition, this simply boils

down to tracking type B debt bt = −bBt .

The recursive equilibrium consists of finding the consumption allocations of each agent

ci
(
yA, a, b

)
, the debt allocation b′

(
yA, a, b

)
and the prices q

(
yA, a, b

)
and p

(
yA, a, b

)
.Notice

that agents disagree only about income but otherwise we assume that they know the

equilibrium mapping given by the functions above. This means we are left with finding find

functions from the Euler equations in (10) and (11) together with the budget constraints in

(9).

We are looking to solve for the equilibrium using a log-linear approximation. This

amounts to finding elasticities for the unknown functions. For example:

ĉAt = log cAt − log c̄A = εcAyAŷ
A
t + εcAa ât + εcAb b̂t

where hats denotes log-deviations from the steady state.

3.3 Steady state

We first describe how to characterize the steady state of this economy. We are looking for

allocations and prices that are constant.

3.3.1 Type B agents, leverage and collateral value

The confident agents B expect some constant consumption c̄B. To describe the steady state

prices, we find it convenient to write the asset pricing conditions with returns.

From the type B Euler equation for bonds we have that the steady state return on bond

is given by

rbond = q̄−1 − 1 = δB −
(
k(¯̀) + ¯̀k′(¯̀)

)
/βB

where δB = β−1B − 1, which shows that a higher leverage lowers the interest rate. The

borrower is compensated in equilibrium for the higher cost of borrowing by paying a lower

interest rate on debt.
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From the type B Euler equation for tree holdings we have that the return on holding

trees is

rtree =
d

p̄
= δB − ¯̀2k′

(
¯̀
)
/βB

which also shows that a higher leverage lowers the tree return. This happens because a

higher leverage implies that the tree collateral benefit is larger which raises the value of the

tree price, and thus lowers its return.

Using the two conditions for returns, we can compute the excess return as

rtree − rbond =
(
k
(
¯̀
)

+ k′
(
¯̀
)
`
(
1− ¯̀

))
/βB

which, for low leverage, results in a positive premium on tree.

3.3.2 Type A agents and precautionary savings

Agent A is in turn ambiguous about his income and thus expects his consumption to drop

from the steady state c̄A to a lower value, given by

c̃A = cA
(
ȳA exp (−ā) , ā, b̄

)
≈ c̄A exp

(
−εcAyAā

)
(12)

This agent behaves as if he is perpetually surprised by high income. He expects con-

sumption to fall in proportion to εcAyA, the elasticity response of his equilibrium consumption

function to the ambiguous income. The latter is expected to be lower by ā and thus future

consumption is lower, in logs, by εcAyAā.

Agent A holds bonds due to his precautionary motives. The Euler equation results in

rbond = q̄−1 − 1 ≈ δA − γεcAyAā

where δA = β−1A − 1. More pessimism, in the form of a larger ā, lowers the interest rate, as

the agent is willing to pay a larger bond price to achieve more stability in his consumption

profile. This behavior works like a higher discount factor, but it is endogenous, in the sense

that the equilibrium response εcAyA matters for this effect. In addition, the curvature in utility

matters. A lower intertemporal elasticity of substitution, given here by γ−1, means that the

agent is less willing to accept an intertemporally volatile consumption profile and thus is

willing to accept an even lower interest rate to smooth his consumption.

The steady state conditions show clearly that we need to solve jointly for the steady

states and the elasticities εyz . In particular, here agent A has to have a belief about how his
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consumption will change next period as he expects a lower income. This will determine his

saving decisions, which affects the steady state consumption and pricing decisions. In turn

the elasticities are computed around the steady state values of these endogenous decisions.

3.3.3 Tree market participation

It is useful now to revisit the decision of agent A to hold shares in the tree. Type A expects

the tree price to drop from its steady state value p̄ to a value

p̃ = p
(
ȳA exp (−ā) , ā, b̄

)
≈ p̄ exp

(
−εpyAā

)
(13)

As long as the elasticity of the tree price with respect to agent A income is positive, i.e.

εpyA > 0, then agent A is also pessimistic about the (endogenous) price.

For agent A not to hold the tree we mush have his perceived tree return be lower than

the bond return
d

p̄
− εpyAā < rbond

Notice that this can true, as it turns out to be in the numerical example presented below,

even if rbond < rtree = d/p̄. For this the price impact of yA, through the elasticity εpyA > 0, is

important.

3.4 Implementing an as if RE dynamic model

We follow the solution strategy proposed in section (2.3.2). The log-linearized equilibrium

consists of the following equations.

Budget constraints: For the lender, type A :

cAt + qtbt = yAt + bt−1

and for the borrower, type B :

cBt − qtbt (1 + k (`t)) = yB + d− bt−1

where we have imposed the market clearing condition in bonds and tree shares.

17



Euler equations. For the tree holdings:

Pt = `2tκ
′ (`t)Pt + βBEt

[(
cBt+1

cBt

)−γ
(Pt+1 +Dt+1)

]

and for the bond holdings the two Euler equations

Qt = βAEt

(
cA,Newt+1

cAt

)−γ
= βBEt

(
cBt+1

cBt

)−γ
+Qt(κ (`t) + `tκ

′ (`t))

where we introduce the additional forward looking variable for the perspective of agent A

about how his future consumption will evolve:

log cA,Newt = log cA + εcAb (bt−1 − b) + εcAyA(yA,t − y − at−1) + εcAa (at − a)

The solution of this system if the fixed point of jointly solving for constants and elasticities.

The steady state of this as if rational expectations model gives us the zero risk steady state,

where the conjectured policy function for needs to cA,Newt needs to be consistent with the

elasticities of the actual log cAt policy function.

4 Numerical example

We now take the model of partial insurance described above and perform a range of

simulation exercises. The parametrization for the benchmark model is as follows. Total

output is normalized to one, with each agent receiving equal endowments of ȳA = ȳB = 0.45

and the tree dividends amounting to d = 0.1. We set the common CRRA coefficient to

γ = 2 and the two discount factors as βA = .98 and βB = .963. The borrowing cost is

k (`) = .075`2. We choose these latter three parameters to target the following three moments

for the deterministic version of the model: the tree price, the price of bond and the leverage,

whose values are reported in the first row of Table (1).

4.1 Steady state effects of uncertainty

We find it useful to compare two versions of how uncertainty about agent A′s income is

incorporated into our model of partial insurance. One, which we call ”risk model”, is a

standard model of uninsured income risk. There agent A’s income is hit by iid Gaussian
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shocks with a standard deviation σ = 0.1. To capture the effects of risk on decision rules we

will solve that model nonlinearly using interpolation methods.

In the second version, which we call the ”ambiguity model”, agent A’s income is am-

biguous. Steady state ambiguity is normalized as a multiple of the standard deviation, i.e.

ā = ησ. We solve this model linearly, using the solution strategy that we described above. We

choose the parameter η to get a similar zero-risk steady state of debt as the ergodic steady

state obtained for the risk model. We find that a value of η = 0.12 produces this match.

In the process, the other variables also are very similar between the risk and the ambiguity

steady states, as reported in the second and third rows of Table (1). The interpretation of

this parameter is that uncertainty in the form of risk generates similar effects on decision

rules through nonlinearities as it does through ambiguity with a set of beliefs on the one-step

ahead conditional mean ranging from [−0.12σ, 0.12σ] . This parameter is much smaller that

the upper bound of η = 2 that Ilut and Schneider (2014) argues is theoretically reasonable

from the perspective of the statistical fit of the worst-case forecast.

Table 1: Steady states

Steady state c̄A c̄B q̄ p̄ q̄b̄ ¯̀= q̄b̄/p̄
Deterministic 0.48 0.518 .98 3 1.2 .40
Risk 0.47 0.517 .987 3.36 1.59 .48
Ambiguity 0.47 0.517 .987 3.33 1.59 .48

Table (1) shows that uncertainty, either in the form of risk or ambiguity, generates in

the ergodic steady state gains from trade that come in addition to the difference in patience.

This is reflected in the higher equilibrium steady state leverage and debt. The precautionary

saving motive of agent A, coming either in the form of risk or worst-case belief, incentivizes

agent A to lend more. This not only raises the quantity of debt but also the bond price so

that uncertainty aversion leads to a lower interest rate. From the perspective of the borrower,

the higher collateral value of the tree means that agent B is willing to pay a higher price for

the tree.

4.2 Policy functions

Figure (1) plots the equilibrium decision rules as function of debt in the case of the

deterministic, risk and ambiguity model. The green vertical dotted line represents the lower

steady state value of debt in the deterministic model compared to the one in the risky and,

by construction, the ambiguity model, shown as the vertical red line. There several points

of interest.
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Figure 1: Equilibrium policy rules, as functions of debt, for the deterministic, risky and
ambiguous models.
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First, policy functions in the risk and ambiguity model are quite similar. While the

former was obtained through nonlinear solution methods, the latter captures most of its

qualitative properties even if it is solved only up to a first-order approximation.

Second, the shape of the decision rules are as expected. Agent A′s consumption and

lending is increasing in the amount of bonds that he has entering the period, while agent B’s

consumption is decreasing since he has to repay that debt. If the lender has lower bonds than

in steady state, the transition path he expects is one with a positive consumption growth.

This means that the bond price along this path will be lower than the steady state, and

will converge to it from below as the state of the economy is one with lower debt. Similar

logic holds for the region of debt above its steady state. This explains the upward sloping

bond price. Along this path, the borrower expects a negative consumption growth which

increases, caeteris paribus, the price he is willing to pay for the tree since this serves as a way

to smooth consumption. On the other hand, in this region the collateral value of the tree is

lower since debt is lower than the steady state. Thus, there are two competing equilibrium

effects. For the linear policy functions, such as the deterministic and ambiguity model, one

force is bound to dominate. In this case it is the former and the equilibrium price is higher

when debt is lower. In the nonlinear solution, the price is slightly increasing and about flat

around the ergodic steady state.

Third, the qualitative effects of uncertainty in shifting the deterministic policy functions

are the same, whether it is risk or ambiguity. Sharing uncertainty leads to higher gains from

trade, which shifts up debt, for any state value. Even if the shift is small, because debt is very

persistent, the fixed point where the debt policy returns a value equal to that of the state

value of debt is much larger in the uncertainty case. The uncertainty-averse agent A engages

in precautionary saving, so that the consumption function is shifted down with uncertainty.

For the same value of debt this results in significantly lower consumption. However, because

of the same precautionary reasoning, in steady state agent A also accumulates more debt so

the net effect on the steady state consumption is not obvious. For this parametrization it

turns out that that the shift down in the function dominates. The desire to save also shifts

up the bond price. Together with the higher debt characterizing the new steady state this

leads to a significant rise in the bond price. In turn, agent B′s consumption is shifted up

since he enjoys a lower interest rate on the same debt. However, in the new steady state he

will have to pay the now lower interest rate on a larger amount of debt. The overall effect

here is such that the second effect dominates and the agent B consumption is also lower in

the ergodic steady state than in the deterministic case, as shown in Table (1). The fact that

both agents’ consumption are lower is possible because of the larger borrowing cost that is

a waste in the resource constraint. Because of the larger gains of trade and the higher debt,
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the collateral value of the tree shifts up with uncertainty and remains high in the steady

state. For leverage the price effect dominates the bond effect and the function is shifted

down. However, due to its strong upward shape, and intuitively because of the larger gains

from trade, the ergodic steady state of leverage is larger.

4.3 Time-varying disagreement

We now focus on the ambiguity model to study time-variation in uncertainty. We have

described it as one with heterogeneity in beliefs, where agent A is less confident and thus

as if more pessimistic about his income. We have developed tools that allows us to study

this heterogeneity that remains even in the steady state using linear methods. An advantage

of the linearity is that we can expand easily the state space. For example, we can study

shocks to the ambiguity, or, in the language of heterogeneous beliefs, shocks to the degree

of disagreement between the two agents.

Figure (2) plots the response of the ambiguity model economy to a one-time increase

in agent A’s ambiguity about his future income. Following a similar logic as with the

steady state, this results in a strong desire to save from agent A. This leads to a fall in his

consumption, a reduction in the interest rate and an increase in debt. At the same time,

the tree price increases as its collateral value is higher. The periods following this shock are

characterized by different dynamics, depending on the interest rate effect. For the baseline

economy, the fall in the interest rate is so large that the rate becomes negative. This has

interesting effects on the dynamics. Even if uncertainty has reverted to its steady state

following the first period shock, agent A now sees a negative wealth effect since the debt

that he owns comes with a negative interest rate. Thus, starting in period two, we see typical

transitional dynamics back to steady state when the agent has suffered a negative wealth

shock: consumption is lower than steady state and he reduces debt to smooth this transition.

This is the reason why consumption of agent A not only falls in the initial period, which

comes from the precautionary savings, but continues to converge back to steady state from

below, and at the same time, why debt initially rises and then falls.

To verify this intuition, Figure (3) plots the impulse response to the same ambiguity

increase, but for a parametrization where βA is lower so that the steady state interest rate is

larger to the extent that the fall in the interest rate after the initial uncertainty shock still

keeps the rate at a positive level. In this case, the dynamics are more standard. Consumption

of agent A initially declines strongly and then converges back, slightly from above. This

agent has accumulated more debt following the higher perceived uncertainty and, following
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Figure 2: Increase in ambiguity

standard transitional dynamics logic, will now consume out of it to converge smoothly back

to steady state. Indeed, debt is initially higher and then it slowly decreases.

4.4 Perturbation without needing deterministic steady state

Our proposed perturbation method involves solving jointly for the zero-risk steady state and

the equilibrium elasticities, which has the implication that we do not use the deterministic

steady state in the solution method. This is an important technical advantage over standard

perturbation methods which usually approximate around the deterministic steady state.

That standard approach requires that such a steady state is determinate and thus cannot

handle models where the Jacobian of the entire dynamic system is rank deficient. An example

for such a situation where one cannot approximate around the deterministic steady state is

an asset allocation problem where expected returns are the same, such as in models of

international portfolio choice.

In our model of partial insurance we would encounter the same problem is agents have
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Figure 3: Increase in ambiguity: low discount factor economy
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the same discount factor β. In this case, in the deterministic steady state there are no gains

from trade. This means that there is zero debt and, importantly, the asset and consumption

allocations are indeterminate. Standard approaches cannot handle such a case and need to

impose some prior differences between agents to make these allocations determinate. Our

strategy does not use the deterministic steady state and instead goes directly after the

zero-risk steady state. In the latter there will be differences between agents because of the

assumed heterogeneity in confidence.

Consider the following numerical example where the only difference from the baseline

model is that both agents have the same discount factor: βA = βB = .963. Table (2)

indicates that while in the deterministic steady state there is no debt and allocations are

indeterminate, in the zero-risk steady state there is positive debt and the allocations are

determinate.

Table 2: Steady states

Steady state c̄A c̄B q̄ p̄ q̄b̄ ¯̀= q̄b̄/p̄
Deterministic .963 2.63 0 0
Ambiguity 0.47 0.52 .972 2.76 .81 .29

The key property that emerges from the model with uncertainty is that ambiguity

generates gains from trade. The less confident agent, of type A, is concerned about future

income and wants to save. This desire makes agent A behave like a saver, which otherwise

could be modeled as being the more patient agent. Indeed, heterogeneity in ambiguity works

like differences between subjective discount factors. Importantly, the resulting difference is

endogenous. Changes in the environment will lead to agent A behaving as if his subjective

discount factor has changed.

We can see this analytically. In steady state, optimality conditions for agent A involve

the perceived discounted intertemporal marginal rate of substitution between consumption

tomorrow and today. Using equation (12) this is given by

βA

(
c̃A

c̄A

)−γ
= βA exp

(
γεcAyAā

)
(14)

By defining an adjusted discount factor

β̃A ≡ βA exp
(
γεcAyAā

)
we can reinterpret zero-risk steady state optimality conditions that only involve the pricing

kernel in (14) as a deterministic steady state where, if ā > 0, agent A has a higher discount

25



factor than agent B. This adjusted discount factor is however endogenous to the rest of

the parameters because the elasticity εcAyA matters. In addition, even if we fix parameters,

in general the model is not perfectly observationally equivalent to the deterministic case of

setting exogenously the discount factor of agent A to β̃A. The reason is that there may be

other forward-looking conditions of agent A that involve expectations of other endogenous

variables, not just consumption growth. For example, when this agent considers investing in

tree shares, it forms expectations over the future tree price, as shown in equation (13). The

elasticity of this price with respect to the ambiguous shock appears as an additional effect

of uncertainty in this decision, on top of the effect of the pricing kernel.

4.5 Endogenous disagreement and worst-case beliefs

The baseline model features endogenous disagreement to the extent that the structural

parameters affect the equilibrium elasticities of allocations and prices with respect to the

uncertain shocks. For example, the elasticity of agent A′s consumption with respect to his

income, εcAyA, will in general be a function of many of the structural parameters, including the

size of his endowment, the subjective discount factor, the borrowing cost and so on. In this

sense, the degree of disagreement is on one hand purely exogenous, controlled by the amount

of ambiguity ā, and on the other hand determined by the rest of the model parameters.

Part of the a-priori assumed heterogeneity in beliefs is the selection of the identity of

the agent whose income is uncertain. However, the approach we propose can be extended

to study situations in which agents self-select in equilibrium into types whose beliefs will

ex-post differ.

To see this, let us consider a version of the baseline model in which we introduce nominal

credit and ambiguous inflation. The payoff of the bond is (1 + π)−1 , where π is the uncertain

inflation and the price q is now the nominal bond price. Suppose that the true data generating

process is that inflation is zero. If there would be no uncertainty about it, or, in the linear

model, there would be full confidence in this process, then we would recover the exact same

equilibrium as in the real model.

Consider the ambiguity model. Suppose that both agents believe that the one-step ahead

conditional mean of inflation belongs to the set [−π, π], where π is a positive parameter.

Agent A is in equilibrium the lender. This desire to save follows either from a-priori

differences in the subjective discount factor, or, as we have shown above, simply from

differences in the ambiguity about income. The lender takes consumption and nominal

bond decisions under the worst-case belief about inflation. The future payoff of the bond
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is decreasing in future inflation, and, in turn, the value function is increasing in the wealth

that the agent accumulates. It follows that the lender is concerned that the true DGP for

inflation is one in which inflation is high, because this lowers the future continuation utility,

by eroding the real value of the nominal bond. Thus, agent A acts as if future inflation is

π. At the same time, agent B, who in equilibrium becomes the borrower, is concerned that

future inflation is low, and equal to −π. Indeed, a lower future inflation raises the real value

of the repayments the agent has to make, which lowers his continuation value.

Let us consider a numerical example. We set the width of the set of beliefs about inflation

such that π = 0.01. Table (3) reports the zero-risk steady state of this model, in which the

only difference from the baseline version is the addition of the ambiguous inflation. Inflation

uncertainty lowers significantly the gains from trade, since both agents now perceive lower

real returns to their trading strategies. The uncertainty premium lowers the price of nominal

bonds and it leads to less debt. The price of the tree also decreases due to the lower value

of collateral.

Table 3: Endogenous worst-case beliefs about inflation

Steady state c̄A c̄B q̄ p̄ q̄b̄ ¯̀= q̄b̄/p̄
Baseline 0.47 0.517 .987 3.33 1.59 .48
Ambiguous inflation 0.46 0.53 .981 2.74 0.77 .28

The key property of the ambiguity model is that agents act under the worst-case belief

that supports the equilibrium allocation. Agents may ex-ante have the same degree of con-

fidence about the probability distributions of shocks. However, because they endogenously

take trading positions of different signs in equilibrium, the ex-ante homogeneity manifests

as ex-post heterogeneity of beliefs. In our case, the lender acts as if future inflation is high

while the borrower as if future inflation is low.

When the ex-post disagreement in beliefs is sustained by the conjectured equilibrium

choices, we have been able to use our proposed strategy of studying heterogeneity. While

at the equilibrium allocations, these beliefs will look to an outside observer as dogmatic

differences, the model is one in which policy interventions that affect equilibrium choices will

also alter this disagreement.
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