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1 Introduction

Many central banks have initiated research and development efforts concerning the potential

issuance of a central bank digital currency (CBDC) that would be widely used by retail firms

and households as a medium of exchange. A central concern in these discussions is the impact

of introducing a CBDC on financial stability. Since a CBDC could serve as a safe alternative

to bank deposits, it may increase the risk of bank runs. The collapses of Silicon Valley Bank

and Signature Bank underscore how digital bank runs can pose significant threats to financial

systems.

This paper studies the economic role and implications of a CBDC, with a particular focus

on its effects on financial stability and welfare. We develop a monetary model in which

fundamental-based bank runs arise endogenously. As in Williamson (2012, 2022b), means of

payment are not perfectly substitutable in our baseline framework. Agents use both cash and

bank deposits to purchase goods in decentralized transactions. We assume that cash protects

privacy, whereas bank deposits do not. Due to idiosyncratic uncertainty over which payment

method—cash or deposits—will be required in a given transaction, banks endogenously emerge

as liquidity insurers. Banks invest depositors’ funds in a portfolio of cash and real assets and

offer deposit contracts allowing individuals to transact with either cash or deposits backed

by real assets. When the return on real assets (i.e., economic fundamentals) is sufficiently

low, the transaction value of deposits falls below that of cash. In such cases, agents who hold

deposits choose to convert them into cash. Thus, bank runs in our model are driven by adverse

fundamentals, consistent with Allen and Gale (1998).

We analyze the introduction of two types of CBDCs in this setting: a cash-like CBDC

and a deposit-like CBDC. A cash-like CBDC is a universal digital currency that, like physical

cash, protects privacy and is widely accepted in all transactions, regardless of whether privacy

is needed. It therefore competes directly with cash in decentralized transactions. In contrast,

a deposit-like CBDC is designed for online, remote, or high-volume transactions and provides

less privacy than physical cash. Consequently, it does not compete with cash in transactions

where privacy is valued. Both types of CBDC carry an interest rate—a key distinction from
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physical cash.

The introduction of a cash-like CBDC crowds out physical cash in our model, as it is a

perfect substitute but pays interest, unlike cash. In this sense, the cash-like CBDC resembles

a retail CBDC. We show that a higher CBDC interest rate raises the transaction value of

CBDC and increases the probability of a bank run, as deposit users are more likely to convert

deposits into CBDC when fundamentals are weak. Therefore, issuing a cash-like CBDC can

reduce financial stability. Nonetheless, we also find that a higher CBDC rate improves welfare,

highlighting a trade-off between financial stability and welfare. In this case, a modified version

of the Friedman rule is optimal and can eliminate the possibility of a run.

By contrast, introducing a deposit-like CBDC improves financial stability. Because it is

an imperfect substitute for cash, cash, CBDC, and deposits can coexist in equilibrium. The

CBDC can serve as collateral backing deposits and as a buffer against low returns on real

assets. This reduces the likelihood that the transaction value of deposits falls below that of

cash, thereby diminishing the incentive for agents to run. While a deposit-like CBDC enhances

stability, the welfare effect of a higher CBDC rate is ambiguous. It reduces the amount of cash

reserves and thus lowers the consumption of agents relying on cash. In this case, the optimal

policy is to follow the traditional Friedman rule with a (net) zero CBDC rate, minimizing the

cost of holding both cash and CBDC and ensuring that agents consume efficient quantities.

Unlike Allen and Gale (1998) and related work, bank runs are inefficient in our model. In

their framework, deposit contracts are real and incomplete, and bank runs can improve risk

sharing by restoring some contractual contingencies. In contrast, in our model, bank runs

disrupt retail payments, reducing depositors’ consumption and welfare despite improved risk

sharing. Furthermore, the panic-based bank run of Diamond and Dybvig (1983) does not

occur here, as real assets cannot be liquidated at an intermediate stage. Hence, bank runs in

our model are purely fundamental-driven and always inefficient.

Related Literature. There is a rapidly growing literature on central bank digital currencies

(CBDCs). Structured overviews of recent research are provided by Ahnert et al. (2022), Auer

et al. (2022), and Chapman et al. (2023). Our study contributes to three main strands of this
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literature.

The first strand focuses on the introduction of CBDC and the supply of liquidity services,

including Barrdear and Kumhof (2022), Brunnermeier and Niepelt (2019), Davoodalhosseini

(2021), Andolfatto (2021), Chiu et al. (2022), Williamson (2022b), and Sanches and Keister

(2023). In contrast, our paper emphasizes the implications of CBDC issuance for financial

stability.

The second strand examines the impact of CBDC on financial stability, with contributions

from Fernández-Villaverde et al. (2020, 2021), Kim and Kwon (2022), Williamson (2022a),

Monnet and Keister (2022), and Ahnert et al. (2023). Our approach differs from these

studies in several respects. First, we focus on fundamental-based bank runs, as opposed to the

panic-based runs examined in some of these works. Second, we compare two distinct CBDC

designs and their differential implications for financial stability and welfare. Third, our model

incorporates microfoundations for the exchange process of money, a feature absent in some

existing models.

The third strand draws on the New Monetarist approach to banking, following Lagos and

Wright (2005) and Rocheteau and Wright (2005). This literature includes Andolfatto et al.

(2019), Berentsen et al. (2007), Ferraris and Watanabe (2008, 2011), Bencivenga and Camera

(2011), Williamson (2012, 2016), Gu et al. (2013, 2019), Sanches (2018), and Matsuoka and

Watanabe (2019). Building on the theoretical frameworks developed in these studies, we

explore the implications of CBDC issuance for financial stability.

Finally, our model shares key features with Jiang (2008), who analyzes the effects of in-

flation on fundamental-based bank runs in an overlapping generations model with random

relocation. In contrast, our paper adopts a modern monetary framework to study the intro-

duction of CBDC, rather than a traditional one.

This paper proceeds as follows. Section 2 presents the baseline model with cash and bank

deposits. Section 3 derives the monetary equilibrium under a cash-like CBDC, and Section 4

analyzes the case of a deposit-like CBDC. Section 5 concludes. All proofs are provided in the

Appendix.
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2 Model

2.1 Environment

Time is discrete and continues forever. Each period is divided into two subperiods: day

and night. A market opens in each subperiod. The day market is a centralized settlement

market (CM), which is frictionless. In the CM, agents can produce divisible goods, which are

numeraire and referred to as CM goods, trade their goods for assets, and settle their debts

from the previous period. The night market is a decentralized goods market (DM) involving

bilateral random matching and bargaining. There are two types of [0, 1] continuum of infinitely-

lived agents: sellers and buyers. Sellers have production technologies in the DM, which allow

them to produce perishable and divisible goods, referred to as DM goods. Buyers do not

have such production technologies in the DM but want to consume the DM goods. Agents

discount future payoffs at β ∈ (0, 1) across periods, but there is no discounting between the

two subperiods.

The instantaneous utility functions for buyers and sellers are x− h+ u(qb) and x− h− qs,

respectively, where x denotes the amount of the CM good consumed in a period, h denotes

the daytime hours of work in a period, qb denotes the amount of the DM good consumed by

a buyer in a period, and qs denotes the amount of the DM good produced by a seller in a

period where we assume a constant marginal production cost normalized to unity. The utility

function u(q) is strictly increasing, strictly concave, and twice continuously differentiable, with

u(0) = 0 and u′(0) = ∞. Let q∗ denote the efficient quantity, which solves u′(q∗) = 1. For

analytical tractability, we assume that the coefficient of relative risk aversion is constant,

ξ ≡ − qu′′(q)
u′(q) ∈ (0, 1).

There is physical money (cash), which is perfectly divisible, storable, and recognizable.

Let ϕ ≥ 0 denote a money price in terms of the CM good in a period. The total supply of

cash is denoted by M > 0. In addition to physical money, there is an interest-bearing digital

asset called central bank digital currency (CBDC). A CBDC is an electronic form of deposit

account provided by the central bank and bears a (gross) nominal interest rate of ie ≥ 1, where
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“e” stands for electronic money. The total supply of the CBDC is E > 0. Both monies are

injected or withdrawn in a lump-sum fashion in the CM.

In addition to the central bank’s liabilities, there is a one-period Lucas tree, which is also

perfectly divisible and storable. One unit of the real asset generates a dividend payoff (e.g.,

fruit) equal to κ ≥ 0 units of the CM good at the beginning of the CM and depreciates fully

after producing the fruit. Let φ denote the asset’s price in terms of the CM good. The total

supply of the tree, denoted by A > 0, is fixed and constant over time. Given the quasi-linear

preference, there is no loss of generality in assuming that the sellers are endowed with a set of

trees at the beginning of each CM.

We assume that the dividend κ is a nonnegative random variable (due to the weather

conditions). It is publicly observable and identically distributed over time. Let F be the

cumulative distribution function, which is smooth and strictly increasing on [0,∞), where

f represents the associated density function. F is common knowledge. We define E(κ) ≡∫∞
0 κf(κ)dκ as the expected value of κ and assume βE(κ) > 1, which ensures a positive

amount of the asset holding in equilibrium.

2.2 DM

At night, buyers and sellers can trade the DM goods bilaterally. At the beginning of the night,

sellers find their counterparts, while buyers learn whether their counterparties want privacy

in their trades. In the DM, there is a fraction α ∈ (0, 1) of sellers who require their trades to

be private and only accept cash and a fraction 1− α of sellers who do not care about privacy

and accept both cash and deposits (claims on a bank) as a means of payment. The design of a

CBDC for privacy will determine a buyer’s means of payment in the DM. If a transaction using

CBDC is designed to keep privacy, a buyer uses a CBDC in both types of transactions, while

if not, a buyer must use cash only in a privacy transaction. We assume that claims to trees

cannot be used as a medium of exchange in the DM because these claims can be counterfeited

perfectly at zero cost (see Lester et al., 2012), and the lack of commitment prevents buyers

from using credit (issuing personal IOU) in the DM. For simplicity, when a buyer meets a
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seller, the buyer makes a take-it-or-leave-it offer in exchange for goods.

The privacy shock plays a similar role as a “liquidity preference shock” in the Diamond

and Dybvig (1983) model, which renders banks a role for pooling risks and providing a better

combination of asset returns and liquidity.

2.3 Government

Letting T denote a lump-sum real transfer from the government to buyers in the CM, the

consolidated government budget constraint is

T + ϕ(M− + ieE−) = ϕ(M + E),

where “− ” stands for the previous period. Let π denote the (gross) rate of growth of nominal

government liabilities; that is,

M+ + E+ = π(M + E),

with π ≥ β, where “ + ” stands for next period. In a stationary monetary equilibrium, the

rate of inflation is π ≡ ϕ
ϕ+

.1 We assume that π ≥ βie. In what follows, we treat π and ie as

key policy parameters.

Fig 1 summarizes the timing of events in the model. At the end of a CM, buyers form

private banks, and the banks collect funds from their depositors (buyers) and make a portfolio

(z, e, a), where z denotes real cash balances, e denotes real CBDC balances, and a denotes the

amount of the tree. These assets altogether back the issuance of deposits. At the beginning of

the DM, the fundamentals (including the dividend) become known, and the buyers learn about

their types of meetings. Then, buyers who want cash can withdraw it from their banks and use

it for their consumption in the DM. The buyers who trade using money in a privacy exchange,

referred to as cash buyers, consume qc ≥ 0, while the buyers who trade using deposits in a

non-privacy exchange, referred to as deposit buyers, consume qd ≥ 0. Finally, at the beginning
1Most central banks consider the issuance of CBDC, which can be exchanged for cash one-to-one. For this

practical reason and analytical simplicity, we consider the case where the cash and CBDC growth rates are the
same.
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of the next CM, the banks distribute their remaining wealth among their depositors equally

and dissolve.

CM DM CM

Period t Period t+ 1

Banks collect funds
& make a portfolio

(z, e, a)

Shocks are observed
Cash buyers withdraw money
Buyers meet sellers bilaterally

& trade DM goods (qc, qd)

Trees produce fruits
Banks distribute their
remaining wealth & dissolve
All debts are settled

Fig 1: Timing of Events

2.4 Welfare

In a steady state, the welfare measure W is

W =

∫ ∞

0

[
α {u(qc(κ))− qc(κ)}+ (1− α)

{
u(qd(κ))− qd(κ)

}
+ κA

]
f(κ)dκ, (1)

which is the weighted sum of expected surpluses in the DM and the return on the real asset

in the CM. Note that W depends mainly on the amount of the DM goods consumed because

the utilities from consuming and producing the CM good add up to zero, except for κA. The

first-best consumption quantities in the DM satisfy qc(κ) = qd(κ) = q∗ ≡ u−1′(1) for all κ.

3 Equilibrium with Cash-Like CBDC

Central banks can generally design CBDCs that can be used in targeted transactions. This

paper considers two types of CBDC: a cash-like CBDC and a deposit-like CBDC. We consider

each in turn.

A cash-like CBDC is designed to keep privacy and be recognizable to all sellers in our

model economy. This CBDC design may minimize the fees and user costs, impose no holding

limits, and enable offline use with a high-security level. If ie > 1, no bank will hold cash
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reserves, so that cash will be replaced with a CBDC completely, that is, z = 0 < e. Banks are

indifferent between cash and CBDC if ie = 1, which is equivalent to a model without CBDC.

At the beginning of the night, banks decide how much CBDC to allocate to each buyer.

After the buyers learn their meeting type, the banks choose a payment schedule given their

holdings of CBDC reserves, e ≥ 0, and the asset, a ≥ 0, selected in the previous CM. The

payment can be contingent on the realized aggregate state. We assume competitive banks

with free entry so that each bank maximizes the expected value of its representative depositor

(buyer). Without loss of generality, we assume that a bank’s remaining reserves and wealth

are distributed uniformly among depositors after the DM closes.

For a given value of κ and a given portfolio (e, a), a bank’s problem in the DM can be

written as

max
qc,qd≥0

αu(qc) + (1− α)u(qd) +

[
β

(
iee

π
+ κa

)
− αqc − (1− α)qd

]
,

subject to

αqc ≤ βiee

π
, (2)

αqc + (1− α)qd ≤ β

(
iee

π
+ κa

)
. (3)

The first two terms in the objective function represent the expected utility of a buyer in the

DM, and the third term represents the bank’s remaining wealth distributed among buyers in

the next CM. Constraint (2) states that a bank’s CBDC reserves must finance consumption

for buyers who trade in a privacy transaction: a unit of CBDC stocked in the previous CM

becomes ie (where ie is a gross interest rate) and is worth βie

π in real term (where β is a discount

factor and π is an inflation rate). Constraint (3) is the usual balance sheet constraint. If the

inequality is strict, there are remaining assets distributed in the next period.

At this point, we can define the following.

Definition 1 A (partial) bank run occurs if

1. (some) deposit buyers dash for bank money;
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2. some bank money is actually allocated to those deposit buyers;

3. all bank resources are used up for liquidity services.

According to our definition (which is consistent with the one provided by a series of papers

by Allen and Gale), a partial bank run in our model describes a situation where the realized

return of assets is short of total liquidity demand by deposit buyers. This induces some deposit

buyers who can trade without money (CBDC) to choose to withdraw money (CBDC). Since all

bank resources are used up for liquidity services, such a money withdrawal by deposit buyers

reduces the amount of money allocated to cash buyers. We should note that this definition

allows banks to operate even after a run, i.e. even with a run, bank deposits can still be used

as a payment, and they circulate in the economy.

In our model, a run occurs only if (2) is slack and (3) is binding. A run is impossible when

(2) is binding; otherwise, there is no extra money that can be allocated to deposit buyers,

which violates item 2 of Definition 1. When a bank uses up all the resources for liquidity

services, (3) must be binding. In our model, a run occurs if and only if (2) is slack and (3)

binds – as we will see shortly below, such an occurrence depends on the realized value of κ.

The first-order conditions are:

u′(qc)− 1 = µc + µd, (4)

u′(qd)− 1 = µd, (5)

with complementary slackness conditions, where µc ≥ 0 and µd ≥ 0 are the Lagrange multi-

pliers of (2) and (3), respectively.

Lemma 1 The bank’s optimal repayment is given by

qc = qd = β

(
iee

π
+ κa

)
if κ ≤ κc and

qc = min

{
βiee

απ
, q∗
}

and qd = min

{
βκa

1− α
, q∗
}

10



if κ > κc, where the critical value is κc ≡ min

{
(1−α)iee

απa ,
q∗−βiee

π
βa

}
. Further, a bank run occurs

if and only if κ ∈ [0, κc).

When κ ≤ κc, the available resources are so scarce that (3) is binding, µd > 0, leading

to a disruption in retail payments and a low level of DM consumption. On the other hand,

(2) is slack, µc = 0, because the aggregate consumption of cash buyers αqc is low enough.

Given µc = 0 and µd > 0, the first order conditions (4) and (5) imply qc = qd < q∗, i.e.

everyone receives the pro-rata share β( i
ee
π + κa). This situation describes a bank run because

there is a positive measure of deposit buyers forced to run and withdraw CBDC. To see this,

let λ(κ) ∈ [0, 1 − α] denote the fraction of such deposit-buyers. Noting that all the available

resources are used up (since (3) is binding), the fraction α+λ(κ) of buyers who demand CBDC

and the fraction 1−α−λ(κ) of deposit buyers who do not demand CBDC (i.e., who wait and

use only deposit) must have the same individual consumption level:

(qc =)
βiee
π

α+ λ(κ)
=

βκa

1− α− λ(κ)
(= qd).

This leads to

λ(κ) =
(1− α) i

ee
π − ακa

iee
π + κa

,

which is strictly positive and decreasing in κ ∈ [0, κc). Note that λ(0) = 1−α and λ
(
(1−α)iee

απa

)
=

0. The former situation describes the full bank run because all the deposit buyers run for money

and bank deposits have no value.

Therefore, a run occurs if and only if κ < κc, i.e. (2) is slack but (3) binds. In our

model, a run occurs when the dividend turns out to be so low that the DM value of deposits

is insufficient to cover the needs of deposit buyers.

The critical value of the dividend under which a bank run occurs, κc, depends on the DM

value of CBDC reserves. When βiee
απ < q∗, it is derived based on the slack (2) and the critical

value is given by the just binding (2), which is κc = (1−α)iee
απa ≥ 0. In this case, a bank run

is likely to occur when the ratio of the DM value of CBDC reserves, given by βiee
π , to the

DM value of asset dividend, given by βκa, is relatively high. Intuitively, deposit buyers are

11



likely to want to dash for money when βκa is relatively low and more money is allocated to

them when βiee
π is relatively high (see items 1 and 2 of Definition 1). When βiee

απ ≥ q∗, (2) is

not the determinant of the critical value. Rather, simply (3) and qc = qd ≤ q∗ dictates the

determination of the critical value, κc =
q∗−βiee

π
βa because for high values of κ, bank assets are

abundant enough to cover even the first best level (and so there is no need to run) and a run

can occur only when bank assets are low enough which happens for low values of κ (see items

1 and 3 of Definition 1). Therefore, this time, unlike the previous case, a run is less likely

to occur when βiee
π is relatively higher, because it contributes to increasing the bank’s total

resource.

In sum, a higher CBDC reserve value leads to a higher likelihood of a bank run (because

CBDC becomes better able to satisfy the needs of deposit–buyers) when it is relatively low

but to a lower likelihood of a bank run (because a higher CBDC reserve value compensates

for low realizations of asset dividend) when it is relatively high.

When the dividend increases to the region κ > κc, (2) can become binding, µd > 0, as

well. Then, all the CBDC reserves are allocated to cash buyers, leading to qc = βiee
απ , while

deposit buyers only use deposits as a payment instrument, leading to qd = βκa
1−α . In an extreme

situation where κ becomes large enough, that is, κ ≥ κ̄c, the DM value of deposits is sufficiently

high to cover the liquidity needs of deposit buyers. This can either make (3) slack, leading to

qd = q∗, or even make both (2) and (3) slack, leading to qc = qd = q∗. Fig. 2 illustrates this

result.

Given the above result, we now derive the optimal portfolio. Since a portfolio has to be

selected before knowing the realization of asset dividends, the portfolio choice problem of a

bank is:

max
e,a≥0

−e− φa+

∫ [κc]+

0
u

(
β

(
iee

π
+ κa

))
f(κ)dκ

+

∫ ∞

[κc]+

[
αu (qc) + (1− α)u(qd) + β

(
iee

π
+ κa

)
− αqc − (1− α)qd

]
f(κ)dκ,

where [κc]
+ ≡ max{0, κc}, κc = κc(e, a), qc = qc(e) and qd = qd(a) are given in Lemma 1. In
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q

κ
0

βiee
π

βiee
απ

qc

q∗ qd

κ̄cκc

Fig 2: Consumption with a Cash-Like CBDC in the case of βiee
απ < q∗

the second integral, we consider the possibility that not all the resources are used in the DM,

in which case the remaining wealth is consumed in the next CM.

The first-order conditions are:

π − βie

βie
=

∫ ∞

0

[
u′(qc)− 1

]
f(κ)dκ, (6)

φ

β
− E(κ) =

∫ ∞

0
κ
[
u′(qd)− 1

]
f(κ)dκ. (7)

The left-hand sides of (6) and (7) are the marginal costs of holding CBDC and the asset,

respectively, while the right-hand sides are the liquidity premium of CBDC and the asset,

respectively. Of course, the liquidity premium depends on the dividend value κ. For instance,

if the solution satisfies βiee
απ < q∗ (which is indeed the case when π is high, see the proof of

Proposition 1), then as shown in Lemma 1, qc = qd = β
(
iee
π + κa

)
for κ ≤ [κc]

+ = κc =

(1−α)iee
απa ≥ 0, qc = βiee

απ for κ > κc, qd = βκa
1−α for κ ∈ (κc, κ̄c) where κ̄c ≡ (1−α)q∗

βa > 0 and

qd = q∗ for κ ≥ κ̄c. Hence, the liquidity premium of CBDC (i.e., the R.H.S. of (6)) in this

case becomes∫ κc

0

[
u′
(
β

(
iee

π
+ κa

))
− 1

]
f(κ)dκ+

[
u′
(
βiee

απ

)
− 1

]
(1− F (κc)) ,
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and the liquidity premium of asset (i.e., the R.H.S. of (7)) becomes∫ κc

0
κ

[
u′
(
β

(
iee

π
+ κa

))
− 1

]
f(κ)dκ+

∫ κ̄c

κc

κ

[
u′
(

βκa

1− α

)
− 1

]
f(κ)dκ.

Similarly, if the solution satisfies βiee
απ ≥ q∗ (which is indeed the case when π is low), then as

shown in Lemma 1, qc = qd = β
(
iee
π + κa

)
for κ ≤ [κc]

+ and qc = qd = q∗ for κ > [κc]
+. In

this case, the liquidity premium of CBDC and the asset in this case become∫ [κc]+

0

[
u′
(
β

(
iee

π
+ κa

))
− 1

]
f(κ)dκ and

∫ [κc]+

0
κ

[
u′
(
β

(
iee

π
+ κa

))
− 1

]
f(κ)dκ,

respectively.

A stationary monetary equilibrium is characterized by a pair (e, φ), satisfying the first-

order conditions (6) and (7), and the market clearing conditions, e = ϕE and a = A. The

following proposition establishes the existence and uniqueness of equilibrium with a cash-like

CBDC.

Proposition 1 A stationary monetary equilibrium with a cash-like CBDC exists and is unique,

satisfying βiee
απ < q∗ for π > π∗(ie) and βiee

απ ≥ q∗ for π ≤ π∗(ie), some π∗(ie) ∈ (βie,∞).

Further, a bank run occurs with positive probability, F (κc) > 0, for all π ∈ (βie,∞). The

equilibrium allocation is efficient under the modified Friedman rule, π = βie.

Just like cash reserves in the standard monetary equilibrium, the CBDC reserves e and its

DM value βiee
απ are relatively low (high) for relatively high (low) rates of inflation π (see below).

If an inflation rate is above π∗(ie), the CBDC reserves are scarce (i.e., (2) is binding), so that

a cash buyer gets low DM consumption described in Fig 2. On the other hand, if an inflation

rate is below π∗(ie), (2) is slack and both types of buyers consume the efficient quantity in

the DM if κ ≥ κc. Otherwise, a bank’s assets are scarce (i.e., (3) is binding), and both types

of buyers get the same low DM consumption, implying a bank run. The optimal policy is the

modified Friedman rule, which sets the cost of CBDC holding (i.e., L.H.S. of (6)) to zero. At

the optimal policy, κc must be zero, implying that there is no bank run.

Lemma 2 A higher inflation rate π reduces the CBDC reserves e and increases the asset price

φ, while a higher CBDC rate ie increases e and reduces φ.
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An increase in the inflation rate π decreases the CBDC reserves e and increases the demand

for the asset because it increases the cost of holding CBDC and the relative merit of holding

the real asset, leading to a higher asset price φ. An increase in the CBDC rate ie implies a

higher rate of return on CBDC, and so, due to substitution, it increases the demand for CBDC

and reduces the demand for the asset, leading to a lower asset price.

Now, consider the effects of policy changes on financial stability.

Proposition 2 The probability of a bank run F (κc) decreases with the CBDC rate ie for

π ≤ π∗(ie) and increases with ie for π > π∗(ie). Welfare increases with ie for all π ∈ (βie,∞)

A higher CBDC rate leads to a larger amount of CBDC reserves, which increases the

threshold for a bank run κc =
(1−α)iee

απA for π ≥ π∗(ie) and decreases [κc]
+ = max

{
q∗−βiee

π
βa , 0

}
for π < π∗(ie). The former is because, with more CBDC reserves available, more deposit-

buyers are induced to run and convert their deposit to CBDC when the CBDC reserve value

is relatively low. In contrast, the latter is because more CBDC reserves available make up for

low realizations of asset dividends when the CBDC reserve value is relatively high. The main

policy implication of this section is that the introduction of a cash-like CBDC crowds out cash

and improves welfare, but accompanies an increase in financial instability when inflation is

high.

4 Equilibrium with Deposit-Like CBDC

We next consider a CBDC that can not be used in privacy DM transactions. The CBDC

design may permit less privacy protection, impose holding limits, and/or enable only online

use in retail payments. Another design may allow only financial institutions to use it, like

central bank digital reserves, in wholesale payments rather than retail payments. We refer to

this type of CBDC as a deposit-like CBDC. We assume that cash and CBDC are imperfect

substitutes, while CBDC and deposits are perfect substitutes. So, a bank chooses a portfolio

(z, e, a) consisting of three types of assets, altogether backing the issuance of deposits in the

first place.
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As before, we solve the problem backward. For each realized value κ, dropping the constant

terms, a bank’s maximization problem in the DM can be written as

max
qc,qd≥0

αu(qc) + (1− α)u(qd) +

[
β

(
z + iee

π
+ κa

)
− αqc − (1− α)qd

]
,

subject to

αqc ≤ βz

π
, (8)

αqc + (1− α)qd ≤ β

(
z + iee

π
+ κa

)
. (9)

Constraint (8) states that a bank’s cash reserves must finance consumption for buyers who

trade in a privacy DM transaction. That is, CBDC no longer provides a liquidity service in

this transaction. In this sense, bank money in items 1 and 2 of Definition 1 is cash rather than

CBDC, so a bank run is a traditional run away from deposits to cash in this case. Constraint

(9) is the balance sheet constraint when a bank holds three types of assets.

The first order conditions take the same form as in (4) and (5), with complementary

slackness conditions, except that this time the Lagrange multipliers, µc and µd, are associated

with constraints (8) and (9), respectively.

We obtain the following results:

Lemma 3 The bank’s optimal repayment is given by

qc = qd = β

(
z + iee

π
+ κa

)
if κ ≤ κd and

qc = min

{
βz

απ
, q∗
}

and qd = min

{
βiee
π + βκa

1− α
, q∗

}

if κ > κd, where the critical value is κd = min

{
(1−α)z−αiee

απa ,
q∗−β(z+iee)

π
βa

}
. Further, a bank run

occurs if and only if κ ∈ [0, κd).

A similar interpretation applies as before (see Figs 3 and 4). A bank run occurs if and only

if the realized dividend value is low enough, κ ∈ [0, κd), where (8) is slack but (9) is binding.
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Fig 3: No Bank Runs (κd < 0)

q

κ
0

βiee
(1−α)π

β(z+iee)
π

βz
απ

qc

q∗ qd

κ̄dκd

Fig 4: Bank Runs (κd > 0)

One significant difference is that everything else being equal, the critical value of a bank run κd

with deposit-like CBDC takes a lower value when the DM value of CBDC is higher, irrespective

of either βz
απ < q∗ or βz

απ ≥ q∗. This contrasts with the one with the cash-like CBDC, which

can take a higher value when the DM value of CBDC is higher. This occurs because a bank

run is a run away from deposits to cash, and an increase in the DM value of CBDC improves

the balance sheet by compensating for low realizations of asset dividends. Another difference

is that a run may not occur with probability one (see Fig 3), i.e., κd < 0, because a deposit

buyer does not have an incentive to withdraw cash, which is never happened before.

Given the above result, we now derive the optimal portfolio. The procedure is pretty

similar to before. The portfolio choice problem of a bank is:

max
z,e,a≥0

−(z + e)− φa+

∫ [κd]
+

0
u

(
β

(
z + iee

π
+ κa

))
f(κ)dκ

+

∫ ∞

[κd]+

[
αu (qc) + (1− α)u(qd) + β

(
z + iee

π
+ κa

)
− αqc − (1− α)qd

]
f(κ)dκ,

where [κd]
+ ≡ max{0, κd}, κd = κd(e, a), qc = qc(z), and qd = qd(e, a) are given in Lemma 3.
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The first order conditions with respect to z and e are

π − β

β
=

∫ ∞

0

[
u′(qc)− 1

]
f(κ)dκ, (10)

π − βie

βie
≥
∫ ∞

0

[
u′(qd)− 1

]
f(κ)dκ, (11)

respectively. In (11), the inequality reflects the possibility of e = 0 as a solution (see below).

The first order condition with respect to a takes the same form as in (7). The liquidity premium

(i.e., the R.H.S. of the first-order condition) is characterized as follows. If the solution satisfies
βz
απ < q∗ (which is indeed the case when π is high, see the proof of Proposition 3), then as

shown in Lemma 3, qc = qd = β
(
z+iee

π + κa
)

for κ ≤ κd = (1−α)z−αiee
απa , qc = βz

απ for κ > κd,

qd =
βiee
π

+βκa

1−α for κ ∈ (κd, κ̄d) where κ̄d ≡ (1−α)q∗−βiee
π

βa and qd = q∗ for κ ≥ κ̄d. Hence, the

liquidity premium of cash (i.e., the R.H.S. of (10)) in this case becomes∫ [κd]
+

0

[
u′
(
β

(
z + iee

π
+ κa

))
− 1

]
f(κ)dκ+

[
u′
(
βz

απ

)
− 1

]
(1− F (κd)) ,

the liquidity premium of CBDC (i.e., the R.H.S. of (11)) becomes∫ [κd]
+

0

[
u′
(
β

(
z + iee

π
+ κa

))
− 1

]
f(κ)dκ+

∫ [κ̄d]
+

[κd]+

[
u′

(
β( i

ee
π + κa)

1− α

)
− 1

]
f(κ)dκ,

and the liquidity premium of asset (i.e., the R.H.S. of (7)) becomes∫ [κd]
+

0
κ

[
u′
(
β

(
z + iee

π
+ κa

))
− 1

]
f(κ)dκ+

∫ [κ̄d]
+

[κd]+
κ

[
u′

(
β( i

ee
π + κa)

1− α

)
− 1

]
f(κ)dκ.

Similarly, if the solution satisfies βz
απ ≥ q∗ (which is indeed the case when π is low), then as

shown in Lemma 3, qc = qd = β
(
z+iee

π + κa
)

for κ ≤ κd =
q∗−β(z+iee)

π
βa and qc = qd = q∗ for

κ > κd. In this case, the liquidity premium of cash and CBDC becomes∫ [κd]
+

0

[
u′
(
β

(
z + iee

π
+ κa

))
− 1

]
f(κ)dκ,

and the liquidity premium of the asset becomes∫ [κd]
+

0
κ

[
u′
(
β

(
z + iee

π
+ κa

))
− 1

]
f(κ)dκ,

respectively.
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A stationary monetary equilibrium is characterized by a pair (z, e, φ), satisfying the first-

order conditions (7), (10) and (11), and the market clearing conditions, z = ϕM , e = ϕE and

a = A. The following proposition establishes the existence and uniqueness of equilibrium with

a deposit-like CBDC.

Proposition 3 A stationary monetary equilibrium with a deposit-like CBDC exists and is

unique for all ie ∈ [1, πβ ] for the following parameter configurations, characterized by critical

values ie(π), īe(π) ∈ (1, πβ ), π
∗(1) ∈ (β,∞):

• For ie ∈ [̄ie(π), πβ ) and all π ∈ (βie,∞), a bank run can never happen, [κd]
+ = 0, and

banks hold a positive amount of CBDC, e > 0;

• For ie ∈ (ie(π), īe(π)) and all π ∈ (βie,∞), a bank run occurs with a positive probability,

κd > 0, and banks hold a positive amount of CBDC, e > 0;

• For ie ∈ (1, ie(π)] and π ∈ (π∗(1),∞), a bank run occurs with a positive probability,

κd > 0, and banks do not hold CBDC, e = 0;

• For ie = 1 and π ∈ (β, π∗(1)], a bank run occurs with a positive probability, κd > 0, and

cash and CBDC are perfect substitute, z + e > 0.

The monetary equilibrium allocation is efficient when π → β and ie = 1.

We have four cases with a deposit-like CBDC. For ie ∈ [ie(π), πβ ), a bank has a positive

amount of CBDC reserves because the CBDC rate is high enough. If the rate is sufficiently

high, i.e., ie ∈ [̄ie(π), πβ ), a bank has enough CBDC reserves to prevent a bank run. In this

case, since the CBDC reserves act as a buffer that offsets bad fundamentals (low values of

κ), an increase in the DM value of CBDC improves the balance sheet by compensating for

low realizations of asset dividends.2 This stands in sharp contrast to the case with cash-like

CBDC. For ie ∈ (ie(π), īe(π)), a bank still has a positive amount of CBDC reserves, but it is
2This mechanism is shared in many papers on fiat money as a means of self-insurance against income risk.

See, for example, Bewley (1980) and Kitagawa (1994, 2001).
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not sufficient to eliminate runs. In this case, a bank run occurs with a positive probability,

which is relatively small.

For ie ∈ (1, ie(π)] and π ∈ (π∗(1),∞), a bank does not hold CBDC reserves because CBDC

yields a low return and is dominated by the other two assets. Clearly, the CBDC rate no longer

affects the equilibrium allocation and welfare. Finally, for ie = 1 and π ∈ (β, π∗(1)], cash and

CBDC are perfect substitutes, and the monetary reserves z + e are determined uniquely, but

z and e individually are not. Notice that the last two cases are equivalent to ones without

CBDC, and there are no equilibria when ie ∈ (1, ie(π)] and π ∈ (β, π∗(1)].

The optimal policy is different from the one in the case of cash-like CBDC. That is, the

combination of the Friedman rule (π → β) and the net zero CBDC rate (ie = 1) is optimal

because both the costs of cash and CBDC holdings (i.e., L.H.S. of (10) and (11)) must be zero

at the same time to achieve the first best.

The important message from the analysis in this section is that introducing a deposit-like

CBDC with a high interest rate improves financial stability; if the CBDC rate is high enough,

a fundamental-based bank run is eliminated.

Consider the consequences of CBDC policies when π > π∗(1). Suppose that a bank holds

three types of assets, i.e., ie ∈ (ie(π), πβ ]. Then, we have:

Lemma 4 (Comparative Statics) Suppose that ξ is sufficiently small. Inflation reduces

both cash and CBDC reserves and increases the asset price. In addition, an increase in the

CBDC rate increases CBDC reserves and decreases cash reserves and the asset price.

The intuitions of this lemma are straightforward and similar to those of Lemma 2. Because an

increase in the inflation rate increases the cost of holding cash and CBDC reserves, it decreases

a bank’s demand for these assets and increases the demand for the real asset, leading to a high

asset price. On the other hand, an increase in the CBDC rate increases the relative benefit of

holding CBDC reserves compared to cash and real assets, so a bank increases CBDC reserves

by reducing other asset holdings.
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Finally, the main implications of the CBDC policy for financial stability will be considered.

Given the results of Lemma 4, we obtain the following result.

Proposition 4 Suppose that π > π∗(1). If a bank run is possible, i.e., ie ∈ (ie(π), īe(π)), a

high CBDC rate decreases the probability of a run, but its effect on welfare is ambiguous. If a

bank run is not possible, i.e., ie ∈ [̄ie(π), πβ ], a high CBDC rate increases welfare.

In a situation where cash and CBDC coexist and a bank run is possible, a higher CBDC

rate leads to increased consumption inequality between cash buyers and deposit buyers because

it reduces the DM value of cash but improves the DM value of deposits. In addition, a higher

CBDC rate also increases the CBDC reserves that act as a buffer to absorb the shock, resulting

in a low probability of a bank run. The model with a deposit-like CBDC can exhibit a trade-off

between financial stability and welfare for ie ∈ (ie(π), īe(π)).

On the other hand, in a situation where cash and CBDC coexist but a bank run is not

possible, cash and CBDC reserves are dichotomized, so cash reserves do not depend on the

CBDC rate. Then, a high CBDC rate increases the value of CBDC and welfare, like in the

case of cash-like CBDC.

5 Conclusion

This paper has examined the effects of introducing two types of central bank digital currencies

(CBDCs) on financial stability within a New Monetarist framework. In our model, a cash-like

CBDC crowds out physical cash, and a high CBDC interest rate can increase the probability

of a bank run while simultaneously improving welfare. This generates a trade-off between

financial stability and welfare, for which a modified version of the Friedman rule is optimal.

In contrast, introducing a deposit-like CBDC does not fully displace cash and lowers the

likelihood of a run. Notably, a sufficiently high CBDC rate can eliminate bank runs entirely.

However, a higher CBDC rate does not necessarily raise welfare, as it reduces the amount of

cash reserves. In this case, the optimal policy combines the traditional Friedman rule with a
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(net) zero CBDC interest rate, thereby eliminating consumption inequality between cash users

and deposit users.

The main message of this paper is that CBDC design choices have distinct implications

for financial stability, economic welfare, and optimal monetary policy. Our findings suggest

that the design features of CBDCs must be carefully considered when contemplating their

introduction into the financial system.

The analysis can be extended in several directions, two of which are particularly promising.

First, in our model, the deposit contract is contingent on the realized signal of economic

fundamentals, whereas, in reality, deposit contracts typically promise a fixed nominal payment

regardless of the state of nature. This could be addressed by modeling a bank that offers

depositors fixed nominal returns across all states. Second, an important extension would

be to study the optimal design of a lender of last resort that issues CBDC during banking

crises. Because CBDC withdrawals provide the central bank with real-time information about

emerging crises—unlike cash—policy responses can be faster and more targeted (Keister and

Monnet, 2022). We leave these extensions for future research.
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Appendix

Proof of Lemma 1

We derive the solution for qc, qd ∈ (0, q∗] and µc, µd ≥ 0 that satisfies the first order conditions,
(4) and (5), and the constraints (2) and (3).⊙

Case 1: µc = 0 and µd > 0: From (4) and (5), combined with (3), we must have

qc = qd = β

(
iee

π
+ κa

)
< q∗.

Since qc = qd ≤ min{βiee
απ , q∗} by (2), there are two possible cases. If βiee

απ < q∗, then constraint
(2) implies that

qc = qd = β

(
iee

π
+ κa

)
≤ βiee

απ
⇐⇒ κ ≤ (1− α)iee

απa
.

If βiee
απ ≥ q∗, then qc = qd < q∗ implies that

qc = qd = β

(
iee

π
+ κa

)
< q∗ ⇐⇒ κ <

q∗ − βiee
π

βa
.

Defining

κc ≡ min

{
(1− α)iee

απa
,
q∗ − βiee

π

βa

}
,

we see that κc =
(1−α)iee

απa if βiee
απ < q∗, and κc =

q∗−βiee
π

βa if βiee
απ ≥ q∗. In this case, we can say

that a bank run occurs (see Definition 1).⊙
Case 2: µc > 0 and µd > 0: In this case, both the constraints (2) and (3) are binding, so

that
qc =

βiee

απ
and qd =

βκa

1− α
.

By (4) and (5), we must have qc < qd < q∗. Observe that qc < qd < q∗ if and only if

κc =
(1− α)iee

απa
< κ <

(1− α)q∗

βa
≡ κ̄c,

where it holds that κc =
(1−α)iee

απa < κ̄c =
(1−α)q∗

βa (since βiee
απ < q∗).⊙

Case 3: µc > 0 and µd = 0: By (4) and (5), we must have qc < qd = q∗. Also, by (2)
and µc > 0, we have

qc =
βiee

απ
.
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Combined with these results, (3) and µd = 0 lead to

qd = q∗ ≤ βκa

1− α
⇐⇒ κ ≥ κ̄c,

where again it holds that κc < κ̄c (since βiee
απ < q∗).⊙

Case 4: µc = µd = 0: From (4) and (5), we must have qc = qd = q∗. Then, both the
constraints (2) and (3) must be satisfied, i.e., we should have

q∗ ≤ βiee

απ
and q∗ ≤ β

(
iee

π
+ κa

)
,

which implies that

κ ≥ κc =
q∗ − βiee

π

βa
.

The above findings can be summarized as follows. If βiee
απ < q∗ then κc =

(1−α)iee
απa , and

qc = qd = β

(
iee

π
+ κa

)
< q∗

for κ ≤ κc (which corresponds to Case 1),

qc =
βiee

απ
< qd =

βκa

1− α

for κ ∈ (κc, κ̄c), where κ̄c ≡ (1−α)q∗

βa (which corresponds to Case 2), and

qc =
βiee

απ
< qd = q∗

for κ ≥ κ̄c (which corresponds to Case 3).
If βiee

απ ≥ q∗, then κc = max
q∗−βiee

π
βa and

qc = qd = β

(
iee

π
+ κa

)
< q∗

for κ ≤ κc (which corresponds to Case 1) and

qc = qd = q∗

for κ ≥ κc (which corresponds to Case 4). The above covers all the possible cases, and a bank
run occurs if and only if κ < κc, which completes the proof of this lemma. ■

24



Proof of Proposition 1

The proof proceeds with the following steps. In Step 1, we show that given βiee
απ < q∗, a

unique equilibrium solution exists if π > π∗, some π∗ ∈ (βie,∞). In Step 2, we show that
given βiee

απ ≥ q∗, a unique equilibrium solution exists if π ≤ π∗. In Step 3, we show that
βiee
απ < q∗ occurs if and only if π > π∗ and βiee

απ ≥ q∗ occurs if and only if π ≤ π∗. Hence, since
the critical value π∗ is unique, Steps 1–3 show the existence and uniqueness of a steady-state
monetary equilibrium for all π ∈ (βie,∞). Given the established monetary equilibrium with
e > 0 and βiee

π < q∗ for all π > βie, we have a positive probability of bank run, F (κc) > 0 for

all π ∈ (βie,∞), where κc = min
{

(1−α)iee
απa ,

q∗−βiee
π

βa

}
. The last claim on the modified Friedman

rule will become clear immediately from the following analysis. This completes the proof of
Proposition 1.

Step 1. The Case of βiee
απ < q∗:

As shown in the main text, the first order conditions, (6) and (7), together with the asset
market clearing condition, a = A, imply that a stationary monetary equilibrium for βiee

απ < q∗

is characterized by the pair (e, φ), satisfying

π − βie

βie
=

∫ κc

0

{
u′
(
β

(
iee

π
+ κA

))
− 1

}
f(κ)dκ+

[
u′
(
βiee

απ

)
− 1

]
(1− F (κc)) ≡ Φ(e), (A.1)

φ

β
− E(κ) =

∫ κc

0

κ

{
u′
(
β

(
iee

π
+ κA

))
− 1

}
f(κ)dκ+

∫ κ̄c

κc

κ

{
u′
(

βκA

1− α

)
− 1

}
f(κ)dκ ≡ Ψ(e),

(A.2)

where, as shown in the proof of Lemma 1, κc = (1−α)iee
απA (since βiee

απ < q∗) and κ̄c =
(1−α)q∗

βA .
Since (A.1) is independent of φ, the equilibrium value of e > 0 is determined by (A.1) and,

given the determined value of e, (A.2) determines φ > 0.
To find a solution of e > 0, observe that

∂Φ(e)

∂e
=

βie

π

[∫ κc

0

u′′
(
β

(
iee

π
+ κA

))
f(κ)dκ+

1

α
u′′
(
βiee

απ

)
(1− F (κc))

]
< 0,

Φ(0) = ∞, and Φ
(
απq∗

βie

)
=
∫ κc

0 {u′(αq∗ + βκA)− 1} f(κ)dκ > 0, where κc =
(1−α)q∗

βA . There-
fore, there exists a unique solution e ∈ (0, απq

∗

βie ) that solves (A.1) if

π − βie

βie
> Φ

(
απq∗

βie

)
,

or

π > π∗(ie) ≡ βie

1 + ∫ (1−α)q∗
βA

0

{
u′(αq∗ + βκA)− 1

}
f(κ)dκ

 > βie.
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Given this solution, a solution φ ∈
(
βE(κ) + βΨ

(
απq∗

βie

)
, βE(κ) + βΨ(0)

)
is pinned down

uniquely by (A.2) for all π ∈ (π∗(ie),∞) and ie ∈ (1,∞), because Ψ(e) is a monotone decreas-
ing function of e ∈ (0, απq

∗

βie ).

Step 2. The Case of βiee
απ ≥ q∗:

Similarly as before, with the market clearing condition, a = A, a stationary monetary
equilibrium for βiee

απ ≤ q∗ is characterized by the pair (e, φ), satisfying

π − βie

βie
=

∫ [κc]+

0

{
u′
(
β

(
iee

π
+ κA

))
− 1

}
f(κ)dκ ≡ Φ̃(e), (A.3)

φ

β
− E(κ) =

∫ [κc]+

0
κ

{
u′
(
β

(
iee

π
+ κA

))
− 1

}
f(κ)dκ ≡ Ψ̃(e), (A.4)

where, as shown in the proof of Lemma 1, κc =
q∗−βiee

π
βA (since βiee

απ ≥ q∗) and [κc]
+ =

max {κc, 0}.
Since ∂Φ̃(e)

∂e < 0, Φ̃
(
απq∗

βie

)
=
∫ κc

0 {u′ (αq∗ + βκA)− 1} f(κ)dκ = Φ
(
απq∗

βie

)
> 0 and

Φ̃
(
πq∗

βie

)
= 0, there exists a unique solution e ∈ [απq

∗

βie , πq
∗

βie ) that solves (A.3) if

π − βie

βie
≤ Φ

(
απq∗

βie

)
,

or π ≤ π∗(ie) where π∗(ie) ∈ (βie,∞) is defined above.
Given this solution, a solution φ ∈

(
βE(κ), βE(κ) + βΨ̃

(
απq∗

βie

))
is pinned down uniquely

by (A.4) for all π ∈ (βie, π∗(ie)] because Ψ̃(e) is a monotone decreasing function of e ∈
[απq

∗

βie , πq
∗

βie ).
In the limit as π → βie, we must have κc → 0, implying that, as shown in Lemma 1, it

holds that qc = qd = q∗ for all κ > κc → 0, i.e. the first best is achieved.

Step 3. βiee
απ < q∗ occurs if and only if π > π∗ and βiee

απ ≥ q∗ occurs if and only if π ≤ π∗:

Step 1 shows that e is determined by (A.1). We see that e → 0 as π → ∞ and so
βiee
απ → 0 < q∗ as π → ∞. Similarly, Step 2 shows that e is determined by (A.3). We see that
e → πq∗

βie (which implies κc → 0) as π → βie and so βiee
απ → q∗

α > q∗ as π → βie. Hence, we
must be in the region βiee

απ < q∗ when π is high and βiee
απ ≥ q∗ when π is low.

To prove the claim, it is therefore sufficient to show that e is monotone decreasing in π.
For βiee

απ < q∗, the implicit differentiation of (A.1) yields

∂e

∂π
=

1
βie − ∂Φ

∂π

∂Φ
∂e
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where ∂Φ
∂e < 0. Differentiation yields:

∂Φ

∂π
= −βiee

π2

[∫ κc

0
u′′
(
β

(
iee

π
+ κA

))
f(κ)dκ+

1− F (κc)

α
u′′
(
βiee

απ

)]
> 0.

Observe from (A.1) that
1

βie
=

1

π
+

Φ

π
.

Applying this, we can compute that

1

βie
− ∂Φ

∂π
=

∫ κc

0

1

π

(
1−

ξ iee
π

iee
π + κA

)
u′
(
β

(
iee

π
+ κA

))
f(κ)dκ+

1− ξ

π
u′
(
βiee

απ

)
(1− F (κc)) > 0

where ξ = −u′′(q)q
u′(q) ∈ (0, 1). This shows ∂e

∂π < 0.
Similarly, for βiee

απ ≥ q∗, we can compute from (A.3) that

1

βie
− ∂Φ̃

∂π
=

∫ [κc]
+

0

1

π

(
1−

ξ iee
π

iee
π + κA

)
u′
(
β

(
iee

π
+ κA

))
f(κ)dκ+

1− F (κc)

π
> 0,

which shows ∂e
∂π < 0. ■

Proof of Lemma 2⊙
The effects of π on e and φ: In Step 3 of the proof of Proposition 1, we have already shown

that ∂e
∂π < 0 for all π ∈ (βie,∞).

For π > π∗(ie), differentiation of (A.2) yields ∂φ
∂π = β

(
∂Ψ
∂π + ∂Ψ

∂e
∂e
∂π

)
> 0 since ∂Ψ

∂π > 0 and
∂Ψ
∂e < 0. For π ≤ π∗(ie), differentiation of (A.4) yields ∂φ

∂π = β
(
∂Ψ̃
∂π + ∂Ψ̃

∂e
∂e
∂π

)
> 0 since ∂Ψ̃

∂π > 0

and ∂Ψ̃
∂e < 0. Therefore, ∂φ

∂π > 0 for all π ∈ (βie,∞).⊙
The effects of ie on e and φ: For π > π∗(ie), the implicit differentiation of (A.1) yields

∂e

∂ie
= −

π
β(ie)2

+ ∂Φ
∂ie

∂Φ
∂e

.

where ∂Φ
∂e < 0. Differentiation yields:

∂Φ

∂ie
=

βe

π

[∫ κc

0
u′′
(
β

(
iee

π
+ κA

))
f(κ)dκ+

1

α
u′′
(
βiee

απ

)
(1− F (κc))

]
< 0.

Observe from (A.1) that
π

β(ie)2
=

1

ie
+

Φ

ie
.
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Applying this, we can compute that

π

β(ie)2
+

∂Φ

∂ie
=

∫ κc

0

1

ie

(
1−

ξ iee
π

iee
π + κA

)
u′
(
β

(
iee

π
+ κA

))
f(κ)dκ+

1− ξ

ie
u′
(
βiee

απ

)
(1− F (κc)) > 0

where ξ = −u′′(q)q
u′(q) ∈ (0, 1). This shows ∂e

∂ie > 0.
Similarly, for π ≤ π∗(ie), we can compute from (A.3) that

π

β(ie)2
+

∂Φ̃

∂ie
=

∫ [κc]
+

0

1

ie

(
1−

ξ iee
π

iee
π + κA

)
u′
(
β

(
iee

π
+ κA

))
f(κ)dκ+

1− F (κc)

ie
> 0,

which shows ∂e
∂ie > 0. Therefore, ∂e

∂ie > 0 for all π ∈ (βie,∞)

As for the effect on φ, for π > π∗, differentiation of (A.2) yields ∂φ
∂ie = β

(
∂Ψ
∂ie + ∂Ψ

∂e
∂e
∂ie

)
< 0

since ∂Ψ
∂ie < 0 and ∂Ψ

∂e < 0. For π ≤ π∗, differentiation of (A.4) yields ∂φ
∂ie = β

(
∂Ψ̃
∂ie + ∂Ψ̃

∂e
∂e
∂ie

)
< 0

since ∂Ψ̃
∂ie < 0 and ∂Ψ̃

∂e < 0. Therefore, ∂φ
∂ie < 0 for all π ∈ (βie,∞). ■

Proof of Proposition 2

The first part of this proposition is immediate from Lemma 2, ∂e
∂ie > 0.

To prove the second part, observe that welfare with a cash-like CBDC is given by

W =

∫ κc

0

{
u

(
β

(
iee

π
+ κA

))
− β

(
iee

π
+ κA

)}
f(κ)dκ

+

∫ κ̄c

κc

[
α

{
u

(
βiee

απ

)
− βiee

απ

}
+ (1− α)

{
u

(
βκA

1− α

)
− βκA

1− α

}]
f(κ)dκ

+

∫ ∞

κ̄c

[
α

{
u

(
βiee

απ

)
− βiee

απ

}
+ (1− α){u(q∗)− q∗}

]
f(κ)dκ+ E(κ)A,

for π > π∗(ie), where κc =
(1−α)iee

απA and κ̄c =
(1−α)q∗

βA , and

W =

∫ [κc]
+

0

{
u

(
β

(
iee

π
+ κA

))
− β

(
iee

π
+ κA

)}
f(κ)dκ+

∫ ∞

[κc]+
{u(q∗)− q∗}f(κ)dκ+ E(κ)A,

for π ≤ π∗(ie), where [κc]
+ = max

{
q∗−βiee

π
βA , 0

}
. We obtain

∂W
∂ie

=
β

π

(
e+ ie

∂e

∂ie

)[∫ κc

0

{
u′
(
β

(
iee

π
+ κA

))
− 1

}
f(κ)dκ+

∫ ∞

κc

{
u′
(
βiee

απ

)
− 1

}
f(κ)dκ

]
> 0,

for π > π∗(ie), and

∂W
∂ie

=
β

π

(
e+ ie

∂e

∂ie

)∫ [κc]
+

0

{
u′
(
β

(
iee

π
+ κA

))
− 1

}
f(κ)dκ > 0,

for π ≤ π∗(ie). This completes the proof of this proposition. ■
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Proof of Lemma 3

We derive the solution for qc, qd ∈ (0, q∗] and µc, µd ≥ 0 that satisfies the first order conditions,
(4) and (5), and constraints (8) and (9).⊙

Case 1: µc = 0 and µd > 0: From (4) and (5), combined with (9), we must have

qc = qd = β

(
z + iee

π
+ κa

)
< q∗.

Since qc = qd ≤ min{ βz
απ , q

∗} by (8), there are two possible cases. If βz
απ < q∗, then constraint

(8) implies that

qc = qd = β

(
z + iee

π
+ κa

)
≤ βz

απ
⇐⇒ κ ≤ (1− α)z − αiee

απa
.

If q∗ ≤ βz
απ , then qc = qd < q∗ implies that

qc = qd = β

(
z + iee

π
+ κa

)
< q∗ ⇐⇒ κ <

q∗ − β(z+iee)
π

βa
.

Defining

κd ≡ min

{
(1− α)z − αiee

απa
,
q∗ − β(z+iee)

π

βa

}
,

we see that κd = (1−α)z−αiee
απa if βz

απ < q∗, and κd =
q∗−β(z+iee)

π
βa if βz

απ ≥ q∗. According to our
definition of a bank run, there are bank runs in this case.⊙

Case 2: µc > 0 and µd > 0: In this case, both the constraints (8) and (9) are binding, so
that

qc =
βz

απ
and qd =

βiee
π + βκa

1− α
.

By (4) and (5), we must have qc < qd < q∗. Observe that qc < qd < q∗ if and only if

κd =
(1− α)z − αiee

απa
< κ <

(1− α)q∗ − βiee
π

βa
≡ κ̄d,

where it holds that κd = (1−α)z−αiee
απa < κ̄d =

(1−α)q∗−βiee
π

βa (since βz
απ < q∗).⊙

Case 3: µc > 0 and µd = 0: By (4) and (5), we must have qc < qd = q∗. Also, by (8)
and µc > 0, we have

qc =
βz

απ
.
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Combined with these results, (9) and µd = 0 lead to

qd = q∗ ≤
βiee
π + βκa

1− α
⇐⇒ κ ≥ κ̄d

where again it holds that κd < κ̄d (since βz
απ < q∗).⊙

Case 4: µc = µd = 0: From (4) and (5), we have qc = qd = q∗. Then, both the constraints
(8) and (9) must be satisfied, i.e., we should have

q∗ ≤ βz

απ
and q∗ ≤ β

(
z + iee

π
+ κa

)
,

which implies

κ ≥ κd =
q∗ − β(z+iee)

π

βa
.

The above findings can be summarized as follows. If βz
απ < q∗ then κd = (1−α)z−αiee

απa , and

qc = qd = β

(
z + iee

π
+ κa

)
< q∗

for κ ≤ κd (which corresponds to Case 1),

qc =
βz

απ
< qd =

βiee
π + βκa

1− α

for κ ∈ (κd, κ̄d), where κ̄d ≡ (1−α)q∗−βiee
π

βa (which corresponds to Case 2), and

qc =
βz

απ
< qd = q∗

for κ ≥ κ̄d (which corresponds to Case 3).

If βz
απ ≥ q∗, then κd =

q∗−β(z+iee)
π

βa , and

qc = qd = β

(
z + iee

π
+ κa

)
< q∗

for κ < κd (which corresponds to Case 1) and

qc = qd = q∗

for κ ≥ κd (which corresponds to Case 4). The above covers all the possible cases, and a bank
run occurs if and only if κ < κd, which completes the proof of this lemma. ■
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Proof of Proposition 3

In the main text, we have shown that the first order conditions, (7), (10), and (11), together
with the market clearing conditions, z = ϕM , e = ϕE, and a = A, are necessary and sufficient
conditions for a stationary monetary equilibrium. In this proof, we show that a unique solution
exists to these conditions. We first examine βz

απ < q∗ and e > 0, where the pair (z, e) is
determined by

π − β

β
=

∫ [κd]
+

0

{
u′
(
β

(
z + iee

π
+ κA

))
− 1

}
f(κ)dκ+

{
u′
(
βz

πα

)
− 1

}
(1− F (κd)) ≡ Φ(z, e),

(A.5)

π − βie

βie
=

∫ [κd]
+

0

{
u′
(
β

(
z + iee

π
+ κA

))
− 1

}
f(κ)dκ+

∫ [κ̄d]
+

[κd]+

{
u′

(
β( i

ee
π + κA)

1− α

)
− 1

}
f(κ)dκ ≡ X(z, e),

(A.6)

where κd = (1−α)z−αiee
απA ≥ 0 ([κd]+ = 0 for e ≥ (1−α)z

αie ) and κ̄d =
(1−α)q∗−βiee

π
βA > κd ([κ̄d]+ = 0

for e ≥ (1−α)q∗π
βie ). There are two cases. In Case 1, we examine [κd]

+ = 0 (i.e., e ≥ (1−α)z
αie ), and

show that a unique solution exists if and only if ie ∈ [̄ie, πβ ), with some īe ∈ (1, πβ ). In Case
2, we examine κd > 0 (i.e., e < (1−α)z

αie ) and show that a unique solution exists if and only if
ie ∈ (ie, īe), with some ie ∈ (1, īe). Then, we examine in Case 3,

π − βie

βie
> X(z, 0), (A.7)

and show that a unique solution exists for βz
απ < q∗ and e = 0 if and only if ie ∈ (1, ie] and

π > π∗(1) (see the proof of Proposition 1). In all of these cases, once e and z are determined
jointly by (A.5) and (A.6), ϕ ≥ βE(κ) is uniquely pinned down by

φ

β
− E(κ) =

∫ [κd]
+

0

κ

{
u′
(
β

(
z + iee

π
+ κA

))
− 1

}
f(κ)dκ+

∫ [κ̄d]
+

[κd]+
κ

{
u′

(
β( i

ee
π + κA)

1− α

)
− 1

}
f(κ)dκ ≡ Ψ(z, e).

(A.8)

Finally, in Case 4, we show that the case βz
απ ≥ q∗ is essentially the same as in Step 2 in

the proof of Proposition 1 and a unique equilibrium solution exists if and only if π ≤ π∗(1)

and ie = 1.
Note in the above analysis, we have taken βz

απ < q∗ as given to establish a solution for
ie ∈ (1, πβ ), and βz

απ ≥ q∗ as given to a solution for ie = 1. The above analysis shows this is
indeed the case. For ie ∈ [̄ie(π), πβ ], Step 1 shows that z = z, satisfying βz

απ = u−1′(πβ ) < q∗ ≡
u−1′(1) for all π > β. Further, as shown in the proof of Lemma 4 (see below), z is monotone
decreasing in ie ∈ (ie(π), īe(π)), and so Step 2 shows βz

απ < q∗ for ie ∈ (ie(π), īe(π)) as well, as
long as π > π∗(1). Step 3 shows that βz

απ is independent of ie ∈ [1, ie(π)] (because e = 0), and
βz̄1
απ < q∗ if and only if π > π∗(1). In sum, given Lemma 4, Step 1 – 3 indeed show that we
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must have βz
απ < q∗ when ie ∈ [1, πβ ) and π > π∗(1). Simultaneously, they show that there is no

equilibrium solution that satisfies βz
απ < q∗ when π ≤ π∗(1). Therefore, Step 4 shows that we

must have βz
απ ≥ q∗ when ie = 1 and π ≤ π∗(1). This establishes the existence and uniqueness

of equilibrium for all ie ∈ [1, πβ ) and completes the proof of this proposition.

Case 1. βz
απ < q∗, κd = 0, and e > 0:

Note that for [κd]
+ = 0 (i.e. e ≥ (1−α)z

αie ) to be part of a solution, we must have κ̄d > 0

(i.e e < (1−α)q∗π
βie ) in (A.6) with ie < π

β . When κd = 0, we have

Φ(z, e) = u′
(
βz

πα

)
− 1,

and (A.5) has a unique solution

z = z ≡ απ

β
u−1′

(
π

β

)
.

Similarly, when κd = 0, we have

X(z, e) =

∫ κ̄d

0

{
u′

(
β( i

ee
π + κA)

1− α

)
− 1

}
f(κ)dκ,

which is decreasing in e. Since X
(
z, (1−α)πq∗

βie

)
= 0 (where [κ̄d]

+ = 0 holds), a unique solution

e ∈
[
(1−α)z
αie , (1−α)πq∗

βie

)
exists if and only if

π − βie

βie
≤ X

(
z,

(1− α)z

αie

)
=

∫ κ̄d

0

{
u′
(
u−1′

(
π

β

)
+

βκA

1− α

)
− 1

}
f(κ)dκ,

(where [κd]
+ = 0 and κ̄d =

(1−α){q∗−u−1′(π
β
)}

βA hold) or equivalently,

ie ≥ īe(π) ≡
π
β

1 +
∫ κ̄d

0

{
u′
(
u−1′

(
π
β

)
+ βκA

1−α

)
− 1
}
f(κ)dκ

∈
(
1,

π

β

)
,

because īe(π) is strictly increasing in π and satisfies īe(π) → 1 as π → β.

In sum, for βz
απ < q∗ and ie ∈ [̄ie(π), πβ ), a unique equilibrium solution exists with e ∈

[ (1−α)z
αie , (1−α)πq∗

βie ), z = z and [κd]
+ = 0.

Case 2. βz
απ < q∗, κd > 0, and e > 0:

When κd > 0, i.e. e < (1−α)z
αie , an equilibrium pair (z, e) is determined jointly by (A.5)

and (A.6). Let z = ϕ(e) and z = χ(e) be defined by (A.5) and (A.6), respectively. The proof
proceeds by showing the following steps:
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• Step 1. ϕ′(e) > χ′(e);

• Step 2. e < ϕ−1(z);

• Step 3. z̄1 < z̄2.

Step 1-3 altogether imply that the two curves, z = ϕ(e) and z = χ(e), must have a unique
intersection (see Figure 5).

0 e0

z

z

z̄2

z = χ(e)

z = ϕ(e)

z̄1

(1−α)πu−1′(π
β
)

βie

e

Fig 5: Existence of a Monetary Equilibrium with a Deposit-Like CBDC for ie ∈ [1, īe(π)) with
π > βie

Proof of Step 1.
The total derivatives of the identities, π−β

β = Φ(ϕ(e), e) and π−βie

βie = X(χ(e), e), imply

ϕ′(e) = −Φe

Φz
< 0 and χ′(e) = −Xe

Xz
< 0,

where Φz ≡ ∂Φ
∂z < 0, Φe ≡ ∂Φ

∂e < 0, Xz ≡ ∂X
∂z < 0 and Xe ≡ ∂X

∂e < 0. Further,

ϕ′(e)− χ′(e) =
XeΦz − ΦeXz

XzΦz
> 0,
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since XzΦz > 0 and

XeΦz − ΦeXz = ie
(
β

π

)2
[{∫ κd

0

u′′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ

}{∫ ∞

κd

u′′
(
βz

πα

)
f(κ)

α
dκ

}

+

{∫ κ̄d

κd

u′′

(
β( i

ee
π

+ κA)

1− α

)
f(κ)

1− α
dκ

}{∫ κd

0

u′′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ+

∫ ∞

κd

u′′
(
βz

πα

)
f(κ)

α
dκ

}]
> 0.

(A.9)

Proof of Step 2.
Note that z = ϕ

(
(1−α)z
αie

)
= z(= α(πβ )u

−1′(πβ )) (where κd = 0 holds). Let e be defined by

z = z = χ (e) .

Then, since X(z, e) is strictly decreasing in e, we have

ϕ−1(z) =
(1− α)πu−1′(πβ )

βie
> e

if and only if

π − βie

βie
>

∫ κ̄d

0

{
u′

(
(1− α)u−1′(πβ ) + βκA)

1− α

)
− 1

}
f(κ)dκ,

or ie < īe(π).

Proof of Step 3.
Denote z̄1 = ϕ(0) and z̄2 = χ(0). Since Φ(z̄1, 0) does not depend on ie, z̄1 does not depend

on ie either. On the other hand, the implicit differentiation of π−βie

βie = X(z̄2, 0) yields

∂z̄2
∂ie

= − π

β(ie)2Xz
> 0,

where Xz ≡ ∂X
∂z < 0.

We will show that z̄1 > z̄2 when ie = 1. Assume that ie = 1. Then,

Γ(z̄1, z̄2) ≡ Φ(z̄1, 0)−X(z̄2, 0) = 0.

Consider

Γ(z̄1, z̄1) =

{
u′
(
βz̄1
πα

)
− 1

}
(1− F (κd))−

∫ κ̄d

κd

{
u′
(

βκA

1− α

)
− 1

}
f(κ)dκ,

where κd = (1−α)z̄1
απA and κ̄d = (1−α)q∗

βA . Observe that Γ(z̄1, z̄1) is strictly decreasing in z̄1, and
satisfies Γ (z̄1, z̄1) → 0 as z̄1 → απq∗

β . Therefore, Γ(z̄1, z̄1) > 0 for all z̄1 ∈
(
z, απq

∗

β

)
. Since

Γ(z̄1, z̄2) = 0, this implies that we must have z̄1 > z̄2.
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Given the above, we can say that z̄1 < z̄2 if and only if π−βie

βie (= X(z̄2, 0)) < X(z̄1, 0),
which can be written as

ie > ie(π) ≡
π
β

1 +
∫ κd

0

{
u′
(
β
(
z̄1
π + κA

))
− 1
}
f(κ)dκ+

∫ κ̄d

κd

{
u′
(

βκA
1−α

)
− 1
}
f(κ)dκ

∈ (1, īe(π)),

where κd = (1−α)z̄1
απA and κ̄d = (1−α)q∗

βA , because u′(β
(
z̄1
π + κA

)
) > u′(βκA1−α) > u′(u−1′(πβ )+

βκA
1−α)

for κ < κ̄d. Therefore, z̄1 ≥ z̄2 if ie ≤ ie and z̄1 < z̄2 if ie > ie.

In sum, for βz
απ < q∗ and ie ∈ (ie(π), īe(π)), a unique equilibrium solution exists with

e ∈ (0, (1−α)z
αie ), z ∈ (z, απq

∗

β ) and κd > 0.

Case 3. βz
απ < q∗, κd > 0, and e = 0:

The above analysis shows that when ie ≤ ie, there is no equilibrium solution with e > 0.
The only possibility with βz

απ < q∗ is when (A.6) is replaced by (A.7) i.e., e = 0, where z̄1 is a
solution to

π − β

β
= Φ(z̄1, 0)

(see Step 3 of Case 2). We know from Step 1 in the proof of Proposition 1 (just apply ie = 1

and replace e with z in (A.1)) that there exists a unique solution z̄1 ∈ (0, απq
∗

β ) if and only if
π > π∗(1) ∈ (β,∞). Given z = z̄1, φ ≥ βE(κ) is uniquely pinned down by

φ = βE(κ) + β

[∫ κd

0

κ
{
u′
(
β
( z̄1
π

+ κA
))

− 1
}
f(κ)dκ+

∫ κ̄d

κd

κ

{
u′
(

βκA

1− α

)
− 1

}
f(κ)dκ

]
,

where κd = (1−α)z̄1
απA and κ̄d = (1−α)q∗

βA .

In sum, for βz
απ < q∗ and ie ∈ [1, ie(π)], a unique equilibrium solution exists with e = 0,

z = z1 ∈ (0, απq
∗

β ) and κd > 0 if and only if π > π∗(1) ∈ (β,∞).

Case 4. βz
απ ≥ q∗:

When βz
απ ≥ q∗, the first-order conditions together with the market-clearing conditions

yield π−β
β = Φ(z, e) and π−βie

βie = X(z, e) where

Φ(z, e) = X(z, e) =

∫ κ̄d

0

{
u′
(
β

(
z + iee

π
+ κA

))
− 1

}
f(κ)dκ

where κ̄d =
q∗−β(z+iee)

π
βa ≥ 0. This implies that we must have ie = 1, and z + e is determined

uniquely, whereas z and e individually are not. Indeed, we know from Step 2 in the proof of
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Proposition 1 (just apply ie = 1 and set e = z + e in (A.3)) that a unique equilibrium exists
with z + e ∈ [απq

∗

β , πq
∗

β ) if and only if π ≤ π∗(1). Given this solution, φ ≥ βE(κ) is uniquely
pinned down by

φ

β
− E(κ) =

∫ κ̄d

0
κ

{
u′
(
β

(
z + iee

π
+ κA

))
− 1

}
f(κ)dκ.

In the limit as π → β, we have z + e → q∗, leading to φ → βE(κ) and κ̄d → 0, the first
best.

In sum, for βz
απ ≥ q∗ and ie = 1, a unique equilibrium solution exists with z+e ∈ [απq

∗

β , πq
∗

β )

and κd > 0 if and only if π ≤ π∗(1). ■

Proof of Lemma 4

Consider the case of ie(π) < ie ≤ π
β and π > π∗(1). Differentiating the first-order conditions,

(A.5), (A.6), and (A.8), with respect to π, we obtainΦz Φe 0

Xz Xe 0

Ψz Ψe − 1
β




∂z
∂π
∂e
∂π
∂φ
∂π

 =


1
β − Φπ

1
βie −Xπ

−Ψπ


Letting

Λd ≡

Φz Φe 0

Xz Xe 0

Ψz Ψe − 1
β

 ,

we have

det(Λd) =
1

β
(ΦeXz − ΦzXe) < 0,

since (A.9).
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We will make use of the following derivatives:
∂Φ(z, e)

∂π
= − β

π2

[∫ κd

0

(z + iee)u′′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ+

∫ ∞

κd

z

α
u′′
(
βz

πα

)
f(κ)dκ

]
> 0, (A.10)

∂Φ(z, e)

∂ie
=

βe

π

∫ κd

0

u′′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ ≤ 0, (A.11)

∂X(z, e)

∂π
= − β

π2

[∫ κd

0

(z + iee)u′′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ+

∫ κ̄d

κd

iee

1− α
u′′

(
β( i

ee
π

+ κA)

1− α

)
f(κ)dκ

]
> 0,

(A.12)

∂X(z, e)

∂ie
=

βe

π

[∫ κd

0

u′′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ+

∫ κ̄d

κd

1

1− α
u′′

(
β( i

ee
π

+ κA)

1− α

)
f(κ)dκ

]
< 0, (A.13)

∂Ψ(z, e)

∂π
= − β

π2

[∫ κd

0

κ(z + iee)u′′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ+

∫ κ̄d

κd

κiee

1− α
u′′

(
β( i

ee
π

+ κA)

1− α

)
f(κ)dκ

]
> 0,

(A.14)

∂Ψ(z, e)

∂ie
=

βe

π

[∫ κd

0

κu′′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ+

∫ κ̄d

κd

κ

1− α
u′′

(
β( i

ee
π

+ κA)

1− α

)
f(κ)dκ

]
< 0. (A.15)

Further, combining the FOCs and the above result yields

1

β
− Φπ =

1

π

[∫ κd

0

{
1−

ξ( z+iee
π

)
z+iee

π
+ κA

}
u′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ+

∫ ∞

κd

(1− ξ)u′
(
βz

πα

)
f(κ)dκ

]
> 0,

1

βie
−Xπ =

∫ κd

0

1

π

{
1−

ξ( z+iee
π

)
z+iee

π
+ κA

}
u′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ

+

∫ κ̄d

κd

1

π

{
1−

ξ( i
ee
π
)

iee
π

+ κA

}
u′

(
β( i

ee
π

+ κA)

1− α

)
f(κ)dκ > 0,

where Φπ ≡ ∂Φ
∂π > 0 and Xπ ≡ ∂X

∂π > 0, since ξ < 1.⊙
The effects of π on z: Using Cramer’s rule, we have

∂z

∂π
=

det(Λd
1π)

det(Λd)
,

where

Λd
1π ≡


1
β − Φπ Φe 0
1
βie −Xπ Xe 0

−Ψπ Ψe − 1
β

 ,

det(Λd
1π) =

1

β

[(
1

βie
−Xπ

)
Φe −

(
1

β
− Φπ

)
Xe

]
.

Note that if κd ≤ 0, then Φe = 0, implying det(Λd
1π) = − 1

β

(
1
β − Φπ

)
Xe > 0 and ∂z

∂π < 0. If
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κd > 0,(
1

βie
−Xπ

)
Φe −

(
1

β
− Φπ

)
Xe

=
ξ

π

[∫ κd

0

{
1−

ξ( z+iee
π

)
z+iee

π
+ κA

}
u′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ

][∫ κ̄d

κd

ie

π
iee
π

+ κA
u′

(
β( i

ee
π

+ κA)

1− α

)
f(κ)dκ

]

+
ξ

π

[∫ ∞

κd

(1− ξ)u′
(
βz

πα

)
f(κ)dκ

] [∫ κ̄d

κd

ie

π
iee
π

+ κA
u′

(
β( i

ee
π

+ κA)

1− α

)
f(κ)dκ

]

+
ξ

π

[∫ κd

0

ie

π
z+iee

π
+ κA

u′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ

]

×

[∫ ∞

κ̄d

(1− ξ)u′
(
βz

πα

)
f(κ)dκ+

∫ κ̄d

κd

{
(1− ξ)u′

(
βz

πα

)
−

(
1−

ξ( i
ee
π
)

iee
π

+ κA

)
u′

(
β( i

ee
π

+ κA)

1− α

)}
f(κ)dκ

]
> 0.

Note that since u′
(

βz
πα

)
> u′

(
β( i

ee
π

+κA)

1−α

)
for κ > κd, we have

(1− ξ)u′
(
βz

πα

)
>

(
1−

ξ( i
ee
π )

iee
π + κA

)
u′

(
β( i

ee
π + κA)

1− α

)

if ξ < ξ∗ ≡
u′( βz

πα)−u′
(

β( i
ee
π +κA)

1−α

)
u′( βz

πα)−
iee
π

iee
π +κA

u′
(

β( i
ee
π +κA)

1−α

) . Thus, we obtain

∂z

∂π
< 0,

if ξ is sufficiently small.⊙
The effects of π on e: Using Cramer’s rule, we have

∂e

∂π
=

det(Λd
2π)

det(Λd)
,

where

Λd
2π ≡

Φz
1
β − Φπ 0

Xz
1
βie −Xπ 0

Ψz −Ψπ − 1
β

 ,

det(Λd
2π) =

1

β

[
Xz

(
1

β
− Φπ

)
− Φz

(
1

βie
−Xπ

)]
.

If κd ≤ 0, then Xz = 0, implying that det(Λd
2π) = − 1

βΦz

(
1
βie −Xπ

)
> 0 and ∂e

∂π < 0. If
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κd > 0, we get

Xz

(
1

β
− Φπ

)
− Φz

(
1

βie
−Xπ

)
=

ξ

π2

[∫ ∞

κd

u′
(
βz

πα

)
f(κ)dκ

] [∫ κd

0

{
π

z
−

1 + ξ iee
z

z+iee
π

+ κA

}
u′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ

]
,

+
ξ

π2

[∫ κ̄d

κd

{
1−

ξ( i
ee
π
)

iee
π

+ κA

}
u′

(
β( i

ee
π

+ κA)

1− α

)
f(κ)dκ

]
,

×

[∫ κd

0

1
z+iee

π
+ κA

u′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ+

∫ ∞

κd

π

z
u′
(
βz

πα

)
f(κ)dκ

]
> 0,

since π
z − 1+ξ iee

z
z+iee

π
+κA

> 0 ⇐⇒ ξ < 1 + πκA
iee . This result implies det(Λd

2π) > 0, which leads to

∂e

∂π
=

det(Λd
2π)

det(Λd)
< 0,

for any ξ ∈ (0, 1).⊙
The effects of π on φ: Using Cramer’s rule, we have

∂φ

∂π
=

det(Λd
3π)

det(Λd)
,

where

Λd
3π ≡

Φz Φe
1
β − Φπ

Xz Xe
1
βie −Xπ

Ψz Ψe −Ψπ

 .

Since ( 1β − Φπ)Xz − ( 1
βie −Xπ)Φz > 0, Ψe < 0, ( 1

βie −Xπ)Φe − ( 1β − Φπ)Xe > 0, Ψz < 0,
Ψπ > 0, and ΦzXe − ΦeXz > 0, we obtain

det(Λd
3π) =

{(
1

β
− Φπ

)
Xz −

(
1

βie
−Xπ

)
Φz

}
Ψe +

{(
1

βie
−Xπ

)
Φe −

(
1

β
− Φπ

)
Xe

}
Ψz

−Ψπ(ΦzXe − ΦeXz) < 0,

which leads to
∂φ

∂π
=

det(Λd
3π)

det(Λd)
> 0.

Similarly, differentiating the first-order conditions, (A.5), (A.6), and (A.8), with respect to
ie, we obtain Φz Φe 0

Xz Xe 0

Ψz Ψe − 1
β




∂z
∂ie

∂e
∂ie
∂φ
∂ie

 =

 −Φie

− π
β(ie)2

−Xie

−Ψie


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where

− π

β(ie)2
−Xie =

1

ie

(
− π

βie
− ieXie

)
= − 1

ie

[
{1− F (κ̄d)}+

∫ κd

0

{
1−

ξiee
π

z+iee
π

+ κA

}
u′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ

+

∫ κ̄d

κd

{
1−

ξiee
π

iee
π

+ κA

}
u′

(
β( i

ee
π

+ κA)

1− α

)
f(κ)dκ

]
< 0.

⊙
The effects of ie on z: Using Cramer’s rule, we have

∂z

∂ie
=

det(Λd
1ie)

det(Λd)
,

where

Λd
1ie ≡

 −Φie Φe 0

− π
β(ie)2

−Xie Xe 0

−Ψie Ψe − 1
β

 ,

det(Λd
1ie) =

1

β

[
ΦieXe −

(
π

β(ie)2
+Xie

)
Φe

]
If κd ≤ 0, then we have Φe = Φie = 0, implying det(Λd

1ie) = 0. In this case, a change in ie

does not affect z. If κd > 0, we have

ΦieXe −
(

π

β(ie)2
+Xie

)
Φe

= −β

π

[∫ κd

0

u′′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ

]
×

[
{1− F (κ̄d)}+

∫ κd

0

u′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ+

∫ κ̄d

κd

u′

(
β( i

ee
π + κA)

1− α

)
f(κ)dκ

]
> 0.

Thus, we obtain det(Λd
1ie) > 0 and

∂z

∂ie
< 0.

⊙
The effects of ie on e: Using Cramer’s rule, we have

∂e

∂ie
=

det(Λd
2ie)

det(Λd)
,

where

Λd
2ie ≡

Φz −Φie 0

Xz − π
β(ie)2

−Xie 0

Ψz −Ψie − 1
β

 .
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Since −Φie ≥ 0, Xz ≤ 0, π
β(ie)2

+Xie > 0, and Φz < 0, then we have

det(Λd
2ie) =

1

β

[
−ΦieXz +

(
π

β(ie)2
+Xie

)
Φz

]
< 0,

which implies
∂e

∂ie
=

det(Λd
2ie)

det(Λd)
> 0.

⊙
The effects of ie on φ: Using Cramer’s rule, we have

∂φ

∂ie
=

det(Λd
3ie)

det(Λd)
,

where

Λd
3ie ≡

Φz Φe −Φie

Xz Xe − π
β(ie)2

−Xie

Ψz Ψe −Ψie

 .

Note that

ΨzXe −ΨeXz =
β2ie

π2

[{∫ κd

0

κu′′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ

}{∫ κ̄d

κd

u′′

(
β( i

ee
π + κA)

1− α

)
f(κ)

1− α
dκ

}

−
{∫ κd

0

u′′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ

}{∫ κ̄d

κd

κu′′

(
β( i

ee
π + κA)

1− α

)
f(κ)

1− α
dκ

}]
.

(A.16)

Applying the Simpson’s rule to the right-hand side of (A.16) yields:{∫ κd

0

κu′′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ

}{∫ κ̄d

κd

u′′

(
β( i

ee
π

+ κA)

1− α

)
f(κ)

1− α
dκ

}

−
{∫ κd

0

u′′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ

}{∫ κ̄d

κd

κu′′

(
β( i

ee
π

+ κA)

1− α

)
f(κ)

1− α
dκ

}

≈
{
(κd)

2

6
(B + 2C)

}{ κ̄d − κd

6
(E + 4F +G)

}
−
{κd

6
(B + 4C +D)

}{ κ̄d − κd

6
(κ̄dE + 2(κ̄d + κd)F + κdG)

}
=

κd(κ̄d − κd)

36
[−2(κ̄d − κd)(B + 2C)F − (2C +D)(κ̄dE + 2(κ̄d + κd)F + κdG)] < 0,

where B = u′′
(
β
(
z+iee

π + κdA
))

f (κd) < 0, C = u′′
(
β
(
z+iee

π + κd
2 A
))

f
(
κd
2

)
< 0, D =

u′′(β(z+iee)
π )f(0) < 0, E = u′′

(
β( i

ee
π

+κ̄dA)

1−α

)
f(κ̄d)
1−α < 0, F = u′′

(
β( i

ee
π

+
κd+κ̄d

2
A)

1−α

)
f
(
κd+κ̄d

2

)
< 0,

and G = u′′
(

β( i
ee
π

+κdA)

1−α

)
f(κd)
1−α < 0. Then, we obtain

ΨzXe −ΨeXz < 0.
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Note also that

ΨeΦz −ΨzΦe =
β2ie

π2

[∫ κd

0

κu′′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ

] [∫ ∞

κd

u′′
(
βz

πα

)
f(κ)

α
dκ

]
+

β2ie

π2

[∫ κ̄d

κd

κu′′

(
β( i

ee
π + κA)

1− α

)
f(κ)

1− α
dκ

]

×
[∫ κd

0

u′′
(
β

(
z + iee

π
+ κA

))
f(κ)dκ+

∫ ∞

κd

u′′
(
βz

πα

)
f(κ)

α
dκ

]
> 0. (A.17)

Since Φie ≤ 0, ΨzXe − ΨeXz < 0 (from (5)), π
β(ie)2

+ Xie > 0, ΨeΦz − ΨzΦe > 0 (from
(A.17)), Ψie < 0, and ΦeXz − ΦzXe < 0 (from (A.9)), we obtain

det(Λd
3ie) = Φie(ΨzXe −ΨeXz) +

(
π

β(ie)2
+Xie

)
(ΨeΦz −ΨzΦe) + Ψie(ΦeXz − ΦzXe) > 0

which leads to
∂φ

∂ie
=

det(Λd
3ie)

det(Λd)
< 0,

since det(Λd) < 0. ■

Proof of Proposition 4

Consider first the case of π > π∗(1) and ie ∈ (ie, īe). Differentiating the probability of a bank
run, F (κd), with respect to ie, we obtain

∂F (κd)

∂ie
= f(κd)×

(1− α) ∂z
∂ie − α(e+ ie ∂e

∂ie )

απA
< 0,

since ∂z
∂ie < 0 and ∂e

∂ie > 0, which proves the first part of this proposition.

Next, we obtain the welfare as follows:

Wd
1 ≡

∫ [κ̄d]
+

0

[
α

{
u

(
βz

απ

)
− βz

απ

}
+ (1− α)

{
u

(
β( i

ee
π + κA)

1− α

)
−

β( i
ee
π + κA)

1− α

}]
f(κ)dκ

+

∫ ∞

[κ̄d]+

[
α

{
u

(
βz

απ

)
− βz

απ

}
+ (1− α){u(q∗)− q∗}

]
f(κ)dκ+ E(κ)A,

for ie ∈ [̄ie, πβ ], and

Wd
2 ≡

∫ [κd]
+

0

[
u

(
β

(
z + iee

π
+ κA

))
− β

(
z + iee

π
+ κA

)]
f(κ)dκ

+

∫ [κ̄d]
+

[κd]+

[
α

{
u

(
βz

απ

)
− βz

απ

}
+ (1− α)

{
u

(
β( i

ee
π + κA)

1− α

)
−

β( i
ee
π + κA)

1− α

}]
f(κ)dκ

+

∫ ∞

[κ̄d]+

[
α

{
u

(
βz

απ

)
− βz

απ

}
+ (1− α){u(q∗)− q∗}

]
f(κ)dκ+ E(κ)A,
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for ie ∈ (ie, īe). Differentiating these welfare measures with respect to ie, we obtain

∂Wd
1

∂ie
=

β

π

∫ [κ̄d]
+

0

(
e+ ie

∂e

∂ie

){
u′

(
β( i

ee
π + κA)

1− α

)
− 1

}
f(κ)dκ > 0,

for ie ∈ [̄ie, πβ ], since ∂e
∂ie > 0. Recall that z does not depend on ie in this case since z = z (see

the proof of Proposition 3). Similarly, we have

∂Wd
2

∂ie
=

β

π

[∫ [κd]
+

0

(
∂z

∂ie
+ e+ ie

∂e

∂ie

){
u′
(
β

(
z + iee

π
+ κA

))
− 1

}
f(κ)dκ

+

∫ [κ̄d]
+

[κd]+

(
e+ ie

∂e

∂ie

){
u′

(
β( i

ee
π + κA)

1− α

)
− 1

}
f(κ)dκ+

∫ ∞

[κd]+

∂z

∂ie

{
u′
(
βz

απ

)
− 1

}
f(κ)dκ

]
,

=
β

π

[
π − β

β

∂z

∂ie
+

π − βie

βie

(
e+ ie

∂e

∂ie

)]
,

for ie ∈ (ie, īe), where the last equality uses the first-order conditions. Since ∂z
∂ie < 0 and

∂e
∂ie > 0, the effect of an increase in ie on welfare Wd

2 is ambiguous, which proves the second
part of this proposition. ■
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