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Abstract

We analyze equilibrium housing prices in an overlapping generations

model with perfect housing and rental markets. The economy exhibits a

two-stage phase transition: as the income of home buyers rises, the equi-

librium regime changes from fundamental to bubble possibility, where fun-

damental and bubbly equilibria can coexist. With even higher incomes,

fundamental equilibria disappear and housing bubbles become a necessity.

Even with low current incomes, housing bubbles may emerge if home buy-

ers have access to credit or have high future income expectations. Contrary

to widely-held beliefs, fundamental equilibria in the possibility regime are

inefficient despite housing being a productive non-reproducible asset.

Keywords: bubble, expectations, housing, phase transition, welfare.

JEL codes: D53, G12, R21.

1 Introduction

Over the last three decades, many countries have experienced appreciation in

housing prices, with upward trends in the price-rent ratio.1 The situation is often

referred to in the popular press as a housing bubble. Because fluctuations in hous-

ing prices are often associated with macroeconomic problems, many academics and

policymakers want to understand why and how housing bubbles emerge in the first

place. However, the mechanism of the emergence of housing bubbles is poorly un-

derstood. In addition, theoretically, it is well known that there is a fundamental

∗Department of Economics, Royal Holloway, University of London, and The Canon Institute

for Global Studies tomohih@gmail.com.
†Department of Economics, University of California San Diego, alexis.akira.toda@gmail.com.
1See, for instance, Figure 1 of Amaral et al. (2024) for 27 major agglomerations in 15 OECD

countries and U.S. Metropolitan Statistical Areas.
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difficulty in generating asset price bubbles in dividend-paying assets such as hous-

ing, land, and stocks.2 The theory of rational bubbles attached to assets with

positive dividends remains largely underdeveloped: at present, there is no theo-

retical framework for considering whether housing prices reflect fundamentals or

contain bubbles.

The primary purpose of this paper is to fill this gap and to present a theory

of rational housing bubbles. In particular, we are interested in the following ques-

tions. (i) How can equilibrium housing prices be disconnected from fundamentals

in the long term, exhibiting a bubble in a dynamic general equilibrium setting in

which housing rents and prices are both endogenously determined? (ii) How is

the disconnection related to economic conditions such as the income or access to

credit of home buyers and to the formation of expectations about future economic

conditions? (iii) What are the efficiency properties of equilibria?

To provide theoretical answers to these questions in the simplest possible set-

ting, we consider a bare-bones model of housing. The economy is inhabited by

overlapping generations that live for two periods (young and old age) and con-

sume two commodities (consumption good and housing service). The ownership

and occupancy of a house are separated, so there is a price for house ownership

as a financial asset (housing price) and a price for house occupancy as a com-

modity (rent). The good, housing, and rental markets are all competitive and

frictionless. A rational expectations equilibrium consists of a sequence of prices

(housing price and rent) and allocations (consumption good, housing stock, and

housing service) such that all agents optimize and markets clear. An equilibrium

is fundamental (bubbly) if the housing price equals (exceeds) the present value of

rents. In this model, the dividend of housing, namely rent, is endogenously deter-

mined by the demand and supply of housing. If housing supply is inelastic, as the

economy grows and agents get richer or have access to more credit, they increase

the demand for housing, which pushes up both the housing price and rent. Under

these circumstances, it is not obvious whether housing prices will grow faster than

rents and a housing bubble emerge: the possibility or necessity of housing bubbles

becomes a nontrivial theoretical question.

We obtain three main results. First, we theoretically identify the economic

conditions under which the equilibrium housing price reflects the fundamentals

in the long run or exhibits a bubble. We prove that the economy experiences a

2Santos and Woodford (1997, Theorem 3.3, Corollary 3.4) show that, when the asset pays
nonnegligible dividends relative to the aggregate endowment, bubbles are impossible. See the
recent review article Hirano and Toda (2024a), especially §3.4, for a simple illustration.
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two-stage phase transition. When the long run income ratio of the young (home

buyers) relative to the old (home sellers) is sufficiently low, housing bubbles cannot

arise and a fundamental equilibrium exists, which we refer to as the fundamental

regime. When the ratio rises and exceeds the first critical value, a phase transition

occurs.3 Both a fundamental and a bubbly equilibrium exist, and the equilibrium

is selected by agents’ self-fulfilling expectations. We refer to this coexistence re-

gion as the bubble possibility regime. When the income ratio exceeds the second

and still higher critical value, another phase transition takes place to the bubble

necessity regime, where fundamental equilibria do not exist and housing bubbles

become inevitable. Furthermore, we prove the uniqueness of equilibrium under

weak conditions. We show that the fundamental equilibrium is always unique,

and the bubbly equilibrium is unique if the elasticity of intertemporal substitu-

tion is not too much below 1/2.

The intuition for this two-stage phase transition is the following. Let G > 1 be

the long run growth rate of the economy and γ > 0 the reciprocal of the elasticity

of substitution between consumption and housing, which in the model also equals

the elasticity of rent with respect to income. Empirical estimates suggest γ < 1,4

and a theoretical argument also supports it: if γ > 1, as the economy grows and

agents get richer, the young asymptotically spend all income on housing, the price-

rent ratio converges to zero, and the interest rate diverges to infinity, which are

all pathological and counterfactual. Since γ = 1 (Cobb-Douglas) is a knife-edge

case, it is natural to focus on the case γ < 1. Under this condition, by equating

marginal utility to prices, consumption grows at rate G but the rent grows at

rate Gγ < G. Therefore, if the housing price only reflects fundamentals in the

long run equilibrium, it must also grow at rate Gγ. Since housing price grows

slower than endowments in any fundamental equilibrium, the expenditure share

of housing converges to zero in the long run and the interest rate R is pinned down

as the marginal rate of intertemporal substitution in the autarky allocation. If

R > Gγ, a fundamental equilibrium exists. If R < Gγ, a fundamental equilibrium

cannot exist, for otherwise the fundamental value of housing (the present value of

3Phase transition is a technical term in natural sciences that refers to a discontinuous change
in the state as we change a parameter continuously, for instance the matter changes from solid
to liquid to gas as we increase the temperature. The analogy here is appropriate because the
regime of the economy abruptly changes from fundamental to bubbly as income rises.

4Ogaki and Reinhart (1998, Table 2) estimate the elasticity of substitution between durable
and nondurable goods using aggregate data and obtain γ = 1/1.24 = 0.81. Piazzesi et al.
(2007, Appendix C) estimate a cointegrating equation between the price and quantity of housing
service relative to consumption using aggregate data and obtain γ = 1/1.27 = 0.79. Howard and
Liebersohn (2021, Table 2) estimate γ = 0.79 using cross-sectional data on income and rents.
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rents) becomes infinite, which is obviously impossible in equilibrium. Therefore as

the young become richer and the interest rate falls below a certain threshold, the

fundamental equilibrium becomes unsustainable, and a housing bubble inevitably

emerges. In the long run equilibrium with housing bubbles we must have R = G

so that the bubble is just sustainable. Fundamental and bubbly equilibria coexist

when the autarkic interest rate satisfies Gγ < R < G, which corresponds to an

intermediate range for the income ratio of the young.

As our second main result, we show the possibility of credit- and expectation-

driven housing bubbles. Even if the income of home buyers is low and a bubbly

equilibrium may not exist, if they have access to sufficient credit, a housing bub-

ble may emerge. During a credit-driven housing bubble, because agents spend all

credit on housing purchase, once in the bubbly regime, additional credit ends up

increasing the housing price one-for-one with no real effect on consumption alloca-

tion, while additional credit does affect consumption in the fundamental regime.

Thus there is a discontinuous effect of credit on consumption allocation between

the fundamental and the bubbly regimes. Moreover, using the two-stage phase

transition and uniqueness of equilibrium dynamics, we present expectation-driven

housing booms containing a bubble and their collapse. In our model, because

agents are forward-looking and housing prices reflect information about future

economic conditions, whether bubbles arise or not in equilibrium depends on long

run expectations about the income ratio of home buyers. As long as agents expect

high incomes in the future, housing prices start rising now and contain a bubble,

even if the current income of home buyers is low and the economy appears to

stay in the fundamental region. During this dynamics driven by optimistic beliefs,

the price-income ratio and the price-rent ratio simultaneously rise, and hence the

housing price dynamics may appear unsustainable because prices grow faster than

incomes. On the other hand, if these optimistic expectations do not materialize,

the bubble collapses. We emphasize that this expectation-driven housing bubbles

and their collapse occur as the unique equilibrium outcome.

Our third main result is the welfare analysis. It has been widely believed in the

literature that the introduction of a productive non-reproducible asset like land

eliminates the dynamic inefficiency in overlapping generations models (McCallum,

1987). We theoretically show that this is not necessarily true: inefficient equilibria

can still occur even though the housing and rental markets in our model are per-

fectly competitive and frictionless and housing serves a role as a non-reproducible

asset like land. Intuitively, in the fundamental equilibrium in the bubble possi-

bility regime, as the young get richer, the interest rate falls below the economic
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growth rate. In this situation, housing prices are too low to absorb savings desired

by the young. In other words, housing is not serving as a means of savings with

enough returns, which generates inefficiencies. The emergence of housing bub-

bles driven by optimistic expectations increases returns on savings and absorbs

enough savings by raising housing prices. Housing serves as a high return savings

vehicle and restores efficiency. Therefore policymakers may have a role in guiding

expectations and equilibrium selection.

We emphasize that we obtain these results and draw new insights from what

could be called the simplest possible model of housing. We thus see our paper as

a fundamental theoretical contribution that could be used as a stepping stone for

constructing more realistic models aimed for empirical or quantitative analysis.

Related literature

Our paper is related to the literature on the valuation of housing. Unlike quan-

titative models reviewed in Piazzesi and Schneider (2016), our primary interest

is to study conditions under which housing could be or must be overvalued, and

is closer to the literature on monetary models initiated by the seminal papers

of Samuelson (1958), Bewley (1980), Tirole (1985), and Scheinkman and Weiss

(1986); see Hirano and Toda (2024a) for a recent review of this literature.

Money is often called a “pure bubble” because it generates no dividends and

hence is intrinsically worthless. The so-called “rational bubble literature” has

almost exclusively focused on pure bubbles due to the fundamental difficulty of

attaching bubbles to dividend-paying assets (Santos and Woodford, 1997). Several

papers such as Kocherlakota (2009, 2013), Arce and López-Salido (2011), Zhao

(2015), and Chen and Wen (2017) examine housing bubbles in this framework.

However, in these papers, either housing does not generate housing services or the

rental market is missing and housing do not generate rents, so the fundamental

value of housing is zero, which is essentially the same as pure bubbles. As Hirano

and Toda (2024a, §4.7) argue, in describing bubbles attached to real assets, pure

bubble models are subject to criticisms such as (i) the lack of realism due to

zero dividends, (ii) the lack of robustness due to equilibrium indeterminacy (i.e.,

the existence of a continuum of pure bubble equilibria), and (iii) the inability to

connect to the large empirical literature that uses dividends to test whether asset

prices reflect fundamentals (Shiller, 1981; Phillips and Shi, 2020). Our model

circumvents all these issues because the bubble is attached to housing, which

yields positive rents. Most importantly, economic implications and insights we
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can draw are fundamentally different between pure bubbles (money) and bubbles

attached to real assets: as the present paper shows, housing bubbles necessarily

emerge with economic development. See also discussions in §4.1 for another new

insight concerning the method of model construction.

The pioneering work of Wilson (1981, §7) provides the first example of bubbles

attached to dividend-paying assets. There are substantial differences between his

model and ours. First, unlike Wilson (1981), whose main focus is abstract theory,

our main focus is to study housing bubbles. Second, dividends are exogenous

in Wilson (1981), while in ours housing rents are endogenously determined. This

difference is important because when dividends/rents are endogenously determined

in general equilibrium, it is not obvious whether housing prices will grow faster

than rents, exhibiting a housing bubble. Third, the analysis of Wilson (1981)

is limited to giving an example of the nonexistence of fundamental equilibrium

using linear utilities. In contrast, we provide a full analysis of the (non)existence

of fundamental equilibria and the necessity of housing bubbles, including local

determinacy. The forthcoming paper of Hirano and Toda (2024b) proves the

Bubble Necessity Theorem in overlapping generations and infinite-horizon Bewley

models. Our model builds on their insight but as far as we are aware, our paper

is the first to prove the existence and the necessity of rational bubbles attached

to housing yielding positive rents in a dynamic general equilibrium model.

With regard to macro-finance models that show bubbles attached to an asset

with positive dividends, Barlevy (2014) and Allen, Barlevy, and Gale (2022) study

a risk-shifting model in which borrowers know the risks of their investments better

than lenders. This asymmetric information encourages the borrowers to gamble

on risky assets, allowing asset prices to exceed fundamentals. In our paper, asym-

metric information is not relevant to the formation of housing price bubbles and

hence we abstract from it.

The monetary theory literature including seminal contributions by Lagos and

Wright (2005), Rocheteau and Wright (2005, 2013), and Lagos, Rocheteau, and

Wright (2017) studies money or real assets as a medium of exchange using a

search-theoretic approach and liquidity premium is interpreted as bubbles. Our

paper studies rational asset price bubbles attached to real assets in a competitive

economy following the standard definition of rational bubbles, which is different

from liquidity premium. (See Hirano and Toda (2024b, §5.3) for more discussion.)

Although the two approaches are different, they are mutually complementary and

provide different insights for the determination of asset prices.
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2 Model

2.1 Primitives

Time is discrete and indexed by t = 0, 1, . . . . We consider a deterministic over-

lapping generations (OLG) economy in which agents live for two periods (young

and old age) and demand a consumption good and housing service. We employ an

OLG model because it allows us to capture life-cycle behaviors regarding housing

demand in a simple setting.

Commodities, asset, and endowments There are two perishable commodi-

ties (consumption good and housing service) and a durable non-reproducible asset

(housing stock) in the economy. The housing service is the right to occupy a house

between two periods. Every period, one unit of housing stock inelastically pro-

duces one unit of housing service. The time t endowment of the consumption good

is at > 0 for the young and bt > 0 for the old. At t = 0, the housing stock (whose

aggregate supply is normalized to 1) is owned by the old.

Preferences An agent born at time t lives for two periods and has utility func-

tion U(yt, zt+1, ht), where yt > 0 is consumption when young, zt+1 > 0 is con-

sumption when old, and ht > 0 is housing service consumed when transitioning

from young to old. As usual, we assume that U : R3
++ → R is continuously dif-

ferentiable, has strictly positive first partial derivatives, is strictly quasi-concave,

and satisfies Inada conditions to guarantee interior solutions. The initial old care

only about their consumption z0.

Markets We consider an ideal world in which the ownership and occupancy

of housing are separated and traded at competitive frictionless markets: agents

trade housing (a financial asset) only to store value (transfer resources across time),

whereas they purchase housing service (a commodity) only to derive utility.5

Let rt be the price of housing service (rent) and Pt be the housing price (ex-

cluding current rent) quoted in units of time t consumption. Let xt denote the

demand for the housing stock. Then the budget constraints of an agent born at

5Therefore nothing prevents agents from purchasing a mansion as an investment while renting
a campsite to sleep, or vice versa. Owner-occupants can be thought of agents who rent the
houses they own to themselves. However, because in our model agents within a generation are
homogeneous, in equilibrium each young agent demands one unit of housing and one unit of
housing service, so the agents end up being owner-occupants.
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time t are

Young: yt + Ptxt + rtht ≤ at, (2.1a)

Old: zt+1 ≤ bt+1 + (Pt+1 + rt+1)xt. (2.1b)

The budget constraint of the young (2.1a) states that the young spend income

on consumption, purchase of housing stock, and rent. The budget constraint of

the old (2.1b) states that the old consume the endowment and the income from

renting and selling housing.

Equilibrium As usual, an equilibrium is defined by individual optimization and

market clearing.

Definition 1. A rational expectations equilibrium consists of a sequence of prices

{(Pt, rt)}∞t=0 and allocations {(xt, yt, zt, ht)}∞t=0 such that for each t, (i) (Individual

optimization) The young maximize utility U(yt, zt+1, ht) subject to the budget

constraints (2.1), (ii) (Commodity market clearing) yt + zt = at + bt, (iii) (Rental

market clearing) ht = 1, (iv) (Housing market clearing) xt = 1.

Note that because the old exit the economy, the young are the natural buyers

of housing, which explains the housing market clearing condition xt = 1.

2.2 Equilibrium conditions

We derive equilibrium conditions. Using the rental and housing market clearing

conditions ht = xt = 1 and the budget constraint (2.1), we obtain

(yt, zt) = (at − Pt − rt, bt + Pt + rt) = (at − St, bt + St), (2.2)

where St := Pt + rt is total expenditure on housing. Throughout the paper, we

refer to Pt as the housing price and St as the housing expenditure. Let

Rt :=
Pt+1 + rt+1

Pt

=
St+1

Pt

(2.3)

be the implied gross risk-free rate between time t and t+1. Then the two budget

constraints in (2.1) can be combined into one as

yt +
zt+1

Rt

+ rtht ≤ at +
bt+1

Rt

. (2.4)
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Letting λt ≥ 0 be the Lagrange multiplier associated with the combined budget

constraint (2.4), we obtain the first-order conditions

(Uy, Uz, Uh) = λ(1, 1/Rt, rt), (2.5)

where Uy = ∂U/∂y etc. and the utility function is evaluated at

(yt, zt+1, ht) = (at − St, bt+1 + St+1, 1). (2.6)

Using (2.5), we obtain 1/Rt = Uz/Uy and rt = Uh/Uy. Combining these two

equations, the definition of Rt in (2.3), and St = Pt + rt, we obtain

St+1Uz = StUy − Uh, (2.7)

where the partial derivatives of U are evaluated at (2.6). The following theorem

establishes the existence and characterization of equilibrium as a solution to a

one-dimensional nonlinear difference equation.

Theorem 1 (Existence and characterization of equilibrium). A rational expecta-

tions equilibrium exists. In any equilibrium, we have 0 < St < at and

(yt, zt) = (at − St, bt + St), (2.8a)

Pt = St − (Uh/Uy)(at − St, bt+1 + St+1, 1), (2.8b)

rt = (Uh/Uy)(at − St, bt+1 + St+1, 1), (2.8c)

Rt = (Uy/Uz)(at − St, bt+1 + St+1, 1). (2.8d)

Proof. The existence of equilibrium follows from the same argument as the proof

of Hirano and Toda (2024b, Theorem 1). The characterizations (2.8) follow from

the preceding argument.

By Theorem 1, an equilibrium is fully characterized by the sequence of housing

expenditure {St}∞t=0. For this reason, we often refer to {St}∞t=0 as an equilibrium

without specifying each object in Definition 1.

2.3 Definition and characterization of housing bubbles

Following the standard definition of rational bubbles in the literature (Hirano

and Toda, 2024a, §2.1), we define a housing bubble by a situation in which the

housing price exceeds its fundamental value defined by the present value of rents.
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Let Rt > 0 be the equilibrium gross risk-free rate. Let qt > 0 be the Arrow-

Debreu price of date-t consumption in units of date-0 consumption, so q0 = 1 and

qt = 1/
∏t−1

s=0Rs. Since by definition qt+1 = qt/Rt holds, using (2.3) we obtain the

no-arbitrage condition

qtPt = qt+1(Pt+1 + rt+1). (2.9)

Iterating (2.9) forward, for all T > t we obtain

qtPt =
T∑

s=t+1

qsrs + qTPT . (2.10)

Since qsrs ≥ 0, we have
∑∞

s=t+1 qsrs ≤ qtPt, so we may define the fundamental

value of housing by the present value of rents

Vt :=
1

qt

∞∑
s=t+1

qsrs. (2.11)

Letting T →∞ in (2.10), we obtain the limit

0 ≤ lim
T→∞

qTPT = qt(Pt − Vt). (2.12)

When the limit in (2.12) equals 0, we say that the transversality condition (for

asset pricing) holds and the asset price Pt equals its fundamental value Vt. When

limT→∞ qTPT > 0, we say that the transversality condition fails and the asset price

contains a bubble. Note that under rational expectations, we have either Pt = Vt

for all t or Pt > Vt for all t. Throughout the rest of the paper, we refer to an

equilibrium with (without) a housing bubble a bubbly (fundamental) equilibrium.

The economic meaning of limT→∞ qTPT is that it captures a purely speculative

aspect, that is, agents buy housing now for the purpose of resale in the future,

rather than for the purpose of receiving rents. limT→∞ qTPT captures its impact

on the current housing prices. When the transversality condition holds, the aspect

of pure speculation becomes negligible and housing prices are determined only by

factors that are backed in equilibrium, namely rents. On the other hand, when

the transversality condition is violated, equilibrium housing prices contain a purely

speculative aspect.

In general, proving the existence or nonexistence of bubbles is challenging

because in the limit (2.12), both the Arrow-Debreu price qt and the housing price

Pt are endogenous. Here we discuss two useful results. Because the context does

not matter, we consider a general asset that pays dividend Dt ≥ 0 and trades
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at price Pt. The first is the following Bubble Characterization Lemma due to

Montrucchio (2004).

Lemma 2.1 (Bubble Characterization, Montrucchio, 2004). If Pt > 0 for all t,

the asset price exhibits a bubble if and only if
∑∞

t=1Dt/Pt <∞.

Proof. See Hirano and Toda (2024b, Lemma 2.1).

Lemma 2.1 is useful because it does not involve the Arrow-Debreu price qt and

provides a necessary and sufficient condition for the existence of bubbles. The

second result is the Bubble Necessity Theorem due to Hirano and Toda (2024b).

Because a precise statement is cumbersome, here we only provide an intuitive

discussion and refer the readers for details to the original paper. Let R be the

counterfactual long run autarky interest rate. Let

Gd := lim sup
t→∞

D
1/t
t (2.13)

be the long run dividend growth rate. Let G be the long run economic growth

rate. If the bubble necessity condition

R < Gd < G (2.14)

holds, then all equilibria are asymptotically bubbly, i.e., there are neither funda-

mental equilibria nor any bubbly equilibria that are asymptotically bubbleless, and

the only possible equilibria are ones in which the asset price is non-negligible in

the sense that lim inft→∞G−tPt > 0. Although the proof of the Bubble Necessity

Theorem is not obvious, the intuition is clear. If a fundamental equilibrium exists,

the asset price must grow at the same rate as dividends, which is Gd. If Gd < G,

the asset price becomes negligible relative to the size of the economy, and hence

the allocation approaches autarky. With an autarky interest rate of R < Gd, the

present value of dividends (and hence the asset price) becomes infinite, which is

impossible. Therefore a fundamental equilibrium cannot exist.

3 Housing prices in the long run

In this section we study the long run behavior of equilibrium housing prices.
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3.1 Assumptions

To make qualitative predictions, we put more structure by specializing the utility

function and endowments. For the remainder of the paper, the following restric-

tions are in force.

Assumption 1 (Endowments). There exist G > 1, a, b > 0, and T > 0 such that

the endowments are (at, bt) = (aGt, bGt) for t ≥ T .

Assumption 1 implies that in the long run, the economy exogenously grows at

rateG > 1 and the income ratio between the young and old is constant. We assume

exogenous growth of endowments and fixed supply of housing as the simplest

benchmark to illustrate the key mechanism of housing bubbles.6 In addition, by

assuming a fixed supply, housing serves a role as a productive non-reproducible

asset like land, which, as we study in §5, provides new insights on efficiency in

OLG economies.

Assumption 2 (Utility). The utility function takes the form

U(y, z, h) = u(c(y, z)) + v(h), (3.1)

where (i) the composite consumption c(y, z) is homogeneous of degree 1 and quasi–

concave, (ii) the utility of composite consumption is u(c) = c1−γ

1−γ
for some γ > 0

(u(c) = log c if γ = 1), and (iii) the utility of housing service satisfies v′ > 0.

Assumption 2(i) implies that agents (apart from the initial old) care about

consumption (y, z) only through the homothetic composite consumption c(y, z),

which (together with Assumption 1) allows us to study asymptotically balanced

growth paths. Assumption 2(ii) implies that agents have constant elasticity of

substitution 1/γ > 0 between consumption and housing service.7

Throughout the main text, we focus on the case γ < 1 (so the elasticity

of substitution between consumption and housing 1/γ exceeds 1) and defer the

analysis of the case γ ≥ 1 to Appendix B. There are three reasons for doing so.

6In Figure 5 of Appendix C, we document that economic growth is faster than the growth of
housing supply. We can extend our model to include endogenous growth, as studied in Hirano,
Jinnai, and Toda (2022), and variable housing supply by introducing the construction of new
housing.

7To see this, consider an agent who maximizes utility u(c) + v(h) subject to the budget
constraint c + ρh ≤ w, where ρ > 0 is the rent measured in units of composite consumption.
Letting λ be the Lagrange multiplier, the first-order conditions are c−γ = λ and v′(h) = λρ.
But in equilibrium we have h = 1, so ρ = v′(1)cγ . Log-differentiating both sides, we obtain

−∂ log(h/c)
∂ log ρ = ∂ log c

∂ log ρ = 1
γ , so the elasticity of substitution between consumption and housing is

1/γ.
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First, γ < 1 is the empirically relevant case: (Footnote 4). Second, γ = 1 is a

knife-edge case. Third, as we show in Proposition B.1, the equilibrium with γ > 1

is pathological and counterfactual: the young asymptotically spend all income on

housing (purchase and rent); the price-rent ratio converges to zero; and the gross

risk-free rate diverges to infinity. Hence the case γ > 1 is economically irrelevant.

Since by Assumption 2(i) c is homogeneous of degree 1 and quasi-concave,

Theorem 3 of Berge (1963, p. 208) implies that c is actually concave. Because we

wish to study smooth interior solutions, we further strengthen the assumption on

utility as follows.

Assumption 3 (Composite consumption). The composite consumption c : R2
++ →

(0,∞) is homogeneous of degree 1, twice continuously differentiable, and satisfies

cy > 0, cz > 0, cyy < 0, czz < 0, cy(0, z) =∞, cz(y, 0) =∞.

A typical functional form for c satisfying Assumption 3 is the constant elasticity

of substitution (CES) specification

c(y, z) =

{
((1− β)y1−σ + βz1−σ)

1
1−σ if 0 < σ ̸= 1,

y1−βzβ if σ = 1,
(3.2)

where 1/σ is the elasticity of intertemporal substitution and β ∈ (0, 1) dictates

time preference.

3.2 Definition of long run equilibria

In the subsequent analysis, we first focus on the long run behavior of the economy

and then examine transitional dynamics driven by expectations. We present two

lemmas that are crucial for the subsequent analysis.

Lemma 3.1 (Backward induction). Suppose Assumptions 2 and 3 hold. If ST =

{St}∞t=T is an equilibrium starting at t = T , there exists a unique equilibrium

S0 = {St}∞t=0 starting at t = 0 that agrees with ST for t ≥ T .

Lemma 3.1 shows that we may uniquely extend and equilibrium path backward

in time, which allows us to focus on the long run behavior of the economy and

guarantees the uniqueness of the transitional dynamics. Since by Assumption 1 the

endowments eventually grow at a constant rate G, unless otherwise stated, without

loss of generality we assume that endowments are given by (at, bt) = (aGt, bGt)

for all t.

The following lemma bounds the equilibrium rents.
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Lemma 3.2 (Bounds on rents). Suppose Assumptions 1–3 hold and γ < 1. Then

in any equilibrium we have 0 < lim supt→∞G−γtrt <∞.

The intuition for Lemma 3.2 is the following. Since endowments grow at rate

G and the elasticity of substitution between consumption and housing service is

1/γ, the marginal rate of substitution (which equals rent) must grow at rate Gγ.

In general, we have upper and lower bounds on rents because agents need not

consume their endowments and can smooth consumption through savings.

By Lemma 3.2, there exist constants 0 < r
¯
≤ r̄ <∞ such that rt ≤ r̄Gγt for all

t and r
¯
Gγt ≤ rt infinitely often. Taking the 1/t-th power of both sides and letting

t→∞, the long run rent growth rate (2.13) becomes lim supt→∞ r
1/t
t = Gγ. This

observation is important for applying the Bubble Necessity Theorem later.

We next define the long run equilibrium. By Assumption 2, the equilibrium

dynamics (2.7) becomes

St+1cz = Stcy −mcγ, (3.3)

where m := v′(1) is the marginal utility of housing service and c is evaluated at

(yt, zt+1) = (at−St, bt+1+St+1). To study asymptotically balanced growth paths,

let st := St/at = St/(aG
t) be the housing expenditure normalized by the income

of the young. Since c is homogeneous of degree 1, its partial derivatives cy, cz are

homogeneous of degree 0. Therefore dividing both sides of (3.3) by aGt, we obtain

Gst+1cz = stcy −maγ−1G(γ−1)tcγ, (3.4)

where c, cy, cz are evaluated at (y, z) = (1− st, G(w + st+1)) for the old to young

income ratio w := b/a.

When γ < 1, the difference equation (3.4) explicitly depends on time t (is non-

autonomous), which is inconvenient for analysis. To convert it to an autonomous

system, define the auxiliary variable ξt = (ξ1t, ξ2t) by ξ1t = st = St/(aG
t) and

ξ2t = aγ−1G(γ−1)t. Then the one-dimensional non-autonomous nonlinear difference

equation (3.4) reduces to the two-dimensional autonomous nonlinear difference

equation Φ(ξt, ξt+1) = 0, where

Φ1(ξ, η) = Gη1cz − ξ1cy +mcγξ2, (3.5a)

Φ2(ξ, η) = η2 −Gγ−1ξ2 (3.5b)

and c, cy, cz are evaluated at (y, z) = (1 − ξ1, G(w + η1)) with w := b/a. We can

now define a long run equilibrium.
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Definition 2. A rational expectations equilibrium {St}∞t=0 is a long run equilib-

rium if the sequence of auxiliary variables {ξt}∞t=0 is convergent.

If ξt → ξ, since G > 1 and γ ∈ (0, 1), we have Φ(ξ, ξ) = 0 if and only if ξ2 = 0

and ξ1(Gcz − cy) = 0, where cy, cz are evaluated at (y, z) = (1 − ξ1, G(w + ξ1)).

Clearly ξ∗f := (0, 0) is a steady state of Φ, which we refer to as the fundamental

steady state. In order for Φ to have a nontrivial (ξ1 = s > 0) steady state,

which we refer to as the bubbly steady state, it is necessary and sufficient that

Gcz − cy = 0.

3.3 (Non)existence of fundamental equilibria

As a benchmark, we start our analysis with the existence, and possibly nonex-

istence, of fundamental equilibria. By Lemma 3.2, the rent must asymptotically

grow at rate Gγ. Hence if the housing price equals its fundamental value (present

value of rents), it must also grow at rate Gγ. But since endowments grow faster

at rate G > Gγ, the expenditure share of housing converges to zero in the long

run and the consumption allocation becomes autarkic: (yt, zt) ∼ (aGt, bGt). This

argument suggests that in any fundamental equilibrium, the interest rate behaves

like

Rt =
cy
cz
(yt, zt+1) ∼

cy
cz
(aGt, bGt+1) =

cy
cz
(1, Gw), (3.6)

where w := b/a is the old to young income ratio and we have used the homogeneity

of c (Assumption 2(i)). Obviously, for the fundamental value of housing to be

finite, the interest rate cannot fall below the rent growth rate Gγ in the long run.

This heuristic argument motivates the following (non)existence result.

Theorem 2 ((Non)existence of fundamental equilibria). Suppose Assumptions 1–

3 hold, γ < 1, and let m = v′(1) and w = b/a. Then the following statements are

true.

(i) There exists a unique w∗
f > 0 satisfying

cy
cz
(1, Gw∗

f ) = Gγ. (3.7)

(ii) If w > w∗
f , there exists a fundamental long run equilibrium. The equilibrium
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objects have the order of magnitude

(yt, zt) ∼ (aGt, awGt), (3.8a)

Pt ∼ maγ
Gγcz

cy −Gγcz

cγ

cy
Gγt, (3.8b)

rt ∼ maγ
cγ

cy
Gγt (3.8c)

Rt ∼
cy
cz

> Gγ, (3.8d)

where c, cy, cz are evaluated at (y, z) = (1, Gw).

(iii) If w < w∗
f , there exist no fundamental equilibria. All equilibria are bubbly

with lim inft→∞ G−tPt > 0.

Although the conclusion that fundamental equilibria may fail to exist is sur-

prising, its intuition is actually straightforward. As discussed above, in any fun-

damental equilibrium, the consumption allocation is asymptotically autarkic and

the interest rate is pinned down as the marginal rate of intertemporal substitu-

tion evaluated at the autarkic allocation. Hence the order of magnitude (3.8)

immediately follows from the general analysis in Theorem 1. Because both the

housing price and rent grow at rate Gγ, the interest rate (which equals the return

on housing by no-arbitrage) must exceed Gγ as in (3.8d). Hence, the transversal-

ity condition holds and the housing price just reflects the fundamentals. As the

young to old income ratio 1/w = a/b rises, the autarkic interest rate falls. But

it cannot fall below the rent growth rate Gγ, for otherwise the fundamental value

would become infinite, which is impossible in equilibrium. Therefore there cannot

be any fundamental equilibria if the young are sufficiently rich. The threshold for

the nonexistence of fundamental equilibria is determined by equating the marginal

rate of intertemporal substitution to the rent growth rate Gγ, which is precisely

the condition (3.7).

It is important to recognize the differences in statements (ii) and (iii). All

statement (ii) claims is that there exists a fundamental long run equilibrium satis-

fying the order of magnitude (3.8). It does not rule out the possibility that there

are other equilibria that are potentially cyclic or chaotic. In contrast, statement

(iii) is much stronger. Under the condition w < w∗
f , it claims that no fundamental

equilibria can exist at all, regardless of the asymptotic behavior such as conver-

gent, cyclic, or chaotic.8 The proof of Theorem 2, especially the nonexistence part

8The idea of introducing dividends to rule out fundamental steady states in monetary models,
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(iii), is not obvious and builds on the Bubble Necessity Theorem of Hirano and

Toda (2024b) in abstract OLG economies.

3.4 Existence of bubbly equilibria

Theorem 2 establishes a necessary and sufficient condition for the existence of

a fundamental equilibrium. In particular, if the young are sufficiently rich and

w < w∗
f , fundamental equilibria do not exist and hence bubbles are inevitable. The

following theorem provides a necessary and sufficient condition for the existence

of a bubbly long run equilibrium.

Theorem 3 (Existence of bubbly long run equilibrium). Suppose Assumptions

1–3 hold, γ < 1, and let m = v′(1) and w = b/a. Then the following statements

are true.

(i) There exists a unique w∗
b > w∗

f satisfying

cy
cz
(1, Gw∗

b ) = G, (3.9)

which depends only on G and c. A bubbly steady state exists if and only if

w < w∗
b , which is uniquely given by ξ∗b = (s∗, 0) with s∗ =

w∗
b−w

w∗
b+1

.

(ii) For generic G > 1 and w < w∗
b , there exists a bubbly long run equilibrium.

The equilibrium objects have the order of magnitude

(yt, zt) ∼ (a(1− s∗)Gt, a(w + s∗)Gt), (3.10a)

Pt ∼ as∗Gt, (3.10b)

rt ∼ maγ
cγ

cy
Gγt, (3.10c)

Rt ∼ G, (3.10d)

where c, cy are evaluated at (y, z) = (1− s∗, G(w + s∗)).

(iii) In the bubbly long run equilibrium, there is a housing bubble and the price-

rent ratio Pt/rt diverges to ∞.

We explain the intuition for the following points: (i) Why does the bubbly

equilibrium interest rate R equal the economic growth rate G? (ii) Why do the

the so called “commodity money refinement”, goes back to Scheinkman (1978). However, as
Lagos et al. (2017, p. 411) acknowledge, commodity money refinement only rules out equilibria
converging to the fundamental steady state. Our statement (iii) is much stronger.
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young need to be sufficiently rich for the emergence of bubbles? (iii) Why is the

condition γ < 1 important for the emergence of bubbles? The intuition for (i)

is the following. In order for a housing bubble to exist in the long run, housing

price must asymptotically grow at the same rate G as the economy as in (3.10b):

clearly housing price cannot grow faster than G (otherwise the young cannot afford

housing); if it grows at a lower rate than G, housing becomes asymptotically

irrelevant. Because housing price grows at rate G but the rent grows at rate

Gγ < G, the interest rate (2.3) must converge to G as in (3.10d). The intuition for

(ii) is the following. With bubbles, we know R = G. Because the young are saving

through the purchase of housing, the lowest possible interest rate in the economy

is the autarkic interest rate. Therefore for the emergence of bubbles, the autarkic

interest rate must be lower than the economic growth rate, or equivalently the

young must be sufficiently rich. The condition (3.9), which equates the marginal

rate of intertemporal substitution to the growth rate (long run interest rate),

determines the income ratio threshold for which such a situation is possible. The

intuition for (iii) is the following. With bubbles, we know R = G and the housing

price grows at the same rate. Then the no-arbitrage condition (2.3) forces the rents

relative to the prices to be negligible (grow slower), for otherwise the interest rate

will exceed the housing price growth rate and there will be no bubbles. Thus for

the emergence of bubbles, we need G > Gγ and hence γ < 1.

In this bubbly equilibrium, the housing expenditure St and rent rt asymptot-

ically grow at rates G and Gγ < G, respectively. On the other hand, since the

gross risk-free rate (3.10d) converges to G and the rent grows at rate Gγ < G, the

present value of rents—the fundamental value of housing Vt—is finite and grows

at rate Gγ. Then the ratio St/Vt grows at rate G1−γ > 1, so the housing price

eventually exceeds the fundamental value. Therefore the transversality condition

(2.12) fails and there is a housing bubble. Moreover, from a backward induction

argument, we will have housing bubbles at all dates.

In the bubbly equilibrium, the housing price grows faster than the rent and

is disconnected from fundamentals in the sense that the housing price is asymp-

totically independent of the preferences for housing. To see this, note that the

threshold w∗
b in (3.9) depends only on the growth rate G and the utility of con-

sumption c. Then the steady state s∗ depends only on G, c, and incomes (a, b),

and so does the asymptotic housing price (3.10b). In particular, the housing price

is asymptotically independent of the marginal utility of housing m = v′(1) as

well as the elasticity of substitution 1/γ between consumption and housing. In

contrast, the rent (3.10c) does depend on these parameters.
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3.5 Uniqueness of equilibria

Although it is natural to focus on equilibria converging to steady states (i.e.,

long run equilibria), there may be other equilibria. In general, an equilibrium is

called locally determinate if there are no other equilibria in a neighborhood of the

given equilibrium. If a model does not make determinate predictions, its value as

a tool for economic analysis is severely limited. Therefore local determinacy of

equilibrium is crucial for applications.

It is well known that equilibria in Arrow-Debreu economies are generically

locally determinate (Debreu, 1970) but not necessarily so in OLG models (Gale,

1973; Geanakoplos and Polemarchakis, 1991). In our context, local determinacy

means that there are no other equilibria converging to the same steady state.

However, we already know the uniqueness of steady states, and we also know

that Lemma 3.1 allows us to establish global properties of equilibrium. Thus

in our model, local determinacy implies equilibrium uniqueness, which justifies

comparative statics and dynamics.

The local determinacy of a dynamic general equilibrium model often depends

on the elasticity of intertemporal substitution (EIS) defined by

ε(y, z) = −
(
d log(cy/cz)

d log(y/z)

)−1

; (3.11)

see the discussion in Flynn et al. (2023). When c is homogeneous of degree 1,

we can show that ε = cycz
ccyz

(Lemma A.1). The following proposition provides a

sufficient condition for the uniqueness of equilibria.

Proposition 3.1 (Uniqueness of equilibria). Suppose Assumptions 1–3 hold and

γ < 1. Let w = b/a and w∗
f , w

∗
b be as in (3.7) and (3.9). Then the following

statements are true.

(i) If w > w∗
f , there exists a unique fundamental long run equilibrium.

(ii) If w < w∗
b and the elasticity of intertemporal substitution (3.11) satisfies

1− w∗
b

2

1− w/w∗
b

1 + w
< ε(y, z) ̸= 1− w/w∗

b

1 + w
(3.12)

at (y, z) = (1 − s∗, G(w + s∗)) with s∗ =
w∗

b−w

w∗
b+1

, then there exists a unique

bubbly long run equilibrium.

Theorem 2 shows that all fundamental long run equilibria are asymptotically

equivalent. Proposition 3.1(i) shows that the fundamental equilibrium is actually
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unique. The right-hand side of (3.12) is less than 1 because 0 < w < w∗
b . Therefore

the left-hand side of (3.12) is less than 1/2. Proposition 3.1(ii) thus states that the

bubbly equilibrium in Theorem 3 is locally determinate as long as the elasticity

of intertemporal substitution (EIS) is not too much below 1/2.9

The intuition for Proposition 3.1 is as follows. Whether the bubbly equilibrium

is locally determinate or not depends on the stability of linearized system around

the steady state ξ∗b . It turns out that one eigenvalue is λ2 := Gγ−1 < 1, which

is stable. The other eigenvalue λ1 could be greater than 1 in modulus (unstable)

or less (stable), depending on the model parameters. We find that as long as the

EIS is not too much below 1/2 (namely the left inequality of (3.12) holds) and

is distinct from the special value in the right-hand side of (3.12) (in which case

linearization is inapplicable due to a singularity), then |λ1| > 1 (unstable). Since

the dynamics has one endogenous initial condition (because ξ0 = (s0, a
γ−1) and

the initial young income a is exogenous), the equilibrium is locally determinate:

there exists a unique equilibrium path converging to the steady state if a is large

enough. Then the existence and uniqueness of equilibrium with arbitrary a follows

from the backward induction argument in Lemma 3.1. The same argument applies

to the fundamental equilibrium, although in this case we have λ1 > 1 regardless

of the EIS.

4 Possibility, necessity, and phase transition

Having established the existence and determinacy of equilibria, in this section

we further develop the intuition, discuss credit- and expectation-driven housing

bubbles, and present comparative dynamics exercises using a numerical example.

4.1 Two-stage phase transition

Theorems 2 and 3 imply that, as the young (more precisely, home buyers) become

richer, the economy experiences two phase transitions, as illustrated in Figure 1,

which shows how the elasticity of substitution between consumption and housing

service 1/γ and young to old income ratio 1/w = a/b affect the equilibrium housing

price regimes. (The case 1/γ ≤ 1 is treated in Appendix B.)

When the young to old income ratio 1/w = a/b is below the bubbly equilibrium

threshold 1/w∗
b , the young do not have sufficient purchasing power to drive up

9In general equilibrium theory, it is well known that multiple equilibria are possible if the
elasticity is low; see Toda and Walsh (2017) for concrete examples and Toda and Walsh (2024)
for a recent review.
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1/γ
Elasticity of substitution

1/w = a/b

0 1

1/w∗
f

1/w∗
b

(Pathological)

Fundamental

(Prop. B.1)

Fundamental (Thm. 5)

Fundamental regime(Thm. 2)

Bubble possibility regime

Bubble necessity regime(Thm. 3)

Young

rich

poor

Figure 1: Phase transition of equilibrium housing price regimes.

Note: 1/w = a/b is the young to old income ratio and w∗
f , w

∗
b are the thresholds for the bubble

necessity and possibility regimes defined by (3.7) and (3.9), respectively. The figure corresponds
to the CES utility (3.2) with β = 1/2, σ = 1, and G = 1.5.

the housing price and only fundamental equilibria exist (Theorem 2(ii)). In this

fundamental regime, the housing price grows at rate Gγ, which is lower than

both the interest rate R and the economic growth rate G. In the long run, the

expenditure share of housing converges to zero and the consumption allocation

becomes autarkic (see (3.8a)).

When the income ratio of the young exceeds the first critical value 1/w∗
b , the

economy transitions to the bubble possibility regime in which fundamental and

bubbly equilibria coexist (Theorem 3). In this regime, although each equilibria are

determinate, which equilibrium will be selected depends on agents’ expectations.

When the income ratio of the young exceeds the second and still higher critical

value 1/w∗
f , fundamental equilibria cease to exist and all equilibria become bub-

bly (Theorem 2(iii)). Bubbles are necessary for the existence of equilibrium and

the bubble necessity regime emerges. In this regime, the housing price is asymp-

totically determined only by the economic growth rate G and the preference for

consumption goods c, and thus the housing price inevitably becomes disconnected

from fundamentals.

The intuition for the necessity of housing bubbles when the young are suffi-

ciently rich is the following. As discussed above, in any fundamental equilibrium,
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the expenditure share of housing converges to zero and the consumption alloca-

tion becomes autarkic. However, as the young get richer (the young to old income

ratio 1/w increases), the interest rate R = (cy/cz)(1, Gw) falls (Figure 2). If R

gets lower than a critical value, the economy enters the bubble possibility regime.

Hence, housing bubbles driven by optimistic expectations may be possible. As the

income ratio increases further, the fundamental equilibrium interest rate becomes

lower than the rent growth rate Gγ. If the economy enters that situation, the only

possible equilibrium is one that features a housing bubble.

1/w = a/b

R

0 1/w∗
b 1/w∗

f

poor ← Young → rich

Bubbly equilibrium
G

Fundamental equilibriumGγ

Fundamental Possibility Bubble necessity

Figure 2: Housing price regimes and equilibrium interest rate.

Note: see Figure 1 for explanation of parameters.

Furthermore, we emphasize that once the state of the economy changes to the

housing bubble economy, whether by expectations or by necessity, the determina-

tion of housing prices becomes purely demand-driven: the housing price continues

to rise due to sustained demand growth arising from income growth of the young

(home buyers). In contrast, when housing prices reflect fundamentals, it equals

the present value of housing rents and hence its determination is supply-driven.

The demand-driven housing price dynamics is a distinctive feature of the housing

bubble economy.

We would like to add an important remark concerning the knife-edge case with

γ = 1, i.e., the Cobb-Douglas case, which is often employed in housing models

or macroeconomic analyses. When γ = 1, steady-state growth emerges, in which

case housing rents and prices grow at the same rate and therefore housing bubbles
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are impossible. This result has critically important implications on the method of

macroeconomic modelling. As long as we construct a model so that only steady-

state growth with stationarity emerges, by model construction, housing bubbles

can never occur. As is well known as the Uzawa steady-state growth theorem

(Uzawa, 1961; Schlicht, 2006; Jones and Scrimgeour, 2008), obtaining steady-

state growth requires knife-edge restrictions. This holds true even in our model.

What our analyses show is that once we deviate from the knife-edge restrictions,

asset pricing implications become markedly different. This implies that the essence

of housing bubbles is nonstationarity. (See also the introduction and concluding

remarks in Hirano and Toda (2024a).)

4.2 Credit-driven housing bubbles

So far we have considered a model in which the young self-finance the purchase of

housing, but the model can be easily extended to include credit. To see this, let{
(ãt, b̃t)

}∞

t=0
be the endowment of some economy with corresponding equilibrium

risk-free rate and housing expenditure {(Rt, St)}∞t=0. Take any sequence {ℓt}∞t=0

such that ℓt ∈ [0, ãt) and define b0 = b̃0 and (at, bt+1) = (ãt − ℓt, b̃t+1 + Rtℓt) for

t ≥ 0. Then we can construct an equilibrium in which the endowment is (at, bt),

the interest rate is Rt, the housing expenditure is St, and an external banking

sector provides loan ℓt to the young at time t. We can see this as follows. At time

t, the available funds of the young is at + ℓt = ãt. At time t + 1, because the old

repay Rtℓt, the available funds is bt+1−Rtℓt = b̃t+1. Therefore given the available

funds and the interest rate Rt, it is optimal for the young to spend St on housing,

so we have an equilibrium.

This argument shows that, even if the income share of the young at/bt is low and

a bubbly equilibrium may not exist, if the young have access to sufficient credit,

a housing bubble may emerge. In particular, we have the following proposition.

Proposition 4.1. Let everything be as in Theorem 3 and suppose the banking

sector is willing to lend ℓt = ℓGt to the young. If the loan to income ratio satisfies

w > λ :=
ℓ

a
>

w − w∗
b

w∗
b + 1

, (4.1)

then there exists a bubbly long run equilibrium. Under this condition, the housing

price has order of magnitude

Pt ∼ a

(
w∗

b − w

w∗
b + 1

+ λ

)
Gt = as∗Gt + ℓt, (4.2)
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so credit increases the housing price one-for-one.

Using (4.2) and Gγ < G, by a similar calculation as in (3.10a), the consumption

of the young has the order of magnitude

yt = at + ℓt − Pt − rt

∼ aGt + ℓt − (as∗Gt + ℓt) = a(1− s∗)Gt,

which is independent of credit ℓt. Therefore, once the home buyers have access

to sufficient credit such that a housing bubble emerges, increasing credit further

ends up raising the housing price one-for-one with no real effect on the long run

consumption allocation. In contrast, as long as the economy stays in the funda-

mental regime, the increase in credit does affect the consumption allocation. Thus

there is a discontinuous effect of a credit increase on the consumption allocation

between two regimes.

4.3 Expectation-driven housing bubbles

We illustrate the preceding analysis and the role of expectations with a numeri-

cal example. Suppose the composite consumption takes the CES form (3.2). A

straightforward calculation yields

cy = (1− β)(y/c)−σ and cz = β(z/c)−σ. (4.3)

Using (3.7), (3.9), and (4.3), we can solve for the critical values for the existence

of fundamental and bubbly equilibria as

1− β

β
(Gw∗

f )
σ = Gγ ⇐⇒ w∗

f =

(
β

1− β
Gγ−σ

)1/σ

, (4.4a)

1− β

β
(Gw∗

b )
σ = G ⇐⇒ w∗

b =

(
β

1− β
G1−σ

)1/σ

. (4.4b)

Substituting (4.3) into (3.3), we obtain

βSt+1z
−σ = (1− β)Sty

−σ −mcγ−σ, (4.5)
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where (y, z) = (at − St, bt+1 + St+1). To solve for the equilibrium numerically, we

can take a large enough T , set ST = s∗aT with steady state value s∗ defined by

s∗ =

0 if fundamental equilibrium,
w∗

b−w

w∗
b+1

if bubbly equilibrium,

and solve the nonlinear equation (4.5) backwards for ST−1, . . . , S0. Note that the

backward calculations of {St}Tt=0 are always possible by Lemma 3.1.

As a numerical example, we set β = 1/2, σ = 1, γ = 1/2, m = 0.1, and

G = 1.1. The income ratio threshold for the bubble possibility regime (4.4b)

is then w∗
b = 1. Figure 3a shows the equilibrium housing price dynamics when

(a, b) = (95, 105) so that b/a > w∗
b and hence only a fundamental equilibrium

exists. The housing price and rent asymptotically grow at the same rate Gγ,

which is lower than the endowment growth rate G. Furthermore, the distance in

semilog scale between the housing price and rent converges, suggesting that the

price-rent ratio converges. These observations are consistent with Theorem 2.

0 20 40 60 80 100

Time

102

104

106 Aggregate endowment
Housing price
Rent

(a) Fundamental equilibrium.

0 20 40 60 80 100
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104

106 Aggregate endowment
Housing price
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(b) Bubbly equilibrium.

Figure 3: Equilibrium housing price dynamics.

Figure 3b repeats the same exercise for (a, b) = (105, 95) so that b/a < w∗
b

and a bubbly equilibrium exists. The housing price asymptotically grows at the

same rate as endowments, while the rent grows at a slower rate. Consequently,

the price-rent ratio diverges. These observations are consistent with Theorem 3.

We next study how expectations about future incomes affect the current hous-

ing price. In Figure 4a, we consider phase transitions between the fundamental

and bubbly regimes. The economy starts with (a0, b0) = (95, 105) and agents be-

lieve that the endowments grow at rate G and the income ratio bt/at is constant
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at 105/95. At t = 40, the income ratio bt/at unexpectedly changes to 95/105 and

agents believe that this new ratio will persist. Thus the economy takes off to the

bubbly regime. Finally, at t = 80 the income ratio bt/at unexpectedly reverts to

the original value 105/95. Note that as the economy enters the bubbly regime,

rents are hardly affected but the housing price increases and grows at a faster rate,

generating a housing bubble.
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(a) Unexpected income change.
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(b) Expected income change.

Figure 4: Phase transition between fundamental and bubbly regimes.

Figure 4b repeats the same exercise except that the income changes are antic-

ipated. Specifically, agents learn at t = 30 that the income ratio will change to

95/105 (so the young will be relatively rich) starting at t = 40 and will remain so

forever. Similarly, agents learn at t = 70 that the income ratio will revert to 105/95

(so the young will be relatively poor) starting at t = 80 and will remain so forever.

In this case, the economy takes off to the bubbly regime at t = 30 and reenters

the fundamental regime at t = 70 due to rational expectations. We can see that

the housing price jumps up at t = 30 and grows fast even before the fundamentals

change. The housing price already contains a bubble, even if the current income

of the young is relatively low and appears to be incapable of generating bubbles.

This is due to a backward induction argument: if there is a bubble in the future

(so (2.12) holds with strict inequality and the transversality condition fails), there

is a bubble in every period. Once the young become relatively rich at t = 40, the

housing price increases at the same rate as endowments, consistent with Theorem

3. During this phase, Irving Fisher would have been right to proclaim that “prices

have reached what looks like a permanently high plateau”.10 The housing bubble

10The New York Times, October 16, 1929, p. 8. URL: https://www.nytimes.com/1929/10/
16/archives/fisher-sees-stocks-permanently-high-yale-economist-tells-purchasing.

html.
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collapses at t = 70 when agents learn that the young will be relatively poor in the

future, even though the young remain relatively rich until t = 80.

From this analysis, we can draw an interesting implication. During expectation-

driven housing bubbles, housing prices grow faster than rents. The price-income

ratio continues to rise and hence the dynamics may appear unsustainable. More-

over, the greater the time gap between when news of rising incomes arrives (t = 30)

and when incomes actually start to rise (t = 40), the longer the duration of the

seemingly unsustainable dynamics. This expectation-driven housing bubbles and

their collapse may capture realistic transitional dynamics. For instance, Miles

and Monro (2021) emphasize that the decline in the real interest rate has pro-

duced large effects on the evolution of housing prices in the U.K. In our model,

the (real) interest rate is endogenously determined and is closely related to the

income of home buyers. As their income rises and the interest rate falls below the

rent growth rate, a housing bubble necessarily emerges. Mankiw and Weil (1989)

and Kiyotaki, Michaelides, and Nikolov (2011, 2024) stress the importance of ex-

pectation formation of long run aggregate income growth and the interest rate

to account for the fluctuations in housing prices. Our expectation-driven housing

bubbles and their collapse show that even small changes in incomes of home buyers

and/or in their credit availability or the expectation thereof could produce large

swings in housing prices. A critical difference is that housing prices in their papers

reflect fundamentals, while our main focus is to identify the economic conditions

under which housing prices reflect fundamentals or contain bubbles and to study

expectation-driven housing price bubbles.11

5 Welfare

In §3, we saw that housing bubbles emerge as the young get richer. A natural

question is whether housing bubbles are socially desirable or not. It is well known

that the competitive equilibrium of an overlapping generations model need not be

Pareto efficient (Shell, 1971). This is because OLG models feature double infinity

(infinitely many agents and commodities), which could make the present value of

aggregate endowments infinite when the interest rate is low and invalidates the

usual proof of the First Welfare Theorem. On the other hand, it is known in the

literature since McCallum (1987) that the introduction of fiat money or a non-

11Beaudry and Portier (2006) show in a macroeconomic model that news about future techno-
logical opportunities causes a boom in consumption, investment, hours worked, and stock prices.
In their paper, stock prices reflect fundamentals.
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reproducible asset such as land resolves the over-savings problem in OLG models

and eliminates Pareto inefficient equilibria. We overturn this well-known result:

even with the presence of non-reproducible housing, Pareto inefficient equilibria

can arise. We will show that it crucially depends on the old to young income ratio.

Let {(yt, zt, ht)}∞t=0 be an arbitrary allocation with yt, zt > 0 and yt+zt = at+bt.

Since only the young demand housing service, which is perishable, it is obviously

efficient to assign all housing service to the young. Using Assumption 2, the utility

of generation t becomes U(yt, zt+1, 1) = u(c(yt, zt+1))+ v(1), which is a monotonic

transformation of c(yt, zt+1). Therefore the welfare analysis (in terms of Pareto

efficiency) reduces to that of an endowment economy without housing and with

utility function c(y, z) for goods.

Let Gt = at+1/at be the growth rate of young income and wt = bt/at be the

old to young income ratio at time t. Let st = 1− yt/at be the saving rate. Then

the utility of generation t becomes

c(yt, zt+1) = c(at(1− st), at+1(wt+1 + st+1)) = atc(1− st, Gt(wt+1 + st+1)),

which is a monotonic transformation of c(1− st, Gt(wt+1 + st+1)). This argument

shows that the welfare analysis reduces to the case in which the time t aggregate

endowment is 1 + wt, the utility function of generation t is ut(y, z) := c(y,Gtz),

and the proposed allocation is (yt, zt) = (1 − st, wt + st). Since Assumption 1

implies that wt = bt/at is constant for t ≥ T , we can apply the characterization of

Pareto efficiency in OLG models with bounded endowments provided by Balasko

and Shell (1980). We thus obtain the following proposition.

Proposition 5.1 (Characterization of equilibrium efficiency). Suppose Assump-

tions 1–3 hold and let {St}∞t=0 be an equilibrium. Let Gt = at+1/at, wt = bt/at,

and st = St/at. Let

Rt =
cy
cz
(1− st, Gt(wt+1 + st+1)) (5.1)

be the equilibrium risk-free rate and define the Arrow-Debreu price by q0 = 1 and

qt = 1/
∏t−1

s=0Rs for t ≥ 1. Then the following statements are true.

(i) If lim inft→∞Rt > G, then the equilibrium is Pareto efficient.

(ii) If lim supt→∞ st < 1, then the equilibrium is Pareto efficient if and only if

∞∑
t=0

1

Gtqt
=∞. (5.2)
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Proposition 5.1 is an adaptation of Propositions 5.3 and 5.6 of Balasko and

Shell (1980) to a growth economy. If we focus on the long run behavior, then

qt ∼ R−t, so condition (5.2) implies that the equilibrium is efficient if and only if

R ≥ G. We can now apply Proposition 5.1 to determine whether the equilibria in

the housing OLG model are efficient or not.

Theorem 4 (Characterization of equilibrium efficiency). Suppose Assumptions

1–3 hold, γ < 1, and let w = b/a. Then the following statements are true.

(i) If w ≥ w∗
b , any equilibrium is efficient.

(ii) If w < w∗
b , any bubbly long run equilibrium is efficient.

(iii) If w < w∗
b , any fundamental long run equilibrium is inefficient.

Recalling that w < w∗
b implies R < G in the fundamental equilibrium (Figure

2), fundamental equilibria are inefficient whenever R < G. Therefore in Figure 2,

all equilibria in the green region (including the boundary) are efficient, whereas

all equilibria in the gray region (excluding the boundary) are inefficient. This

inefficiency result is at odds with the well-known result of McCallum (1987) that

the introduction of a productive non-reproducible asset eliminates dynamic inef-

ficiency in OLG models. This is because McCallum (1987) implicitly assumed

steady state growth (see his discussion around Endnotes 20 and 21), which does

not hold in general. Theorem 4 implies that policymakers may have a role in guid-

ing expectations and equilibrium selection. (See Barlevy (2018) for a discussion

of policy issues regarding bubbles.)

The intuition for the Pareto inefficiency of fundamental equilibria when w < w∗
b

is the following. In equilibrium, since endowments grow at rateG and the elasticity

of substitution between consumption and housing is 1/γ, rents grow at rate Gγ.

Therefore if the housing price equals its fundamental value, it must also grow at

rate Gγ. Since Gγ < G, the housing price is asymptotically negligible relative

to endowments, so the equilibrium consumption becomes autarkic. Now when

w < w∗
b , the young are richer, so the interest rate becomes so low that it is below

the economic growth rate (see (3.9)). Housing prices are too low to absorb savings

desired by the young. In other words, housing is not serving as a means of savings

with enough returns. In this situation if we consider a social contrivance such

that for each large enough t the young at time t gives the old ϵGt of the good

(hence the old at time t+ 1 receives ϵGt+1 of the good), it is as if agents are able

to save at rate G higher than the interest rate, which improves welfare. Since
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this argument holds for all large enough t, we have a Pareto improvement, which

implies the inefficiency of the fundamental equilibrium. In addition, when the

economy falls into the Pareto inefficient equilibrium with low returns of savings,

the emergence of housing bubbles driven by self-fulfilling expectations increases

returns on savings and absorbs enough savings by raising housing prices, which

restores efficiency. Housing serves as a high return savings vehicle.

6 Concluding remarks

The theory of housing bubbles remains largely underdeveloped due to the fun-

damental difficulty of attaching bubbles to dividend-paying assets (Santos and

Woodford, 1997). In this paper, we have taken the first step towards building

a theory of rational housing bubbles. We have presented a bare-bones model

of housing bubbles with phase transitions that can be used as a stepping stone

for a variety of applications. In concluding our article, we would like to discuss

directions for future research.

For analytical tractability and analysis of long-term housing price movements,

we based our analysis on the classical overlapping generations model, which is

arguably stylized. However, a variety of generalizations are possible, including

Bewley-type models with infinitely-lived agents as in Hirano and Toda (2024b,

§5). We hope that our bare-bones model of housing bubbles will lead to a variety

of extensions both in theoretical and quantitative analyses.

Our theoretical analysis also provides testable implications. First, from the

analysis on the long run behavior, housing bubbles are more likely to emerge

if the incomes (or available funds through credit) of home buyers are higher or

expected to be higher. If the incomes of home buyers rise as economic development

progresses, housing bubbles may naturally arise first by optimistic expectations,

and then inevitably emerge as the optimistic fundamentals materialize. There

is some empirical evidence consistent with this narrative. Gyourko et al. (2013)

document that an increase in the high-income population in a metropolitan area is

associated with high housing appreciation. Barlevy and Fisher (2021) document

that the share of interest-only mortgages is correlated with the housing price

growth rates across regions. Second, if there is a housing bubble on the long run

trend, rents grow at rate Gγ, whereas housing prices grow at rate G, implying

that the price-rent ratio will rise. Hence, an upward trend in the price-rent ratio

could be an indicator for housing bubbles. Figure 1 of Amaral et al. (2024) is

consistent with this narrative, and the bubble detection literature (Phillips and
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Shi, 2020) could be applied. We hope that our theoretical framework may be

useful for empirical researchers to investigate these issues further.

A Proofs

A.1 Proof of lemmas

The following lemma lists a few implications of Assumption 3 that will be repeat-

edly used.

Lemma A.1. Suppose Assumption 3 holds and let g(x) := c(x, 1). Then the

following statements are true.

(i) The first partial derivatives of c are given by

cy(y, z) = g′(y/z) > 0, (A.1a)

cz(y, z) = g(y/z)− (y/z)g′(y/z) > 0 (A.1b)

and are homogeneous of degree 0.

(ii) The second partial derivatives are given by

cyy(y, z) =
1

z
g′′(y/z) < 0, (A.2a)

cyz(y, z) = −
y

z2
g′′(y/z) > 0, (A.2b)

czz(y, z) =
y2

z3
g′′(y/z) < 0. (A.2c)

(iii) Fixing z > 0, the marginal rate of substitution cy/cz is continuously differ-

entiable and strictly decreasing in y and has range (0,∞).

(iv) The elasticity of intertemporal substitution is ε(y, z) = cycz
ccyz

> 0.

Proof. By definition, g(x) = c(x, 1). Therefore g′(x) = cy(x, 1) > 0 and g′′(x) =

cyy(x, 1) < 0 by Assumption 3. Since c is homogeneous of degree 1, we have

c(y, z) = zc(y/z, 1) = zg(y/z). Then (A.1) and (A.2) are immediate by direct

calculation.

Fixing z > 0, define the marginal rate of substitution M(y) = (cy/cz)(y, z).

ThenM is continuously differentiable because c is twice continuously differentiable
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and cy, cz > 0. Since cy, cz are homogeneous of degree 0, we have

M(y) =
cy(y, z)

cz(y, z)
=

cy(y/z, 1)

cz(1, z/y)
. (A.3)

Since cy, cz > 0 and cyy, czz < 0, the numerator (denominator) is positive and

strictly decreasing (increasing) in y. Therefore M is strictly decreasing. Further-

more, since cy(0, z) = cz(y, 0) = ∞, letting y ↓ 0 and y ↑ ∞ in (A.3), we obtain

M(0) =∞ and M(∞) = 0, so M has range (0,∞).

Finally, we derive the elasticity of intertemporal substitution (EIS) ε. Since

c is homogeneous of degree 1, we have c(λy, λz) = λc(y, z). Differentiating both

sides with respect to λ and setting λ = 1, we obtain

ycy + zcz = c. (A.4)

Letting σ = 1/ε and x = y/z, by the chain rule we obtain

σ = −∂ log(cy/cz)(xz, z)

∂ log x
= −xcz

cy

zcyycz − cyzcyz
c2z

= y
cycyz − czcyy

cycz
=

(ycy + zcz)cyz
cycz

=
ccyz
cycz

,

where the last line uses (A.2) and (A.4).

Proof of Lemma 3.1. Let ST = {St}∞t=T be an equilibrium starting at t = T . Set

t = T − 1 and define the function f : [0, aT−1)→ R by f(S) = ST cz − Scy +mcγ,

where c, cy, cz are evaluated at (y, z) = (aT−1 − S, bT + ST ). Then

f ′(S) = −ST cyz − cy + Scyy −mγcγ−1cy < 0

by Lemma A.1. Clearly f(0) = ST cz +mcγ > 0. Define

ũ(y, z) := u(c(y, z)) =


1

1−γ
c(y, z)1−γ if γ ̸= 1,

log(c(y, z)) if γ = 1.
(A.5)

Take any ȳ > 0 and let 0 < y < ȳ. Using the chain rule and the monotonicity of

c, we obtain

ũy(y, z) = c(y, z)−γcy(y, z) > c(ȳ, z)−γcy(y, z)→∞ (A.6)

as y ↓ 0 by Assumption 3. Using the definition of f , we obtain f(S)c−γ = ST ũz −
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Sũy + m. Letting S ↑ aT−1 and using (A.6), we obtain f(S)c−γ → −∞. Hence

by the intermediate value theorem, there exists a unique ST−1 ∈ (0, aT−1) such

that f(ST−1) = 0. Therefore there exists a unique equilibrium ST−1 = {St}∞t=T−1

starting at t = T − 1 that agrees with ST for t ≥ T . The claim follows from

backward induction.

Proof of Lemma 3.2. Take any equilibrium {St}∞t=0. Using (2.8c) and Assumption

2, the rent is

rt = m
cγ

cy
(aGt − St, bG

t+1 + St+1). (A.7)

Using the trivial bound 0 ≤ St ≤ aGt, noting that c is increasing in both arguments

and cy is decreasing (increasing) in y (z) by Lemma A.1, and using the homogeneity

of c and cy, we obtain

rt ≤ m
c(aGt, (a+ b)Gt+1)γ

cy(aGt, bGt+1)
= maγ

c(1, G(1 + w))γ

cy(1, Gw)
Gγt =: r̄Gγt.

Dividing both sides by Gγt and letting t→∞, we obtain lim supt→∞G−γtrt <∞.

We next show

lim inf
t→∞

G−tSt < a. (A.8)

Suppose to the contrary that lim inft→∞G−tSt ≥ a. Using the trivial bound

St ≤ aGt, we obtain limt→∞ G−tSt = a. Take ϵ > 0 such that G−tSt > a − ϵ for

large enough t. Then

rt
Pt

=
rt

St − rt
≤ r̄Gγt

(a− ϵ)Gt − r̄Gγt
∼ r̄

a− ϵ
G(γ−1)t

as t → ∞, so
∑∞

t=1 rt/Pt < ∞ because γ < 1. By the Bubble Characterization

Lemma 2.1, there is a bubble. Using (2.8d), the homogeneity of c, and Assumption

3, the equilibrium interest rate satisfies

Rt =
cy
cz
(at − St, bt+1 + St+1)

=
cy
cz
(a−G−tSt, G(b+G−t−1St+1))→

cy
cz
(0, G(a+ b)) =∞

as t → ∞. Therefore for any R > G, we can take T > 0 such that Rt ≥ R > G

for t ≥ T . Letting qt > 0 be the Arrow-Debreu price, it follows that

qtPt =

(
qT

t−1∏
s=T

1

Rs

)
Pt ≤ qTR

T−taGt = aqTR
T (G/R)t → 0
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as t→∞, so the transversality condition holds and there is no bubble, which is a

contradiction.

Finally, let us show lim supt→∞G−γtrt > 0. Since (A.8) holds, we can take

s̄ < 1 such that St/at ≤ s̄ infinitely often. For such a subsequence, by a similar

argument for establishing lim supt→∞ G−γtrt <∞, we obtain

rt ≥ m
c((a− as̄)Gt, bGt+1)γ

cy((a− as̄)Gt, (a+ b)Gt+1)
= maγ

c(1− s̄, Gw)γ

cy(1− s̄, G(1 + w))
Gγt =: r

¯
Gγt.

Dividing both sides by Gγt and letting t→∞, we obtain the claim.

A.2 Proof of Theorem 2

(i) By Lemma A.1, (cy/cz)(y,G) is strictly decreasing in y and has range (0,∞).

Therefore there exists a unique y satisfying (cy/cz)(y,G) = Gγ. Since by Lemma

A.1 cy, cz are homogeneous of degree 0, we have (cy/cz)(1, G/y) = Gγ, so w∗
f = 1/y

uniquely satisfies (3.7).

(ii) We divide the existence proof into several steps.

Step 1. Derivation of an autonomous nonlinear difference equation.

By (3.8b) and (3.8c), if a fundamental long run equilibrium exists, then St =

Pt + rt asymptotically grows at rate Gγ. Define the detrended variable st :=

St/(a
γGγt). Using the homogeneity of c, cy, cz, (3.3) implies

aγst+1G
γ(t+1)cz − aγstG

γtcy +maγGγtcγ, (A.9)

where c, cy, cz are evaluated at

(y, z) = (1− sta
γ−1G(γ−1)t, G(w + st+1a

γ−1G(γ−1)(t+1))).

Dividing (A.9) by aγGγt and defining the auxiliary variable ξt = (ξ1t, ξ2t) =

(st, a
γ−1G(γ−1)t), it follows that (3.3) can be rewritten as Φ(ξt, ξt+1) = 0, where

Φ : R4 → R2 is given by

Φ1(ξ, η) = Gγη1cz − ξ1cy +mcγ, (A.10a)

Φ2(ξ, η) = η2 −Gγ−1ξ2 (A.10b)

and c, cy, cz are evaluated at (y, z) = (1− ξ1tξ2t, G(w + ξ1,t+1ξ2,t+1)).

Step 2. Existence and uniqueness of a fundamental steady state.
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If a steady state ξ∗f of (A.10) exists, it must be ξ2 = 0. Then the steady state

condition is

Gγscz − scy +mcγ ⇐⇒ s = m
cγ

cy −Gγcz
,

where c, cy, cz are evaluated at (y, z) = (1, Gw). For s > 0, it is necessary and

sufficient that cy/cz > Gγ at (y, z) = (1, Gw). Since by Lemma A.1 cy, cz are

homogeneous of degree 0 and cy/cz is strictly increasing in z, there exists a fun-

damental steady state if and only if w > w∗
f .

Step 3. Existence and local determinacy of equilibrium.

Define Φ by (A.10) and write s = s∗ to simplify notation. Noting that ξ∗f =

(s∗, 0), a straightforward calculation yields

DξΦ(ξ
∗
f , ξ

∗
f ) =

[
−cy −Gγs2cyz + s2cyy − smγcγ−1cy

0 −Gγ−1

]
,

DηΦ(ξ
∗
f , ξ

∗
f ) =

[
Gγcz Gγ+1s2czz −Gs2cyz +Gsmγcγ−1cz

0 1

]
,

where all functions are evaluated at (y, z) = (1, Gw). Since DηΦ is invertible,

we may apply the implicit function theorem to solve Φ(ξ, η) = 0 around (ξ, η) =

(ξ∗f , ξ
∗
f ) as η = ϕ(ξ), where

Dϕ(ξ∗f ) = −[DηΦ]
−1DξΦ =

[
cy

Gγcz
ϕ12

0 Gγ−1

]

and ϕ12 is unimportant. Since cy > Gγcz, the eigenvalues of Dϕ are λ1 =

cy/(G
γcz) > 1 and λ2 = Gγ−1 ∈ (0, 1). Therefore the steady state ξ∗f is a saddle

point. The Hartman-Grobman theorem (Chicone, 2006, Theorem 4.6), which jus-

tifies linearization around the steady state, implies that for any sufficiently large

a > 0 (so that ξ20 = aγ−1 is close to the steady state value 0), there exists a

unique orbit {ξt}∞t=0 converging to the steady state ξ∗f . However, by Assumption

1, choosing a large enough a > 0 is equivalent to starting the economy at large

enough t = T . Lemma 3.1 then implies that there exists a unique equilibrium

converging to the steady state regardless of the early endowments {(at, bt)}T−1
t=0 .

Step 4. The equilibrium objects have the order of magnitude in (3.8) and the hous-

ing price equals its fundamental value.

The order of magnitude (3.8) is obvious from limt→∞G−tSt = 0, the homo-

geneity of c, and Theorem 1. In equilibrium, both the housing price Pt and rent rt
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asymptotically grow at rate Gγ. Therefore
∑∞

t=1 rt/Pt =∞, so there is no bubble

by Lemma 2.1.

(iii) We verify the assumptions of the Bubble Necessity Theorem in Hirano and

Toda (2024b), henceforth HT. Take any equilibrium, and consider an endowment

economy without housing service in which agents have utility c(y, z), the income

of the young is ãt = at−rt, the income of the old is bt, and the asset pays dividend

rt. Assumption 4.1 of HT is clearly satisfied. Since at = aGt, by Lemma 3.2 we

have limt→∞ ãt+1/ãt = G and limt→∞ bt/ãt = w, so Assumption 4.2 of HT holds.

Since c(y, z) is homogeneous of degree 1, Assumption 4.3 of HT clearly holds. By

the remark after Lemma 3.2, the asymptotic rent growth rate is Gd := Gγ. Finally,

since by Lemma A.1 cy/cz is strictly decreasing in y (hence strictly increasing in

z), if w < w∗
f , the autarky interest rate satisfies

R =
cy
cz
(1, Gw) <

cy
cz
(1, Gw∗

f ) = Gγ = Gd < G.

Therefore the bubble necessity condition (2.14) is satisfied. By Theorem 2 of HT,

there exist no fundamental equilibria, and in fact, all equilibria are bubbly with

lim inft→∞ Pt/at > 0.

A.3 Proof of Theorem 3

We divide the proof into several steps.

Step 1. Existence and uniqueness of a bubbly steady state.

The proof of the existence and uniqueness of w∗
b satisfying (3.9) is identical to

Theorem 2(i). Since G > 1 and γ < 1, it follows from (3.7) and (3.9) that

(cy/cz)(1, Gw∗
f ) = Gγ < G = (cy/cz)(1, Gw∗

b ).

Since cy/cz is strictly increasing in z, we obtain w∗
f < w∗

b .

The steady state condition is Gcz − cy = 0, where cy, cz are evaluated at

(y, z) = (1 − s,G(w + s)). Using the homogeneity of cy, cz, this condition is

equivalent to (cy/cz)(y,G) = G for y = 1−s
w+s

, so the bubbly steady state is uniquely

determined by
1− s

w + s
=

1

w∗
b

⇐⇒ s =
w∗

b − w

w∗
b + 1

. (A.11)

Since s ∈ (0, 1), a necessary and sufficient condition for the existence of a bubbly

steady state is w < w∗
b .
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Step 2. Order of magnitude of equilibrium objects and asset pricing implications.

In any equilibrium converging to the bubbly steady state, by definition we have

St ∼ asGt, where s = s∗ is the bubbly steady state. Therefore (3.10a) follows from

(2.8a). Using (2.8c) and Assumption 2, the rent is

rt =
v′(1)

u′(c)cy
= m

c(at − St, bt+1 + st+1)
γ

cy(at − St, bt+1 + st+1)
. (A.12)

Substituting (3.10a) into (A.12) and using the fact that c is homogeneous of degree

1 and cy is homogeneous of degree 0, we obtain

rt ∼ maγ
c(1− s,G(w + s))γ

cy(1− s,G(w + s))
Gγt,

which is (3.10c). Since rt asymptotically grows at rate Gγ < G because γ < 1, we

have rt/St → 0, so Pt = St − rt ∼ St, which is (3.10b). Finally, (3.10d) follows

from (2.3), (3.10b), and (3.10c).

Since the housing price Pt and rent rt asymptotically grow at rates G and Gγ <

G, respectively, the rent-price ratio rt/Pt decays geometrically at rate Gγ−1 < 1.

Therefore
∑∞

t=1 rt/Pt <∞, so there is a housing bubble by Lemma 2.1.

Step 3. Generic existence of equilibrium.

Define Φ by (3.5) and write s = s∗ to simplify notation. Noting that ξ∗b =

(s∗, 0), a straightforward calculation yields

DξΦ(ξ
∗
b , ξ

∗
b ) =

[
−Gscyz − cy + scyy mcγ

0 −Gγ−1

]
,

DηΦ(ξ
∗
b , ξ

∗
b ) =

[
Gcz +G2sczz −Gscyz 0

0 1

]
,

where all functions are evaluated at (y, z) = (1−s,G(w+s)). If DηΦ is invertible,

we may apply the implicit function theorem to solve Φ(ξ, η) = 0 around (ξ, η) =

(ξ∗b , ξ
∗
b ) as η = ϕ(ξ), where

Dϕ(ξ∗b ) = −[DηΦ]
−1DξΦ =

[
ϕ11 ϕ12

0 Gγ−1

]

with

ϕ11 =
Gscyz + cy − scyy

Gcz +G2sczz −Gscyz
=:

e

d
(A.13)
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and ϕ12 is unimportant. ThereforeDϕ(ξ∗b ) has two real eigenvalues; one is λ1 := ϕ11

and the other is λ2 := Gγ−1 ∈ (0, 1) because G > 1 and γ ∈ (0, 1).

Let us estimate λ1. Using (A.2), the numerator of (A.13) is

e = cy + s(Gcyz − cyy) = cy + s

(
−G y

z2
g′′ − 1

z
g′′
)

= cy − s
Gy + z

z2
g′′ = cy −

s(1 + w)

G(w + s)2
g′′,

where we have used (y, z) = (1− s,G(w + s)). Similarly, the denominator is

d = Gcz +Gs(Gczz − cyz) = Gcz +Gs

(
G
y2

z3
g′′ +

y

z2
g′′
)

= Gcz +Gs
y(Gy + z)

z3
g′′ = Gcz +

s(1− s)(1 + w)

G(w + s)3
g′′.

At the steady state, we have Gcz = cy = g′, so

e = g′ − s(1 + w)

G(w + s)2
g′′, d = g′ +

s(1− s)(1 + w)

G(w + s)3
g′′. (A.14)

Since s ∈ (0, 1) and g′′ < 0, clearly e > d.

We now study each case by the magnitude of d.

Case 1: d > 0. If d > 0, then 0 < d < e and hence λ1 = e/d > 1. Since

λ1 > 1 > λ2 > 0, the steady state ξ∗b is a saddle point. The existence and

uniqueness of an equilibrium path converging to the steady state ξ∗b follows by the

same argument as in the proof of Theorem 2.

Case 2: d = 0. If d = 0, the implicit function theorem is inapplicable and we

cannot study the local dynamics by linearization.

Case 3: d ∈ (−e, 0). If −e < d < 0, then λ1 = e/d < −1. Therefore ξ∗b is a

saddle point and there exists a unique equilibrium by the same argument as in the

case d > 0.

Case 4: d = −e. If d = −e, then λ1 = e/d = −1 and the Hartman-Grobman

theorem is inapplicable.

Case 5: d < −e. If d < −e, then λ1 = e/d ∈ (−1, 0). Therefore ξ∗b is a sink and

there exist a continuum of equilibria by the same argument as in the case d > 0.

In summary, there exists an equilibrium converging to the bubbly steady state

except when d = 0 or d = −e. Therefore for generic G and w, there exists an

equilibrium.
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A.4 Proof of propositions

Proof of Proposition 3.1. We have already proved the uniqueness of the funda-

mental long run equilibrium if w > w∗
f in the proof of Theorem 2.

Suppose w < w∗
b . Let s =

w∗
b−w

w∗
b+1

be the bubbly steady state and (y, z) =

(1 − s,G(w + s)). By the proof of Theorem 3, there exists a unique equilibrium

converging to the bubbly steady state if d ∈ (−e, 0) ∪ (0,∞), where d, e are as in

(A.14). We rewrite this condition using the EIS defined by ε = cycz
ccyz

. Using (A.1),

(A.2), (A.4), and Gcz = cy at the steady state, we obtain

ε =
cycz

(ycy + zcz)cyz
=

cy
(Gy + z)cyz

= − g′

g′′
G(w + s)2

(1− s)(1 + w)
.

Therefore (A.14) can be rewritten as

e =

(
1 +

1

ε

s

1− s

)
g′, d =

(
1− 1

ε

s

w + s

)
g′. (A.15)

Since g′ > 0, we have

d = 0 ⇐⇒ ε =
s

w + s
=

1− w/w∗
b

1 + w
,

e+ d > 0 ⇐⇒ ε >
s(1− w − 2s)

2(1− s)(w + s)
=

1− w∗
b

2

1− w/w∗
b

1 + w
.

Therefore the sufficient condition (3.12) follows.

Proof of Proposition 4.1. By the discussion before the proposition, the available

funds of the young at time t is ãt = at + ℓt = (a+ ℓ)Gt and the available funds of

the old at time t is b̃t = bt − Gℓt−1 = (b − ℓ)Gt at interest rate G. Therefore by

Theorem 3, a bubbly long run equilibrium exists if

0 <
b− ℓ

a+ ℓ
< w∗

b ⇐⇒ w >
ℓ

a
>

w − w∗
b

w∗
b + 1

,

which is (4.1). Under this condition, because the old to young available funds

ratio is w̃ := b−λa
a+λa

= w−λ
1+λ

, using (3.10b) we obtain the asymptotic housing price

Pt ∼ a(1 + λ)
w∗

b − w̃

w∗
b + 1

Gt = a
(1 + λ)w∗

b − (w − λ)

w∗
b + 1

Gt,

which simplifies to (4.2).

Proof of Proposition 5.1. Let ut(y, z) = c(y,Gtz) be the utility function in the de-
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trended economy. Then the implied gross risk-free rate at the proposed allocation

(yt, zt+1) = (1− st, wt+1 + st+1) is

R̃t :=
uty

utz

(1− st, wt+1 + st+1) =
1

Gt

cy
cz
(1− st, wt+1 + st+1) =

Rt

Gt

.

Therefore the Arrow-Debreu price in the detrended economy is q̃t =
∏t−1

s=0(Gs/Rs).

We now apply the results of Balasko and Shell (1980). If lim inft→∞Rt > G,

then by Assumption 1 we can take R > G such that Rt ≥ R > G = Gt for t large

enough. Then Gt/Rt ≤ G/R < 1, so we have limt→∞ q̃t = 0. Proposition 5.3 of

Balasko and Shell (1980) then implies that the equilibrium is efficient.

We next consider the case s̄ := lim supt→∞ st < 1. We verify each assumption

of Proposition 5.6 of Balasko and Shell (1980). Since the partial derivatives of

c can be signed as in Lemma A.1, the Gaussian curvature of indifference curves

are strictly positive. Since the time t aggregate endowment of the detrended

economy is 1+wt, which is bounded by Assumption 1, it follows that the Gaussian

curvature of indifference curves within the feasible region (weakly preferred to

endowments) is uniformly bounded and bounded away from 0 because 1− s̄ > 0.

Therefore assumptions (a) and (b) hold. Since s̄ < 1 and Gt, wt+1 are bounded,

the gross risk-free rate (5.1) can be uniformly bounded from above and away from

0. Therefore assumption (c) holds. Assumption (d) holds because wt is bounded,

and assumption (e) holds because lim inft→∞(1 − st) = 1 − s̄ > 0. Since all

assumptions are verified, Proposition 5.6 of Balasko and Shell (1980) implies that

the equilibrium is efficient if and only if

∞ =
∞∑
t=0

1

q̃t
=

∞∑
t=0

1

qt

t−1∏
s=0

(1/Gs). (A.16)

Since by Assumption 1 we have Gt = G for large enough t, (A.16) is clearly

equivalent to (5.2).

A.5 Proof of Theorem 4

Suppose γ < 1 and consider any equilibrium. Using (5.1), Assumption 1, Lemma

A.1, and st ≥ 0, we obtain

Rt =
cy
cz
(1− st, Gt(wt+1 + st+1)) ≥

cy
cz
(1, Gw) (A.17)
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for large enough t. If w ≥ w∗
b , then (A.17), Lemma A.1, and (3.9) imply

Rt ≥
cy
cz
(1, Gw) ≥ cy

cz
(1, Gw∗

b ) = G.

Since Rt ≥ G eventually, the sequence 1/(Gtqt) =
∏t−1

s=0(Rs/G) is positive and

bounded away from 0. Therefore (5.2) holds, and the equilibrium is efficient.

Suppose w < w∗
b and take any bubbly equilibrium converging to the bubbly

steady state. By (3.10b), we can take p > 0 such that Pt ≥ pGt for large enough

t. Then

Gtqt =
1

p
qtpG

t ≤ 1

p
qtPt ≤

1

p
P0

using (2.10). Since Gtqt is positive and bounded above, 1/(Gtqt) is positive and

bounded away from 0, so (5.2) holds and the equilibrium is Pareto efficient.

Suppose w < w∗
b and take the (unique) fundamental equilibrium. Then by

Theorem 2 we have st := St/(aG
t) → 0. Then (5.1), st → 0, and w < w∗

b imply

that

lim
t→∞

Rt =
cy
cz
(1, Gw) <

cy
cz
(1, Gw∗

b ) = G.

Therefore we can take R < G and T > 0 such that Rt ≤ R < G for t ≥ T . Since

1

Gtqt
=

t−1∏
s=0

(Rs/G) ≤ 1

GT qT
(R/G)t−T ,

the sum
∑∞

t=0 1/(G
tqt) converges to a finite value, so by Proposition 5.1(ii) the

equilibrium is inefficient.
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Online Appendix

B Elasticity of substitution at most 1

The analysis in the main text focused on the empirically relevant case of γ <

1 (Footnote 4), that is, the elasticity of substitution between consumption and

housing 1/γ exceeds 1. For completeness, we present an analysis for the case

γ ≥ 1.

B.1 Elasticity of substitution below 1

We first consider the case γ > 1, so the elasticity of substitution 1/γ is less

than 1. In this case we cannot study the local dynamics around the steady state

by linearization because the implicit function theorem is not applicable due to

a singularity. Nevertheless, we may characterize the asymptotic behavior of all

equilibria as follows.

Proposition B.1 (Equilibrium with γ > 1). Suppose Assumptions 1–3 hold,

γ > 1, and let w = b/a. Then the following statements are true.

(i) In any equilibrium, the equilibrium objects satisfy

lim
t→∞

(yt, zt)/(aG
t) = (0, 1 + w), (B.1a)

lim
t→∞

Pt/(aG
t) = 0, (B.1b)

lim
t→∞

rt/(aG
t) = 1, (B.1c)

lim
t→∞

Rt =∞. (B.1d)

(ii) There is no housing bubble and the price-rent ratio converges to 0.

(iii) Any equilibrium is Pareto efficient.

Proof. Let ũ be defined by (A.5). Then the equilibrium dynamics (3.4) can be

written as

Gst+1ũz = stũy −maγ−1G(γ−1)t, (B.2)

where ũy, ũz are evaluated at (y, z) = (1−st, G(w+st+1)). Define s
¯
= lim inft→∞ st.

Since st ∈ (0, 1), we have 0 ≤ s̄ ≤ 1. Take a subsequence of (st, st+1) such that
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(st, st+1)→ (s
¯
, s̃) for some s̃. Letting t→∞ in (B.2) along this subsequence, we

obtain

0 ≤ Gs̃ũz(1− s
¯
, G(w + s̃)) = s

¯
ũy(1− s

¯
, G(w + s̃))−∞. (B.3)

Noting that ũy(0, z) =∞ by (A.6), the only possibility for (B.3) to hold is s
¯
= 1.

Then st → 1, and

lim
t→∞

St

aGt
= lim

t→∞
st = 1. (B.4)

Noting that yt = aGt − St and zt = bGt + St, we obtain (B.1a). Using (2.7) and

(2.8c), we obtain

rt = St − St+1
Uz

Uy

= St − St+1
cz
cy
, (B.5)

where cy, cz are evaluated at (y, z) = (1− st, G(w+ st+1)). Dividing both sides of

(B.5) by aGt, letting t→∞, and using Lemma A.1, we obtain

lim
t→∞

rt
aGt

= 1−G · 0 = 1,

which is (B.1c). Since St = Pt + rt, we immediately obtain (B.1b). Finally, the

risk-free rate is

Rt =
St+1

Pt

= G
St+1/(aG

t+1)

(St − rt)/(aGt)
→ G

1

1− 1
=∞,

which is (B.1d).

Since Pt ≤ St ∼ aGt grows at rate at most G and the risk-free rate diverges to

infinity (hence eventually exceeds the housing price growth rate), the transversality

condition holds and there is no housing bubble. Using (B.1b) and (B.1c), we

obtain Pt/rt → 0, so the price-rent ratio converges to 0. The Pareto efficiency of

equilibrium follows from (B.1d) and Proposition 5.1(i).

B.2 Elasticity of substitution equal to 1

We next consider the case γ = 1 (log utility), which is commonly used in applied

theory. When u(c) = log c, the difference equation (3.4) reduces to

Gst+1cz = stcy −mc, (B.6)

which is an autonomous nonlinear implicit difference equation. The following

theorem shows that this difference equation admits a unique steady state, which

defines a balanced growth path equilibrium.
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Theorem 5 (Equilibrium with γ = 1). Suppose Assumptions 1–3 hold, γ = 1,

and let m = v′(1) and w = b/a. Then the following statements are true.

(i) There exists a unique steady state s∗ ∈ (0, 1) of (B.6), which depends only

on G,w, c,m.

(ii) There exists a unique balanced growth path equilibrium. The equilibrium

objects satisfy

(yt, zt) = (a(1− s∗)Gt, a(w + s∗)Gt), (B.7a)

Pt = a
Gs∗cz
cy

Gt, (B.7b)

rt = ma
c

cy
Gt, (B.7c)

Rt =
cy
cz

> G, (B.7d)

where c, cy, cz are evaluated at (y, z) = (1− s∗, G(w + s∗)).

(iii) In the equilibrium (B.7), there is no housing bubble and the price-rent ratio

Pt/rt is constant.

(iv) Any equilibrium converging to the balanced growth path is Pareto efficient.

(v) If in addition the elasticity of intertemporal substitution satisfies

1

ε(y, z)
:=

ccyz
cycz

<
1 + w/s∗

1 + w

(
1 +Gw

cz
cy

)
(B.8)

at (y, z) = (1− s∗, G(w + s∗)), then the equilibrium is locally determinate.

Proof. We divide the proof into several steps.

Step 1. Existence and uniqueness of s∗.

Letting st = st+1 = s in (B.6) and rearranging terms, we obtain the steady

state condition

Gscz = scy −mc ⇐⇒ Gcz − cy
c

+
m

s
= 0, (B.9)

where c, cy, cz are evaluated at (y, z) = (1− s,G(w+ s)). Define f : (0, 1)→ R by

f(s) := log c(1− s,G(w + s)) +m log s.
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Then (B.9) is equivalent to f ′(s) = 0. Since s 7→ (1 − s,G(w + s)) is affine, the

logarithmic function is increasing and strictly concave, and m > 0, Theorem 4

of Berge (1963, p. 191) implies that f is strictly concave. Clearly f ′(0) = ∞.

Letting ũ(y, z) = log c(y, z), an argument similar to the derivation of (A.6) shows

ũy(0, z) =∞. Therefore f ′(1) = −∞. Since f is strictly concave, it has a unique

global maximum s∗ ∈ (0, 1), which satisfies f ′(s∗) = 0 and hence (B.9). Clearly

this s∗ depends only on G,w, c,m.

Step 2. Existence, uniqueness, and characterization of a balanced growth path.

In any balanced growth path equilibrium, we must have St = as∗Gt for some

s∗ ∈ (0, 1). The previous step establishes the existence and uniqueness of s∗. The

consumption allocation (B.7a) follows from (2.8a), and Assumption 1. The rent

(B.7c) follows from (2.8c), Assumption 2, and Lemma A.1. Using (B.7c) and

(B.9), we obtain the housing price

Pt = St − rt = aGt

(
s−m

c

cy

)
= aGt scy −mc

cy
= aGtGscz

cy
,

which is (B.7b). Using (B.9), we obtain the gross risk-free rate

Rt =
St+1

Pt

=
asGt+1

aGs(cz/cy)Gt
=

cy
cz

= G+
mc

scz
> G,

which is (B.7d). Clearly the price-rent ratio is constant by (B.7b) and (B.7c).

Since R > G, we obtain

lim
T→∞

R−TPT = lim
T→∞

a
Gscz
cy

(G/R)T = 0,

so the transversality condition holds and there is no housing bubble. The Pareto

efficiency of equilibrium follows from (B.7d) and Proposition 5.1(i).

Step 3. Sufficient condition for local determinacy of equilibrium.

Define the function Φ : (0, 1)× (0,∞)→ R by

Φ(ξ, η) = Gηcz − ξcy +mc, (B.10)

where c, cy, cz are evaluated at (y, z) = (1−ξ,G(w+η)). Then (B.6) can be written

as Φ(st, st+1) = 0 and Φ(s, s) = 0 holds, where we write s = s∗. Assuming that

the implicit function theorem is applicable and partially differentiating (B.10), we
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can solve the local dynamics as st+1 = ϕ(st), where

ϕ′(s) = −Φξ

Φη

= − −Gscyz + scyy − (1 +m)cy
−Gscyz +G2sczz +G(1 +m)cz

=
(1 +m)cy +Gscyz − scyy

G(1 +m)cz −Gscyz +G2sczz
=:

e

d
. (B.11)

By exactly the same argument as in the proof of Theorem 3, we obtain

e = (1 +m)cy −
s(1 + w)

G(w + s)2
g′′,

d = G(1 +m)cz +
s(1− s)(1 + w)

G(w + s)3
g′′.

If ϕ′(s) > 1, then s = s∗ is a source and hence the balanced growth path equilib-

rium is locally determinate.

We now seek to derive a sufficient condition for local determinacy. Since g′′ < 0,

we have

e− d > (1 +m)(cy −Gcz) = m(1 +m)
c

s
> 0,

where we have used (B.9). Therefore if Φη = d > 0, then ϕ′(s) = e/d > 1 and we

have local determinacy.

Using (B.11), (A.2), and σ := ccyz
cycz

, the sign of Φη becomes

sgn(Φη) = sgn

(
−Gy + z

z
scyz + (1 +m)cz

)
= sgn

(
−Gy + z

z
sσ

cycz
c

+ (1 +m)cz

)
= sgn

(
−Gy + z

z
sσcy + (1 +m)c

)
.

Using (A.4) and (B.9), we obtain

sgn(Φη) = sgn

(
−Gy + z

z
sσcy + ycy + zcz + scy −Gscz

)
.

Substituting (y, z) = (1− s,G(w+ s)), dividing by cy > 0, and rearranging terms,

we obtain

sgn(Φη) = sgn

(
−G(1 + w)

G(w + s)
sσ + 1 +Gw

cz
cy

)
.
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Therefore we have Φη > 0 if and only if

1

ε
= σ <

1 + w/s

1 + w

(
1 +Gw

cz
cy

)
,

which is exactly (B.8).

C Stylized facts

This appendix presents stylized facts regarding housing prices and rents.

We use the regional housing price data from Realtor.com, which provides

detailed monthly data at the county level since July 2016.12 We use the median

listing price in July because the sales volume tends to be higher in spring and

summer.

Regional rents are the Fair Market Rents (FMRs) from the U.S. Department

of Housing and Urban Development (HUD).13 FMRs are defined by estimates of

40th percentile gross rents for standard quality units within a metropolitan area or

non-metropolitan county and are available for housing units with 0–4 bedrooms.

We use the values for three bedrooms.

The number of housing units is “All housing units” in Quarterly Estimates

of the Total Housing Inventory for the United States from the Census Bureau,14

which is available since 1965.

Figure 5 shows the time series of U.S. real GDP and the total number of

housing units, where we normalize the values in 1965 to 1. We can see that GDP

growth is faster, justifying our assumption G > 1 in the model.

Let rit and Pit be the rent and housing price in county i in year t constructed

above. Figure 6 plots logPit against log rit for the year 2023 and estimates

logPit = α + β log rit + ϵit, i = 1, . . . , I

by ordinary least squares (OLS) regression. The results for other years are all

similar. Although this picture only documents correlation, the coefficient β̂ =

1.46 > 1 corresponds to 1/γ in the model.

12https://www.realtor.com/research/data/
13https://www.huduser.gov/portal/datasets/fmr.html
14https://www.census.gov/housing/hvs/data/histtab8.xlsx
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Figure 5: Growth of GDP and housing units.
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Figure 6: Rent and housing price across counties.
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