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Abstract

Economic growth slows for an extended period after a financial crisis. We construct

a model in which a one-time buildup of debt can depress the economy persistently, even

when there is no financial technology shock. We consider the debt dynamics of firms

under endogenous borrowing constraints, with lenders having an option to forgive

defaulting borrowers. A firm is referred to as debt-ridden when it owes maximum

debt and pays all income in each period as an interest payment. In the deterministic

case, a debt-ridden firm continues inefficient production permanently. Further, if the

initial debt exceeds a certain threshold, the firm intentionally chooses to increase

borrowing and, thus, to become debt-ridden. The emergence of a substantial number

of debt-ridden firms lowers economic growth persistently. A debt restructuring policy

or the relief of debt-ridden borrowers from excessive debt may be able to restore their

efficiency and economic growth.
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1 Introduction

The decade after a financial crisis tends to be associated with low economic growth (Rein-

hart and Rogoff, 2009; Reinhart and Reinhart, 2010). A widely held concern, which has

been growing in the aftermath of the Great Recession of 2007–2012, is the hypothesis of

secular stagnation (Summers, 2013), namely that the US and European economies could

stagnate persistently in the coming decades. Further, financial constraints were tightened

both during and after the Great Recession (e.g., Altavilla, Darracq Paries and Nico-

letti, 2015). However, which factors caused the tightening of these financial constraints

and whether this tightening can cause a persistent slowdown in economic growth remain

unclear.

In this study, we propose a theoretical model in which the buildup of debt tightens

borrowing constraints and lowers growth persistently, even if there is no technology shock.

Our theory demonstrates that inefficiency due to the buildup of debt can continue per-

sistently, which is consistent with the debt supercycle hypothesis (Rogoff, 2016; Lo and

Rogoff, 2015), whereas existing theories of secular stagnation posit that a permanent or

persistent technological shock causes persistent stagnation (see Eggertsson and Mehrotra,

2014; Gordon, 2012). Thus, our theory provides a rationale for heterodox policy recom-

mendations to restore economic growth, that is, government interventions that facilitate

partial debt forgiveness in the private sector (see Geanakoplos, 2014).

Our theoretical contribution to the literature is to show that a one-time buildup of debt

can persistently tighten borrowing constraints and cause the aggregate inefficiency that

can continue indefinitely. In standard models of financial frictions such as Carlstrom and

Fuerst (1997) and Bernanke, Gertler and Gilchrist (1999), the buildup of debt generates

inefficiency only for a few periods. Jermann and Quadrini (2012) and Albuquerque and

Hopenhayn (2004) show in their models of long-term debt that inefficiency due to the

buildup of debt can continue, but still for finite periods. Our result that inefficiency can

continue indefinitely thus contrasts sharply with the findings in the literature and suggests

new causality from a financial crisis to persistent stagnation.

Recent empirical studies show that large corporate debt has a negative effect on GDP

growth (e.g., Cecchetti, Mohanty and Zampolli, 2011; Mian, Sufi and Verner, 2017).

Giroud and Mueller (2017) find that the establishments of more highly leveraged firms

experienced larger employment losses during the Great Recession in the United States.

Duval, Hong and Timmer (2017) also show that highly leveraged firms experienced large

and persistent drops in total factor productivity (TFP) growth in the aftermath of the

Great Recession. These findings seem to be consistent with our hypothesis.

Our model of financial contracts has endogenous borrowing constraints that arise be-

cause of borrowers’ lack of commitment and lenders can choose whether to liquidate de-
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faulting firms or forgive them. The market is incomplete, and debt and equity are the only

available financial instruments. Firms cannot relax the borrowing constraints by raising

funds from outside investors because of market frictions that prevent them from issuing

new equity quickly. There is a distinction between inter-period and intra-period loans

in this economy. The borrowing constraint binds more tightly as the initial amount of

inter-period debt increases. As the borrowing constraint tightens, firms cannot raise suf-

ficient intra-period debt for working capital, which leads to inefficient production. When

the initial amount of inter-period debt reaches the maximum amount, firms fall into a

debt-ridden state in which they can repay only the interest even though they pay all of

their income in each period. As a result, the amount of debt does not decrease. Therefore,

debt-ridden firms continue inefficient production permanently (in the deterministic case).

Moreover, when the initial debt exceeds a certain threshold, a firm may choose to increase

borrowing and intentionally become debt-ridden because the gain from additional borrow-

ing can exceed the inefficiency of the additional tightening of the borrowing constraint.

This result implies that an overly indebted firm may rationally choose to become and,

then, stay debt-ridden. Although our model is a simple modification of that of Jermann

and Quadrini (2012), there is a significant difference in that the debt-ridden state arises

naturally in our model, whereas it does not exist in Jermann and Quadrini (2012). This

distinction is due to a difference in settings: a portion of output can serve as the collateral

for borrowing in our model, whereas it cannot in Jermann and Quadrini’s model.

We embed the model of firms’ debt into a general equilibrium model of endogenous

growth in which productivity grows as a result of firms’ R&D activities. If a substan-

tial number of firms become debt-ridden, their borrowing capacities decline persistently.

Tighter borrowing constraints discourage firms’ R&D activities and, thus, the entries of

new firms. Then, productivity stagnates persistently, as does the labor wedge.1 These

features of our model seem to be consistent with the facts observed in persistent reces-

sions after financial crises. See, among many others, Chari, Kehoe and McGrattan (2007)

for the Great Depression and Brinca, Chari, Kehoe and McGrattan (2016) for the Great

Recession.

In our model, persistent inefficiency is not caused by technological shocks, whereas

in existing models, persistent recessions are usually caused by persistent technological

shocks. See, for example, Christiano, Eichenbaum and Trabandt (2015) and Bianchi,

Kung and Morales (2019) for the Great Recession, Cole and Ohanian (2004) for the Great

Depression, and Kaihatsu and Kurozumi (2014) for the lost decade of Japan. Many authors

have argued that persistent shocks that cause persistent recessions are exogenous changes

in the financial technology parameters, such as the risk shock in Christiano, Motto and

1The labor wedge, 1− τL, represents market frictions that manifest as an imaginary labor income tax

with tax rate τL in the literature on business cycle accounting (Chari, Kehoe and McGrattan, 2007).
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Rostagno (2014) and the financial shock in Jermann and Quadrini (2012). In this study,

we consider an exogenous one-time redistribution of wealth from borrowers to lenders that

leads to the buildup of debt, whereas there is no change in the technological parameters.2

One example of such a redistribution shock is the boom and bust of the asset-price bubble,

which changes the value of collateral for debt.

Thus, our model implies a policy recommendation distinct from those of most existing

models in which exogenous shocks on technological parameters cause persistent recessions

and the policymaker can only mitigate these shocks by setting accommodative monetary

and fiscal policies or by designing ex-ante financial regulations. In our model, debt re-

structuring or debt forgiveness for overly indebted borrowers restores aggregate efficiency

and enhances economic growth. Note that restoring economic growth does not necessitate

the physical liquidation of debt-ridden firms but rather their relief from excessive debt.

This argument is in line with the policy recommendations of partial debt forgiveness by

Geanakoplos (2014).

Intuitive example: To illustrate how persistent inefficiency can arise in our model,

we consider a simple model of a firm that produces output f(σ) from input σ, where

f ′(σ) > 0 and f ′′(σ) < 0. The first-best solution that maximizes the social surplus,

f(σ)− σ, is attained by σ∗, where σ∗ solves f ′(σ) = 1. This firm initially holds debt b−1

and then borrows new debt b
R , where R is the loan rate. Thus, the firm’s cash flow is

π = f(σ) − σ − b−1 +
b
R . Here, we assume that b−1 is given exogenously, and the firm

chooses b such that π ≥ 0. The dividend π cannot be negative because current equity-

holders are protected by limited liability. The firm chooses σ and b to maximize f(σ)−σ,

subject to the non-negativity constraint, π ≥ 0, and the borrowing constraint

σ ≤ ϕf(σ) + max

{
ξS − b

R
, 0

}
,

where ϕ and ξS are constants that satisfy 0 ≤ ϕ < 1 and ξS > 0. This borrowing

constraint is derived in Section 2. Considering the Lagrangean L(σ, µ) = f(σ) − σ +

µ
[
ϕf(σ)− σ +max{ξS − b

R , 0}
]
, the first-order condition (FOC) is equal to

f ′(σ) =
1 + µ

1 + ϕµ
.

When the Lagrange multiplier with respect to the borrowing constraint is positive (µ > 0),

the above FOC implies that f ′(σ) > 1, which means that the input is smaller than σ∗

and production becomes inefficient. To make this example interesting, we assume that

the constants ϕ and ξS satisfy σ∗ < ϕf(σ∗) + ξS. If b
R is smaller than ξS, the borrowing

2Kobayashi and Shirai (2016) analyze the effects of wealth redistribution in a model of a borrowing-

constrained economy.
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constraint becomes

σ ≤ ϕf(σ) + ξS − b

R
. (1)

This borrowing constraint is qualitatively similar to those in Jermann and Quadrini (2012)

and Kiyotaki and Moore (1997). If b is small, such that 0 ≤ b ≤ b∗, where b∗ = [ϕf(σ∗)−
σ∗+ξS]R, then the first-best outcome is achieved: σ = σ∗ and µ = 0. If b∗ < b < RξS, the

borrowing constraint binds tightly (µ > 0) and production becomes inefficient. However,

in the dynamic model, the firm repays as much of its debt as possible to reduce b and

relax the borrowing constraint. Thus, when the borrowing constraint is (1), inefficiency

is temporary. This result is similar to those of existing models such as Bernanke et al.

(1999). When debt b
R is larger than ξS, the borrowing constraint becomes

σ ≤ ϕf(σ). (2)

We define σz as the solution to σ = ϕf(σ). Assuming that ϕ is sufficiently small, we posit

that σz < σ∗ and production is inefficient. The Lagrange multiplier µz is calculated from

f ′(σz) =
1+µz

1+ϕµz
(> 1). We can show that inefficiency can continue permanently if b−1 is

sufficiently large, as follows. We define bz = f(σz)−σz

1− 1
R

and assume that bz
R > ξS. Suppose

that b−1 = bz. Then, we can show as follows that b = bz and σ = σz. On the premise that

σ = σz, cash flow is π = f(σz)−σz − b−1+
b
R . Then, b must be chosen such that b ≥ bz to

satisfy π ≥ 0. Given b ≥ bz, it holds in turn that σ = σz. Therefore, in the dynamic model,

once the debt to be repaid in the current period (b−1) is equal to bz, the debt to be repaid

in the next period (b) must also be equal to bz, and this chain continues forever. Then,

the borrowing constraint continues to be (2), and production is permanently inefficient

(σ = σz). In summary, when b−1 < bz, inefficiency continues temporarily, but it continues

permanently if b−1 = bz. Permanent inefficiency arises from the accumulation of debt, not

from changes in financial or production technology. A caveat is that the constraint π ≥ 0

is necessary for permanent inefficiency. This constraint means that equity finance from

the incumbent firm owner or outside investors is infeasible because of unspecified market

frictions.

Related literature: Our theory is related to the literature on debt overhang, such as

Myers (1977), Krugman (1988), and Lamont (1995). Debt overhang is an inefficiency that

is typically due to the coordination failure between incumbent lenders and new lenders,

whereas inefficiency is generated in our model even though incumbent lenders also provide

new money. Debt overhang typically causes inefficiency in the short run. However, in

our study, inefficiency can continue permanently. Our study is also closely related to the

work of Caballero, Hoshi and Kashyap (2008). They analyze “zombie lending,” defined

as the provision of a de facto subsidy from banks to unproductive firms, and argue that

5
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congestion by zombie firms hinders the entry of more productive firms and lowers aggregate

productivity. In this study, we make the complementary point to their argument that

even an intrinsically productive firm can become unproductive when it is debt-ridden.

This point results in a notably different policy implication. Caballero et al. (2008) imply

that the physical liquidation of zombie firms is desirable, whereas our theory implies that

zombie firms can restore high productivity if they are relieved of their excessive debt.

Fukuda and Nakamura (2011) report that the majority of firms identified as zombies

by Caballero et al. (2008) recovered substantially in the first half of the 2000s. This

observation seems consistent with our model. In the macroeconomic literature, endogenous

borrowing constraints are introduced by the seminal works of Kiyotaki and Moore (1997),

Carlstrom and Fuerst (1997), and Bernanke et al. (1999), which spawned the large body

of the literature on dynamic stochastic general equilibrium (DSGE) models with financial

frictions. The borrowing constraints in an economy in which intra-period and inter-period

loans exist are analyzed by Albuquerque and Hopenhayn (2004), Cooley, Marimon and

Quadrini (2004), and Jermann and Quadrini (2006, 2007, 2012). The modeling method

in this study is closest to that of Jermann and Quadrini (2012). Our model is also closely

related to that of Kobayashi and Nakajima (2017), who analyze endogenous borrowing

constraints and non-performing loans (NPLs). Furthermore, our model is similar to that

of Guerrón-Quintana and Jinnai (2014) in that a temporary shock persistently affects

economic growth, although there is a significant difference in the policy implications. In

our model, the emergence of debt-ridden borrowers due to a redistribution shock causes

a persistent recession. Thus, debt restructuring (i.e., wealth redistribution from lenders

to borrowers) restores aggregate efficiency. By contrast, debt restructuring has no effect

in the model of Guerron-Quintana and Jinnai because, in their model, the financial crisis

is caused by a shock to the parameters of financial technology. Another study closely

related to ours is Ikeda and Kurozumi (2014). They build a medium-scale DSGE model

with financial friction à la Jermann and Quadrini (2012) and endogenous productivity

growth à la Comin and Gertler (2006). Their study is different from ours in that Ikeda

and Kurozumi (2014) also posit that a financial crisis is an exogenous technological shock.

The remainder of this paper is organized as follows. In the next section, we present

the partial equilibrium model of the lender–borrower relationship and analyze the debt

dynamics. In Section 3, we construct the full model by embedding the financial frictions

of the previous section into an endogenous growth model, showing that stagnation can

continue persistently when a substantial number of debt-ridden borrowers emerge. Section

4 presents our concluding remarks.
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2 A model of corporate debt with borrowing constraints

In this section, we consider the partial equilibrium model of debt contracts. We derive the

borrowing constraint and analyze the debt dynamics under exogenously given prices. We

then embed this model into the endogenous growth model in Section 3.

2.1 Setup

Time is discrete and continues from zero to infinity: t = 0, 1, 2, · · · ,∞. There are three

agents in this model: a bank (lender), a firm (borrower), and a household (worker). The

main players are the bank and the firm; the household only supplies labor and capital at

market prices and buys consumer goods from the firm. Real prices {wt, rKt , rt, mt} are

taken as given, where wt is the wage rate, rKt is the rental rate of capital, rt is the inter-

temporal rate of interest for safe assets, and mt is the stochastic discount factor. These

prices are later determined in the general equilibrium model. The stochastic discount

factor satisfies

1

1 + rt
= Etmt+1

where Et is the expectation operator at t.

Consumer goods are produced by the firm from the labor and capital inputs. The

firm’s gross revenue in period t is given by

F (At, kt, lt) = Atk
αη
t l

(1−α)η
t ,

where kt and lt are the capital and labor inputs, respectively, chosen in period t, At is a

time-variant revenue parameter, and 0 < η < 1. Firms use equity and debt, where debt

is not state-contingent. We focus on the case with initial debt stock b−1 at t = 0, where
b−1

R−1
is the amount of inter-period debt at the end of the previous period and Rt is the

gross rate of corporate loans. In this study, following Jermann and Quadrini (2012), we

assume that firms hold inter-period debt because it offers tax advantages.3 Thus, Rt is

determined by

Rt = 1 + (1− τ)rt,

where τ represents the tax benefit. The debt bt−1

Rt−1
at the end of period t− 1 grows at the

gross rate Rt−1 to become bt−1 at the beginning of period t. The amount of initial debt

b−1 is given as an exogenous shock in this model. This amount may be inefficiently large,

as we see in the following sections. One explanation, which falls outside our model, for

3This assumption is a shortcut to formulate the motivation for holding debt. As is well known, with

asymmetric information and costly state verification, the optimal contract takes the form of debt (e.g.,

Townsend, 1979; Gale and Hellwig, 1985).
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why b−1 can be inefficiently large is as follows. The debt in this model can be interpreted

as unsecured debt. Suppose that a firm puts up a valuable asset (e.g., real estate or

corporate stocks) as collateral and the corporate debt b−1 is initially completely secured

by this collateral. Then, the asset price collapses in period 0 when the financial crisis

breaks out, and the value of the collateral asset decreases to, say, zero, meaning that

b−1 becomes unsecured debt. In this way, the asset-price collapse can make the initial

(unsecured) debt b−1 inefficiently large.

In period t, the firm employs labor lt and capital kt from the household to produce

and sell consumer goods, and it earns revenue F (At, kt, lt) = Atk
αη
t l

(1−α)η
t . The cost of

the capital and labor inputs for the firm is

σt ≥ rKt kt + wtlt.

The firm needs to borrow working capital, σt, from the bank as an intra-period loan and

pay the household in advance of production, as in Albuquerque and Hopenhayn (2004),

Cooley, Marimon and Quadrini (2004), and Jermann and Quadrini (2006, 2007, 2012).

When production is completed, the firm receives revenue F (At, kt, lt). Let us denote the

exogenous state variables at t by xt, where xt = {At, r
K
t , wt, rt,mt}. We denote the space

of xt by Λ (i.e., xt ∈ Λ). State xt follows a Markov process, which we do not specify

further as the exact process is irrelevant for now. We define f(σt, xt) by

f(σt, xt) =max
k,l

F (At, k, l),

subject to rKt k + wtl ≤ σt.

Thus, the solution implies

f(σt, xt) = At

(
α

rKt

)αη (1− α

wt

)(1−α)η

ση
t .

The budget constraint for the firm is given by

πt ≤ f(σt, xt)− σt − bt−1 +
bt
Rt

, (3)

where πt is the payment to the firm’s owner as a dividend. The payment of the intra-

period loan σt = wtlt + rKt kt is subject to the following borrowing constraint (derived in

the next subsection):

σt ≤ ϕf(σt, xt) + max

{
ξS(xt)−

bt
Rt

, 0

}
, (4)

where 0 ≤ ϕ < 1, 0 ≤ ξ ≤ 1, and S(xt) is defined by (7), which is the value that the

lender can obtain by taking control of the firm. Throughout this analysis, we assume that

ϕ < η,

8
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which means that production becomes inefficient when the borrowing constraint is σt ≤
ϕf(σt). The firm’s owner has no liquid assets in hand and is protected by limited liability,

as in Albuquerque and Hopenhayn (2004). Therefore, the dividend must be non-negative:

4

πt ≥ 0. (5)

The firm cannot avoid the limited liability constraint (5) by soliciting equity investment

from outside investors because of market frictions. The details of the market frictions are

not specified in this analysis, and we simply assume that the firm cannot issue new equities

in a timely manner, even if the new money can generate a positive surplus by relaxing

the borrowing constraint and even if outside investors are willing to buy new equities.

This assumption can be justified by market frictions such as a lack of commitment and

asymmetric information.5

Now, we can describe the optimization problem for the firm. Denoting the value of the

firm with debt stock bt−1 at the beginning of period t as V (bt−1, xt), the firm’s problem is

written as the following Bellman equation:

V (bt−1, xt) = max
bt,σt,πt

πt + Et [mt+1V (bt, xt+1)] , (6)

subject to the budget constraint (3), borrowing constraint (4), limited liability constraint

(5), and participation constraint of the bank (i.e., the no-Ponzi condition):

bt ≤ bz(xt),

where bz(xt)
Rt

is the upper limit of the amount that the bank agrees to lend in period t,

given by (8) below.

In the above problem (6), the firm takes {bz(xt), S(xt)}∞t=1 as given. In equilibrium,

S(x) is determined endogenously from the solution to the firm’s problem. S(xt) is the

liquidation value of the firm. Thus, in equilibrium, the following must be satisfied:

S(xt) = max
b

Et [mt+1V (b, xt+1)] +
b

Rt
. (7)

4Even if we allow π < 0, the inefficiency continues permanently, when b−1 is sufficiently large. Thus,

relaxing this assumption does not change the qualitative results presented in the paper.
5The following are two examples of market frictions. The first example is a lack of commitment. Suppose

that the human capital of the firm’s owner is indispensable to the firm’s operations and that she cannot

commit to pay the promised amount to the outside investors. In this case, the firm’s owner renegotiates

the payment down to zero after the outside investors provide additional money. Anticipating this outcome,

the outside investors do not invest in the firm. The second example is informational frictions. Suppose

that the bargaining over the surplus between the firm and outside investors needs to be settled before the

firm can issue new equities and assume that this bargaining is associated with informational frictions à

la Abreu and Gul (2000) that result in a prohibitively delayed settlement. Abreu and Gul (2000) show

that if the two players in a Rubinstein-type bargaining game each suspect that their counterparty may be

irrational, the bargaining experiences substantial delay.
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The upper limit of debt bz,t = bz(xt) is the upper bound of repayable debt under

any future realizations of the states {xt+j}∞j=1 given that xt is the current state.6 We

derive bz(xt) on the premise that bz(xt)
Rt

> ξS(xt), which is later justified by the parameter

restriction (9). Under this assumption, the borrowing constraint becomes σt ≤ f(σt, xt)

when the outstanding debt is bz(xt). We define σz,t = σz(xt) as the solution to σ =

ϕf(σ, xt). Define, recursively, that for a given value of xt−1,

bz(xt−1) = inf
xt∈Λ(xt−1)

(1− ϕ)f(σz(xt), xt) +
bz(xt)

Rt
, (8)

where Λ(xt−1) is the domain for xt given that the state of time t− 1 is xt−1. If Λ(xt−1) =

Λ, then the upper limit is a constant (i.e., bz(xt−1) = bz). If the condition, bz(xt)
Rt

>

ξS(xt) for all xt, is satisfied, then it is justified that bz(xt) is truly the maximum repayable

debt. To ensure the above condition, we assume the following restriction (9) on the

parameters.

The first-best amount of input, σ∗(x), is defined as the solution to ∂
∂σf(σ, x) = 1. The

upper limit of the total surplus of the match between the bank and firm, given that the

current state is x, is denoted by ω(x), for x ∈ Λ, and the unconditional upper limit is

denoted by ω̄. These limits are defined as follows:

ω(xt) = [1 + τr(xt)] {f(σ∗(xt), xt)− σ∗(xt)}+ Et [mt+1ω(xt+1)] ,

ω̄ ≡ sup
x∈Λ

ω(x).

Since the maximum amount of the tax advantage is τr(x) {f(σ∗(x), x)− σ∗(x)}, it is

straightforward that S(x) ≤ ω(x) because S(x) is the value to the bank of operating the

seized firm. Thus, we assume the following restriction on the parameter values:

ξω(xt) <
bz(xt)

Rt
, for all xt. (9)

This inequality ensures that the maximum repayable debt bz(xt)
Rt

is strictly larger than

ξS(xt).

Difference between inter- and intra-period debt: We have the following difference

between inter-period debt bt−1 and intra-period debt σt. The firm has the chance to default

on its inter-period debt bt−1 at the beginning of period t, and it will do so if and only if the

continuation value of the firm is negative, V (bt−1, xt) < 0. However, this outcome never

6When the amount of debt is larger than
bz,t
Rt

, there is a positive probability of default. Thus, the bank

agrees to lend only if the amount of debt is no greater than
bz,t
Rt

given that the loan rate is equal to the

market rate for safe assets, 1 + rt. In the general case in which the loan rate can be set larger than 1+ rt,

the bank may agree to lend a larger amount than
bz,t
Rt

as long as the expected rate of return is no smaller

than 1 + rt. In this case, the upper limit of debt can be larger than
bz,t
Rt

. However, even with a larger

upper limit, the analyses and results in this study would not change qualitatively.

10



occurs because when bt−1 ≤ bz(xt−1), the firm’s dividend is non-negative (π(xt) ≥ 0), as is

the continuation value (V (bt−1, xt) ≥ 0). Thus, as long as bt−1 ≤ bz(xt−1), the firm never

defaults on its inter-period debt bt−1. The firm has the chance to default on intra-period

debt σt at the end of period t, which we analyze in the next subsection, in which the

borrowing constraint (4) for σt is given as the no-default condition. Thus, the firm does

not default on σt in equilibrium.

Timing of events: The events in a given period t occur in the following way. The firm

and bank enter period t with outstanding debt of bt−1.
7 At the beginning of the period, the

firm has the chance to default on bt−1, and it will do so if the continuation value is negative

(which never happens because bt−1 ≤ bz(xt−1)). Then, the firm borrows intra-period debt

σt, employs labor and capital by paying σt, and produces output f(σt, xt). The firm

repays bt−1 and borrows new inter-period debt bt
Rt

by paying bt−1 − bt
Rt

. Finally, it repays

intra-period debt σt to the bank. At this point, the firm has the chance to default on σt.

After repaying σt, the firm pays out the remaining amount, πt = f(σt, xt)−σt− bt−1+
bt
Rt

,

to the firm owner as a dividend.

2.2 Derivation of the borrowing constraint

In this subsection, we describe the events that follow a counterfactual default on σt and

derive the borrowing constraint (4) as the no-default condition. Our argument is similar

to that of Jermann and Quadrini (2012).

As described in the previous subsection, the firm owes inter-period debt bt
Rt

and intra-

period debt σt at the end of period t, where bt is to be repaid in period t+ 1 and σt is to

be repaid in period t. At the end of period t, the firm has the chance to default on σt.

Now, we consider what would happen if the firm defaults on σt. Once the firm defaults,

the bank unilaterally seizes a part of the firm’s revenue, ϕf(σt, xt), where 0 ≤ ϕ < 1.8 The

seized amount, ϕf(σt, xt), may be interpreted as a collateral that the bank can legitimately

7More accurately, the firm owes (1+ rt−1)
bt−1

Rt−1
to the bank. Hence, the firm has to pay this amount to

the bank, whereas it obtains a transfer from the government as a tax advantage, amounting to τrt−1
bt−1

Rt−1
.

Thus, the net payment by the firm is (1 + rt−1)
bt−1

Rt−1
− τrt−1

bt−1

Rt−1
= bt−1.

8Because the firm has paid bt−1 − bt
Rt

, the remaining value of the resources it possesses is f(σt, xt) −
bt−1 +

bt
Rt

after defaulting on σt. Thus, if the bank were to seize ϕf(σ, x) from the remaining output only,

then the seizure should have been feasible only if

ϕf(σt, xt) ≤ f(σt, xt)− bt−1 +
bt
Rt

. (10)

However, we assume that the bank can take ϕf(σ, x) from the firm owner’s pocket and not just from the

remaining output of the firm. Because the firm owner does not have liquid assets in hand, the bank may

be unable to collect ϕf(σ, x) immediately, whereas it can recover this present value from the firm owner’s

illiquid assets within some finite periods. Thus, in this study, we assume that the bank seizure is not

constrained by (10).
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seize when the firm defaults. Then, the firm and bank renegotiate over the conditions for

the firm to continue to operate. Following Jermann and Quadrini (2012), we assume that

the firm has all of the bargaining power in the renegotiation. At this stage, the bank has

acquired the right to liquidate the firm. Here, liquidation is the bank’s taking control of

the firm. When the bank chooses liquidation, it successfully operates the firm by itself and

recovers value St with probability ξ, whereas the firm is destroyed with probability 1− ξ.

Thus, the expected value that the bank can obtain by liquidation is ξSt. By contrast, if

the bank decides to allow the firm to continue to operate, it can recover its inter-period

debt in the next period, the present value of which is bt
Rt

. The renegotiation agreement

depends on whether ξSt is larger or smaller than bt
Rt

.

• Case where ξSt > bt
Rt

: The firm has to make a payment that leaves the bank

indifferent between liquidation and allowing the firm to continue to operate. Thus,

the firm has to make payment ξSt− bt
Rt

and promise to pay (1+rt)
bt
Rt

at the beginning

of the next period. Therefore, the ex-post default value for the firm is

(1− ϕ)f(σt, xt)− bt−1 +
bt
Rt

−
{
ξS(xt)−

bt
Rt

}
+ Et [mt+1V (bt, xt+1)] .

• Case where ξSt ≤ bt
Rt

: In this case, the optimal choice for the bank is to wait until

the next period, when (1 + rt)
bt
Rt

is due. In period t, the bank receives no further

payments. Thus, the ex-post default value is

(1− ϕ)f(σt, xt)− bt−1 +
bt
Rt

+ Et [mt+1V (bt, xt+1)] .

Therefore, the default value is expressed as

(1− ϕ)f(σt, xt)− bt−1 +
bt
Rt

−max

{
ξS(xt)−

bt
Rt

, 0

}
+ Et [mt+1V (bt, xt+1)] .

Enforcement requires that the value of not defaulting is no smaller than the value of

defaulting, that is,

f(σt, xt)− bt−1 +
bt
Rt

− σt ≥ (1− ϕ)f(σt, xt)− bt−1 +
bt
Rt

−max

{
ξS(xt)−

bt
Rt

, 0

}
,

which can be rearranged as (4).

2.3 Equilibrium debt dynamics

In this subsection, for a given variable qt, we denote the variables in the previous period,

in the current period, and in the next period by q−1, q, and q+1, respectively. Here,

we characterize the equilibrium path that solves (6), taking S(x) as given exogenously.

We prove the existence of the equilibrium that satisfies (7) in Section 2.4. Let G be the

following closed, bounded, and convex set of non-negative continuous functions, S(xt):

G = {S(x)|0 ≤ S(x) ≤ ω̄, x ∈ Λ, S(x) ∈ C(Λ)}.
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Proposition 1. Let S(x) (∈ G) be given exogenously. There exists a solution V (b, x;S)

to the Bellman equation (6), and V (b, x;S) is continuous in (b, x).

The proof is omitted because this proposition follows directly from Theorem 9.6 in

Stokey and Lucas with Prescott (1989).9

Here, we briefly describe the outline of the equilibrium dynamics. The detailed de-

scription is presented in Appendix A.

Given S(xt), there exists thresholds Bce(x;S), Bz(x;S), Bc(x;S), B̄c(x;S), and B̄z(x)

such that

0 < Bce(x;S) < Bz(x;S) < Bc(x;S) ≤ B̄c(x;S) ≤ B̄z(x).

• If the initial debt b−1 satisfies b−1 ≤ Bce(x;S), then the economy stays in the

constrained-efficient equilibrium, where σt = σce(xt), bt = bce(xt), and πt ≥ 0 for

all t ≥ 0. σce(x) and bce(x) are defined in Appendix A. In the constrained-efficient

equilibrium, bce(x) is determined such that the marginal gain from the tax advantage

of additional borrowing equals the marginal cost from tightening the borrowing

constraint, i.e., E
[m+1

m

]
rτ
R = µ

R , where µ is the Lagrange multiplier associated with

the borrowing constraint.

• If Bce(x;S) < b−1 ≤ Bz(x;S), the firm repays as much debt as possible by setting

the dividend to zero, i.e., πt = 0, to move into the constrained-efficient equilibrium

as quickly as possible. The borrowing constraint is σ ≤ ϕf(σ, x) + ξS(x) − b
R and

this is tighter than in the constrained-efficient equilibrium. Thus, σt < σce(xt).

• If Bz(x;S) < b−1, the borrowing constraint becomes σ ≤ ϕf(σ, x), implying that

σt = σz(xt).

– If Bz(x;S) < b−1 ≤ Bc(x;S), the firm sets πt = 0 to reduce the remaining debt

as quickly as possible.

– If b−1 ∈ (B̄c(x;S), B̄z(x)), then the firm intentionally borrows to increase the

debt to bz(x)
R . This is because the marginal gain of additional borrowing from

the tax advantage is strictly larger than the marginal cost from tightening the

borrowing constraint. Note that b−1 ∈ (B̄c(x;S), B̄z(x)) may not exist, as

B̄c(x;S) may be equal to B̄z(x) for a certain x in this stochastic case.

9To see that Theorem 9.6 in Stokey and Lucas with Prescott (1989) is applicable to the problem in

(6), it is useful to change the variables by m̃t ≡ β−tmt and Ṽ (bt−1, xt) ≡ m̃tV (bt−1, xt). The Bellman

equation (6) can be rewritten as

Ṽ (bt−1, xt) = max
bt,σt,πt

m̃tπt + βEt

[
Ṽ (bt, xt+1)

]
,

subject to the same constraints. Assumptions 9.4–9.7 in Stokey and Lucas with Prescott (1989) are clearly

satisfied in this problem, which allows their Theorem 9.6 to apply.
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Debt-ridden firms: A debt-ridden firm is defined as a firm with outstanding debt

bt−1 = bz(xt−1). From the definition of bz(xt), the borrowing constraint is σt ≤ ϕf(σt, xt)

for all t in the case where xt evolves deterministically. In the case where xt evolves

stochastically, there may be a non-zero probability with which the firm repays its debt

and eventually returns to the constrained-efficient equilibrium.

2.4 Existence of an equilibrium

The Schauder fixed point theorem implies the existence of an equilibrium in which the

firm solves (6) and the equilibrium condition (7) is satisfied.

Proposition 2. Let the parameters satisfy η
2−η ≤ ϕ. Let Assumptions 1 and 2 in Appendix

A and Assumption 3 in Appendix B be satisfied. There exists an equilibrium in which the

firm solves the optimization problem (6) taking S(x) as given and (7) is satisfied.

The proof is given in Appendix B. We have established the existence of an equilibrium

but not the uniqueness. It may not be possible to show such uniqueness analytically.

However, in the deterministic case, where state xt evolves deterministically, we can use

a numerical simulation to show that the equilibrium is unique for a range of relevant

parameter values.

2.5 A deterministic case

In this subsection, we focus on the deterministic equilibrium, where state xt evolves de-

terministically. As shown in Proposition 2, S(x) is given endogenously by (7). In the

deterministic case, the state of nature can be indicated by time. Thus, in this subsection,

we use the time subscript t to represent state xt. The detailed description is presented in

Appendix C.

Although the equilibrium dynamics in the deterministic case are similar to those in

the stochastic case, two features are unique to the deterministic case.

• First, once a firm falls into the debt-ridden state, it stays there forever. That is,

once bt = bz,t for a certain t, then bt+j = bz,t+j and σt+j = σz,t+j for all j ≥ 0.

• Second, we can show B̄c,t is strictly smaller than bz,t, where bz,t = B̄z,t in the deter-

ministic case (see Appendices A and C). Thus, there always exists bt−1 ∈ (B̄c,t, bz,t−1)

such that if the initial debt is this bt−1, the firm intentionally borrows to increase

the debt to
bz,t
Rt

and stays debt-ridden permanently.

It is likely that

Bc,t = B̄c,t ≡ Bc,t

for a wide range of parameter values. Thus, we assume this in what follows.

14



Why does a heavily indebted firm choose to become debt-ridden? Intuitively, suppose,

for simplicity, that all prices are constant over time. Then, suppose the initial debt b is

large, meaning that RξS < b < bz. Then, it takes n periods to reduce the debt to RξS if

the firm continues repaying as much as possible in every period. The value of n is uniquely

determined as a function of b (i.e., n = n(b)), n is increasing in b, and limb↑bz n(b) = ∞.

Now, we can calculate the gain and loss of choosing to become debt-ridden at t = 0 in

comparison with choosing to repay as much debt as possible. It is shown that the gain is

proportional to 1
Rn , whereas the loss is proportional to 1

(1+r)n , where n = n(b). We know

1 + r > R because τ > 0. Therefore, there exists nc such that if n > nc, then the gain

of choosing to be debt-ridden exceeds the loss. We define Bc by nc = n(Bc). Then, the

optimal choice for a firm with b (> Bc) is to become debt-ridden.

Policy functions and value function: Figure 1 shows the policy functions bt =

b(bt−1) and σt = σ(bt−1) and the value function Vt = V (bt−1) in the deterministic case in

which the prices are invariant over time. The policy functions and value function have a

kink at bt−1 = Bz = (1−ϕ)f(σz)+ ξS, which is the boundary of the borrowing constraint

between σt ≤ ϕf(σt) and σt ≤ ϕf(σt) + ξS − bt
R . The policy function b(bt−1) shows

that debt decreases rapidly in the region where bt−1 ≤ Bz, whereas in the region where

Bz < bt−1 ≤ Bc, the slope of the graph bt = b(bt−1) is R, which is close to the slope of

the 45-degree line in the standard parameter setting. Thus, the speed of the decrease in

debt is extremely slow in the region where Bz < bt−1 ≤ Bc. This figure indicates that the

economy can suffer from extremely persistent inefficiency if bt−1 falls into the region where

Bz < bt−1 ≤ Bc. Debt jumps to bz and stays there permanently for bt−1 > Bc. The value

function has a kink at bt−1 = Bc. V (bt−1) > 0 for Bc < bt−1 < bz and V (bz) = 0 because

V (bt−1) = bz − bt−1 in this case (see Appendix C). The policy function σ(bt−1) shows

that production becomes inefficient when the dividend is 0. Production becomes the most

inefficient (i.e., σt = σz) when bt−1 ≥ Bz. σt stays at σz permanently for bt−1 > Bc.

A note on the kinks and jumps in the policy function: As Figure 1 shows, the

policy function σt = σ(bt−1) in this example is continuous at bt−1 = Bz even though it

has a kink. However, it is continuous only because we assume η
2−η ≤ ϕ. If ϕ < η

2−η , the

policy function is no longer continuous, and it has a jump at bt−1 = Bz. The existence

of the jump is explained as follows. The binding non-negativity condition πt = 0 and the

borrowing constraint (σt = ϕf(σt) + ξS − bt
R ) imply that σt solves the following equation:

bt−1 − ξS = (1 + ϕ)f(σt)− 2σt,

which may have two solutions. For bt−1 = Bz = (1−ϕ)f(σz)+ξS, there exist two solutions,

σ1 and σ2, such that σ1 = σz and σ2 > σ1 if ϕ < η
2−η . If ϕ > η

2−η , then σ2 < σ1 = σz, and
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Figure 1: Policy functions and value function
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if ϕ = η
2−η , then σ2 = σ1 = σz. Therefore, if ϕ < η

2−η , the policy function σ(bt−1) jumps

from σz to σ2 (> σz) as bt−1 decreases slightly from Bz. Because the continuity of σ(bt−1)

at bt−1 = Bz is necessary to prove Proposition 2, we assume η
2−η ≤ ϕ.

3 Full model

In this section, we embed the partial equilibrium model of borrowing constraints into a

general equilibrium model of endogenous growth. We consider a closed economy in which

the final good is produced competitively from varieties of intermediate goods. The firms

are monopolistic competitors, and they produce their respective varieties of intermediate

goods from the capital and labor inputs. This is a version of the expanding variety model,

in which the new entry of firms increases aggregate productivity (Rivera-Batiz and Romer,

1991; Acemoglu, 2009). We follow Benassy (1998) in that only labor is used to conduct

R&D activities that expand the variety of goods. We assume that the monopolistically

competitive firms, which are subject to borrowing constraints, produce intermediate goods

and conduct R&D activities.

3.1 Basic setup

A representative household owns a mass of firms, indexed by i ∈ [0, Nt−1], that produce

intermediate goods, where Nt−1 measures the varieties of intermediate goods in period t.

Firm i produces variety i monopolistically and can borrow funds from the household. In

what follows, we omit the bank for simplicity. The final good is produced competitively

from intermediate goods yi,t by the following production function:

Yt =

(∫ Nt−1

0
yηi,tdi

) 1
η

,

where 0 < η < 1. Because the final good producer maximizes Yt −
∫ Nt−1

0 pi,tyi,tdi, where

pi,t is the real price of intermediate good i, perfect competition in the final goods market

implies that

pi,t = p(yi,t) = Aty
η−1
i,t ,

where At ≡ Y 1−η
t . Firm i produces intermediate good i from capital ki,t and labor li,p,t by

the following production function:

yi,t = kαi,tl
1−α
i,p,t .

Each firm i employs labor li,t and capital ki,t, produces intermediate goods yi,t from

li,p,t (≤ li,t) and ki,t, and conducts R&D with labor input li,t − li,p,t. The R&D activity

creates κN̄t−1(li,t − li,p,t) units of new varieties of intermediate goods, where κ is the

17



parameter that represents the efficiency of R&D activity and N̄t−1 is the social level of the

variety of the good, which represents the externality from the stock of knowledge on the

R&D activity. This externality ensures the existence of the balanced growth path (BGP).

The law of motion for the measure of varieties is written as follows:

Nt = Nt−1 + κN̄t−1(Lt − Lp,t),

where Lt =
∫ Nt−1

0 li,tdi and Lp,t =
∫ Nt−1

0 li,p,tdi. When a new variety is created, a new

monopolistic firm that produces the variety is also born. Each new variety is produced by a

newborn firm. The parent firm creates newborn firms and then treats them as members of

its own dynasty. As the parent and newborn firms are technologically identical, the burden

of inter-period debt for the parent firm is shared equally by all firms in the dynasty. In

this general equilibrium model, the state of nature xt is given by xt = (Nt−1, {bi,t−1}Nt−1

i=0 )

because prices are the equilibrium outcomes. Exogenous redistribution shocks may hit

the distribution of debt, {bi,t−1}Nt−1

i=0 , and make xt evolve stochastically. The transition of

states is a Markov process, which is determined endogenously in equilibrium, and is taken

as given by the individual households and firms. To simplify the notation, we use the time

subscript t instead of the state xt and simply omit xt in what follows on the understanding

that all variables and functions with subscript t depend on state xt. Thus, the value of

the firm is determined by the following dynamic programming equation in which we omit

the subscript i for simplicity:

Vt(bt−1) = maxπt + Et

[
mt+1

{
1 + κN̄t−1(lt − lp,t)

}
Vt+1(bt)

]
,

subject to

πt = Atk
αη
t l

(1−α)η
p,t − wtlt − rKt kt − bt−1 +

[
1 + κN̄t−1(lt − lp,t)

] bt
Rt

, (11)

wtlt + rKt kt ≤ ϕAtk
αη
t l

(1−α)η
p,t (12)

+ max

{
ξSt −

bt
Rt

, 0

}[
1 + κN̄t−1(lt − lp,t)

]
,

πt ≥ 0, (13)

lt ≥ lp,t, (14)

bt ≤ bz,t, (15)

where St and bz,t are taken as given and are the equilibrium outcomes, as we see shortly.

The Lagrange multipliers, λt, µt, λπ,t, and λl,t, are associated with the budget constraint

(11), the borrowing constraint (12), the non-negativity of dividends (13), and the non-

negativity of the labor input for R&D (14), respectively. In equilibrium, the liquidation

value St and the upper limit of borrowing bz,t are given in the same manner as in the

previous section. Thus, the equilibrium condition that determines St is

St = max
b

Et [mt+1Vt+1(b)] +
b

Rt
.
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The value of bz,t = bz(xt) is given by

bz(xt−1) = inf
xt∈Λ(xt−1)

(1− ϕ)ft(σz(xt), xt) +
bz(xt)

Rt
, (16)

where f(σ, x) and σz(x) are the same as in Section 2, and we assume the parameter

restriction (9).

A representative household solves the following problem:

max
Ct,Lt,Bt,Kt

E0

[ ∞∑
t=0

βtU(Ct, Lt)

]
,

subject to the budget constraint

Ct +Kt +
Bt

1 + rt
≤ wtLt + (rKt + 1− ρ)Kt−1 +Bt−1 + Tt,

where β is the subjective discount factor, Ct is consumption, Lt is total labor supply, Kt is

capital stock, ρ is the depreciation rate of capital, Bt is inter-period lending to the firms,

and Tt is a lump-sum transfer that consists of the tax and dividends. The period utility is

U(C,L) =

[
C

1
1+γ (1− L)

γ
1+γ

]1−θ

1− θ
.

Let mt be the Lagrange multiplier associated with the budget constraint for the represen-

tative household, which is given by the FOC with respect to Ct:

mt+1 =
βt+1∂U(Ct+1, Lt+1)/∂Ct+1

βt∂U(Ct, Lt)/∂Ct

The FOC with respect to Kt and Bt implies

1

1 + rt
= Et

[
1

rKt+1 + 1− ρ

]
= Et [mt+1] .

Thus, mt is the stochastic discount factor in the partial equilibrium model of Section

2. The market-clearing conditions are Ct + Kt − (1 − ρ)Kt−1 = Yt,
∫ Nt−1

0 li,tdi = Lt,∫ Nt−1

0 li,p,tdi = Lp,t,
∫ Nt−1

0 ki,tdi = Kt−1,
∫ Nt−1

0
bi,t
Rt

di = Bt
1+rt

, Nt = Nt−1+κN̄t−1(Lt−Lp,t).

The equilibrium condition is N̄t = Nt.

Competitive equilibrium.— A competitive equilibrium consists of sequences of prices

{rt, rKt , wt,mt}, a household’s decisions {Ct, Lt,Kt, Bt}, firms’ decisions {πt, lt, lp,t, kt, bt},
and a measure of varieties Nt, such that (i) the representative household and firms solve

their respective optimization problems, taking prices and Nt−1 as given, and (ii) the

market-clearing conditions and equilibrium condition are all satisfied.

A firm that owes the maximum amount bz,t is called a debt-ridden firm in a similar

manner to the previous section.
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3.2 BGP without debt-ridden firms

In what follows, we assume for simplicity that θ → 1 and

U(C,L) = lnC + γ ln(1− L).

In this subsection, we focus on the deterministic case where state xt evolves deterministi-

cally and then characterize the BGP on which all firms are normal. The firms are normal

when the dividend is positive, that is, πt > 0 for all t. On the BGP, labor and the growth

rate are constant, that is, Lt = L and Nt/Nt−1 = g. We define

E ≡ 1− η

(1− α)η
.

We guess that Yt = Y × NE
t−1, At = A × N

(1−η)E
t−1 , Ct = C × NE

t−1, Kt = K × NE
t ,

wt = w ×NE
t−1, lt = L/Nt−1, kt = k ×NE−1

t−1 , Vt = V ×NE−1
t−1 , and πt = π ×NE−1

t−1 . The

FOCs and constraints imply that there exists a unique BGP, which is given in Appendix

D. For the numerical simulation, we set the parameters to the values for Japan, the

United States, and the European Union (EU),10 shown in Table 1. The parameters of the

borrowing constraints, ϕ and ξ, and the size of shock z are calibrated to fit the data of

Japan, the United States, and the EU according to the data in Appendix E and the method

described in Appendix F, where we identify and assess the parameter region used in our

numerical experiments. It is an annual model. We adopt a simulation strategy under

which the parameters γ and κ are calculated endogenously such that the two variables L

and gTFP attain the target values calculated from the data. The economic growth rate on

the BGP is 2.51% per year for the Japanese economy.11 It is easily confirmed numerically

that there exists a BGP for a wide range of parameter settings.

A debt-ridden firm does not conduct R&D activities on the BGP under a wide range

of parameter settings. See Claim 3 in Appendix G for details.

3.3 Low growth equilibrium with debt-ridden firms

Now, we consider the equilibrium in which some firms are debt-ridden and others are

normal. In this subsection, we again focus on the deterministic case in which state xt

evolves deterministically, and bz,t = bz(x) = bz is given and determined by the steady

state.12 We assume that firms i ∈ [0, Zt] are debt-ridden and firms i ∈ (Zt, Nt] are normal.

10The EU comprises the following 28 countries: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech

Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania,

Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, and

the United Kingdom.

11The economic growth rate on the BGP is given by gE = g
1−η

(1−α)η
η

1−η

TFP = g
1

1−α

TFP = 1.0251, where g is the

growth rate of Nt and E = 1−η
(1−α)η

. See Appendix H.
12The upper bound of debt constraint (15) is always binding for debt-ridden firms. Their debt bz is

constant over time.
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Common parameters

Parameter Economic interpretation value

β the subjective discount factor 0.98

ρ the depreciation rate of capital 0.1

η the parameter for the aggregation function 0.7

Country-specific parameters

Parameter Economic interpretation Japan US EU

α the share of labor in production 0.31 0.34 0.37

γ the inverse of the elasticity of labor supply 2.49 3.25 3.60

κ the efficiency of R&D 0.55 0.42 0.39

ϕ the collateral ratio of revenue 0.51 0.64 0.63

τ the tax advantage for debt 0.30 0.35 0.35

ξ the collateral ratio of the foreclosure value 0.08 0.94 0.92

L the total labor supply in the steady state 0.25 0.21 0.19

gTFP the growth rate of TFP in the steady state 1.017 1.013 1.011

z the ratio of debt-ridden firms at the shock period 0.880 0.649 0.701

Table 1: Parameter settings

We assume and justify numerically in the following simulation that only normal firms

conduct conduct the R&D activity and debt-ridden firms do not on the entire equilibrium

path.

Define zt ≡ Zt
Nt

. The initial value of zt, denoted by z, is given exogenously. Although zt

eventually converges to zero at BGP, the fraction of firms that can conduct R&D decreases

to (1−zt), so the new entry firms decrease, and zt decreases only slowly. In our simulation,

we assume z < 1 and
bz,t
Rt

> ξSt.
13

Numerical experiment: We can calculate the equilibrium dynamics numerically using

a full non-linear method. Linearization is not necessary for the deterministic simulation

(see Appendix H for detrending and Appendix I for the details of the calculation of the

dynamics).

Figure 2 shows the results of the numerical simulation in which the economy is initially

on the BGP, where Zt = 0, and an unexpected redistribution shock hits the economy

13We cannot find the parameter set that makes z = 1 and
bz,t
Rt

> ξSt simultaneously. If both z = 1 and
bz,t
Rt

> ξSt hold simultaneously, there would exist a zero growth path on which all firms are debt-ridden

and the economic growth rate is zero, because no firms conduct R&D activities. In a simplified model

in which capital k does not exist and labor is the only input, it is proven analytically that z = 1 and
bz,t
Rt

> ξSt cannot hold simultaneously for any parameter set.
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in period 10, making z10 = z = 0.880. In other words, the sudden redistribution of

wealth from firms to households makes 88.0% of all firms debt-ridden in period 10. The

parameter values for Figure 2 are given as those for Japan in Table 1. In this counterfactual

experiment, we assume that all stochastic shocks except redistributive shocks are zero.

Counterfactually, Japan’s long-term stagnation after the collapse of the bubble economy

was caused solely by the redistribution shock. It should be noted that the size of the

redistribution shock is large because other shocks are assumed to be zero. However, while

we argue that the mechanism due to the redistribution shock is important, we do not

believe this shock to be the single cause. The numerical experiment is intended to show

that excessive debt can cause long-term stagnation. A richer model, i.e., a medium-scale

DSGE model, would allow for experiments that take into account other shocks, but the

mechanism of the redistribution shock would be too complex, so we use the simple model

to consider the results of our counterfactual experiments. The features of the equilibrium

path shown in Figure 2 are as follows:

• Slowdown of economic growth: Borrowing constraints are tighter after the buildup

of debt. Thus, aggregate inputs decrease and economic growth slows for an extended

period.

• Persistently lower rates of interest and wages: These features are observed in the

aftermath of the Great Recession and are the focus of the recent literature on secular

stagnation and unconventional monetary policy.

• Decrease in TFP and net entry: The growth rate of the number of firms, gt =

Nt/Nt−1, decreases. TFP also slows, where TFP in the model is defined by

TFPt =
Yt

Kα
t−1L

1−α
t

.

This feature is consistent with the observation that TFP and the net entry of firms

decreased in Japan in the 1990s.

• Buildup of NPLs: In this example, there are Zt debt-ridden firms, and their debt

stays at an inefficiently high level. This feature is consistent with the historical

episodes of persistent stagnation with overly indebted firms and/or households, such

as Japan in the 1990s.

• Labor wedge reduction: In this example, the labor wedge, 1− τL, diminishes persis-

tently as a direct consequence of the tightening of the aggregate borrowing constraint

on working capital loans for wage payments. This tighter borrowing constraint cre-

ates a larger gap between the wage rate and marginal product of labor. The gap
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Figure 2: Responses to a buildup of debt (Japan)
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is measured by τL. In this way, the persistent reduction in the labor wedge ob-

served in the aftermath of a financial crisis can be accounted for by the emergence

of debt-ridden firms.14

The redistribution shock causes a fraction of zt firms to become debt-ridden firms. These

firms are permanently inefficient in their production and do not conduct R&D. Normal

firms, which are not directly affected by the redistribution shock, are also negatively af-

fected by the production inefficiency of debt-ridden firms. Production inefficiency reduces

aggregate demand and lowers prices. As a result, the sales of normal firms decrease, and

the borrowing constraint becomes tighter than before the shock. As a result, R&D by

normal firms also are sluggish, and the new entry of firms decreases, resulting in a decline

in the growth rate of TFP.

Next, we calibrate and conduct numerical simulations for the United States and the

EU. Table 1 provides the parameter values. Figure 3 compares TFP in the model with

the actual TFP in Japan, the United States, and the EU. Similarly, Figure 4 compares the

GDP of the numerical experiment with the actual real GDP per capita of the working age

population (15–64 years old). We assume that the unexpected shock hits the economy in

period 10 of the simulation, which corresponds to the asset-bubble collapse in 1991 in the

case of Japan and the financial crisis in 2009 in the cases of the United States and the EU.

For the United States and the EU, we extend the observed variables to 2025. We posit

that the variables grow in future periods by constant growth rates, which are equal to the

average growth rates in 2011–2016 for the United States and the EU. These extensions

are based on the implicit assumption that the US and EU economies have fallen into

decade-long stagnation. We compare our simulation results with the extended data on the

United States and the EU because a goal of our numerical experiment is to examine the

capability of our model to account for decade-long recessions in the aftermath of financial

crises. The figures show that the model fits the growth rate data fairly well. Figure 5

compares the labor wedge of the numerical experiment with the actual labor wedge. The

simulated deterioration of the labor wedge is fairly consistent with the data from Japan,

the United States, and the EU.

In any case, the numerical simulation of our model shows the overall slowdown of

14 As Chari et al. (2007) posit, the labor wedge, 1− τL,t, is defined by 1− τL,t =
MRSt
MPLt

, where MRSt =
γCt
1−Lt

= wt and MPLt =
αYt
Lt

in our model. Thus, the labor wedge can be calculated by 1−τL,t =
wtLt
αYt

. In

our model, the labor wedge 1−τL is proportional to the labor share. Thus, both an economic slowdown and

a shrinkage of the labor share (from the buildup of debt) are observed simultaneously in our model. This

feature of our model contrasts with the countercyclicality of the labor share in business cycle frequencies

(Schneider, 2011). However, our model seems compatible with countercyclicality in the short run. In

our model, the buildup of debt causes the long-term variations in the labor wedge, whereas short-run

countercyclicality can be caused by factors such as productivity shocks in business cycle frequencies (Ŕıos-

Rull and Santaeulàlia-Llopis, 2010).
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economic growth resulting from the debt shock, indicating the usefulness of our model in

accounting for persistent recessions in the aftermath of financial crises.

3.4 Policy implications

The policy implications of the results presented in this paper seem noteworthy from a

practical point of view. The shocks that cause persistent stagnation are exogenous tech-

nological changes in the existing literature. In our model, the one-time buildup of debt

tightens the borrowing constraint and causes a persistent slowdown in economic growth

even though there is no technological change. Thus, our model implies that reducing

overly accumulated debt can restore economic growth. Note that the physical liquidation

of debt-ridden borrowers is not necessary, but relieving them from excessive debt restores

their efficiency and high economic growth at the aggregate level. This policy implication

contrasts sharply with those of prior studies, in which debt reduction, per se, is not on

the table, and policymakers can only mitigate recessions by implementing accommodative

monetary and fiscal policies or designing ex-ante financial regulations.

Government intervention in debt reduction is justified as follows. In our model, the

inefficiency of persistent stagnation cannot be resolved by the market mechanism for the

following three reasons. First, constraint (5) implies that outside investors cannot relax the

borrowing constraint of debt-ridden firms by purchasing new equity. Constraint (5) is an

exogenous assumption in this analysis, but it may be justified by plausible market frictions

such as a lack of commitment and coordination failures (see footnote 5). If constraint (5)

did not exist, outside investors would purchase new equity of debt-ridden firms and make

them constrained-efficient because they can earn strictly positive profits by investing new

money in debt-ridden firms. Second, there is no free entry of new firms in our model. The

entry of a new firm is equal to that of a new variety, which occurs as a result of R&D

activities by incumbent firms. Thus, new entries of new varieties decrease as debt-ridden

firms increase, and the growth in productivity slows. The productivity slowdown continues

persistently because there is no entry by outside firms.15 Third, it is optimal for lenders to

keep borrowers debt-ridden if the outstanding debt is large. Because lenders can be repaid

in full even when borrowers are debt-ridden, they have no incentive to reduce their loans,

whereas their inaction protracts aggregate inefficiency. Thus, policy interventions by the

government can be effective in restoring economic growth by promoting debt restructuring

or wealth redistribution from lenders to borrowers. Policy measures may include regulatory

reforms to make bankruptcy procedures less costly and debtor friendly and to promote

15The persistence of the productivity slowdown can be preserved even if we relax our assumption of no

entry from outsiders as long as the cost of R&D is sufficiently higher for outsiders than it is for incumbent

firms. It seems plausible to posit that the cost of R&D is substantially higher for outsiders than for

incumbents in any industry.
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Figure 3: TFP for Japan, the United States, and the EU: Comparison between the data

and the simulation

Note: In Japan, TFP is classified as the “market economy” sectors, which excludes education, medical

services, government activities, and imputed housing rent.
Sources: Our calculation; The Research Institute of Economy, Trade and Industry, JIP 2014 database;

Fernald (2012); European Commission, AMECO
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Figure 4: GDP for Japan, the United States, and the EU: Comparison between the data

and the simulation

Sources: Our calculation; Cabinet Office, Government of Japan, Annual Report on National Accounts;

Statistics Bureau of Japan, Labour Force Survey; U.S. Bureau of Economic Analysis, National Income and

Product Accounts; U.S. Bureau of Labor Statistics, “Current Employment Status”; European Commission,

AMECO
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Figure 5: Labor wedge for Japan, the United States, and the EU: Comparison between

the data and the simulation

Sources: Our calculation; Cabinet Office, Government of Japan, Annual Report on National Accounts;

Statistics Bureau of Japan, Labour Force Survey; The Research Institute of Economy, Trade, and Industry,

JIP 2014 database; U.S. Bureau of Economic Analysis, National Income and Product Accounts; U.S. Bureau

of Labor Statistics, Current Employment Status; European Commission, AMECO

debt-for-equity swaps to reduce outstanding debt as well as the injection of funds as a

subsidy or equity to banks that forgive debt and write off NPLs. The injection of a bank

subsidy or equity is usually interpreted as bank recapitalization because the banks become

insolvent in most cases when a substantial number of their borrowers are in distress. This

policy implication is straightforward and robust in our model and seems reasonable from

our experience of Japan’s lost decade of the 1990s, the Great Recession in the United

States, and the subsequent debt crises in Europe, whereas existing models may not clarify

whether borrowers’ relief from excessively accumulated debt is good for an economy hit

by a crisis.

4 Conclusion

Decade-long recessions are often observed after financial crises. In particular, the “secular

stagnation” hypothesis has drawn much attention recently. In this study, we hypothesized

that the buildup of large debt in the private sector causes a persistent economic slow-

down even without technology shocks. This model may be considered to reflect a “debt

supercycle” rather than secular stagnation, as inefficiency can continue persistently but is

removed if debt is reduced. Economic agents can become overly indebted because of, for

example, the boom and bust of asset-price bubbles. We showed that borrowers who owe

the maximum repayable debt fall into a debt-ridden state in which they can repay only

the interest and cannot reduce the principal of the debt, which means that they continue

inefficient production forever in the deterministic case.

The emergence of a substantial number of debt-ridden borrowers lowers economic

growth by tightening the aggregate borrowing constraint. This tightening of aggregate
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borrowing constraints owing to the mass emergence of debt-ridden borrowers may man-

ifest as a “financial shock” during or after a financial crisis. Because lenders have no

incentive to reduce their loans to debt-ridden borrowers, government intervention to fa-

cilitate debt restructuring (i.e., relief for debt-ridden borrowers from their excessive debt)

may be necessary to enhance economic growth in the aftermath of a financial crisis. Our

policy recommendations are in line with those of partial debt forgiveness by Geanakoplos

(2014).

The endogenous borrowing constraint of this study has a unique feature in that debt

that exceeds a threshold generates persistent inefficiency. Therefore, it may serve as a

useful building block for business cycle models, thereby enriching aggregate dynamics.

Broader applications are left for future research.
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A Details of equilibrium dynamics in Section 2.3

We make the following two assumptions.

Assumption 1. The parameters satisfy the following condition:

ξω̄ <
(1− ϕ)fz
rmax

,

where fz ≡ infx∈Λ f(σz(x), x) and rmax ≡ supx∈Λ r(x).

This assumption implies that once the amount of debt bt
Rt

becomes smaller than ξω̄,

it can reach the constrained-efficient level bce(x) (defined below) within a finite number

of periods. This implication is because the firm can repay at least
(1−ϕ)fz
rmax

by paying all

income to the bank in all future periods. Define

µce(x) ≡ τr(x)

1 + r(x)
.

Then, σce(x) is defined as the solution to

∂

∂σ
f(σ, x) =

1 + µce(x)

1 + ϕµce(x)
.
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Define bce(x;S), where S = S(x), by

bce(x;S)

R(x)
≡ ϕf(σce(x), x)− σce(x) + ξS(x).

Assumption 2. The parameters satisfy the following conditions:

sup
x∈Λ

ϕf(σce(x), x)− σce(x) < 0,

such that bce(x;S)
R(x) < ξS(x) for all x, and

inf
x,x−1∈Λ,S∈G

[
f(σce(x), x)− σce(x)− bce(x−1;S) +

bce(x;S)

R(x)

]
> 0.

The first condition of this assumption is satisfied for small τ .16 The second condition of

this assumption implies that once the economy enters the constrained-efficient equilibrium,

it stays there forever. Constrained efficiency is defined and explained in the following

paragraph “Constrained-efficient equilibrium with small debt.” We define the total surplus

of the match of the firm and bank, W (b−1, x), as

W (b−1, x) =
1 + r−1

R−1
b−1 + V (b−1, x).

Note that the bank receives 1+r−1

R−1
b−1 from the firm, whereas the net payment for the firm

is b−1 because the government provides it with a tax advantage τr−1

R−1
b−1. Thus, the firm’s

problem is equivalent to maximizing W (b−1, x) given b−1. Function W (b−1, x) satisfies

the following dynamic programming equation:

W (b−1, x) =max
σ,b

r−1τ

R−1
b−1 + f(σ, x)− σ + E

[m+1

m
W (b, x+1)

]
, (17)

subject to f(σ, x)− σ − b−1 +
b

R
≥ 0, (18)

σ ≤ ϕf(σ, x) + max

{
ξS(x)− b

R
, 0

}
, (19)

b ≤ bz(x). (20)

By denoting the Lagrange multipliers for (18), (19), and (20) as λπ, µ, and ν, respectively,

the FOCs and envelope condition are

∂

∂σ
f(σ, x) =

1 + µ
1+λπ

1 + ϕ µ
1+λπ

, (21){
RE[m+1

m
∂
∂bW (b, x+1)] + λπ − ν − µ = 0, if ξS(x) ≥ b

R ,

RE[m+1

m
∂
∂bW (b, x+1)] + λπ − ν = 0, if ξS(x) < b

R ,
(22)

∂

∂b
W (b−1, x) =

r−1τ

R−1
− λπ. (23)

The equilibrium values of the five endogenous variables {σ, b, λπ, µ, ν}, and ∂
∂bW (b−1, x)

are determined by the constraints (18)–(20) and the conditions (21)–(23).

16In the steady state, where the state is time-invariant, this condition is equivalent to τr
1+r

< η−ϕ
(1−η)ϕ

.
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A.1 Special case with τ = 0

In the special case in which τ = 0, the firm is indifferent between debt and equity as a tool

for funding as long as the amount of debt is sufficiently small that the borrowing constraint

is non-binding. When τ = 0, the variables satisfy σce(x) = σ∗(x) and bce(x) = b∗(x) in

Assumption 2, which implies that once the economy enters the first-best equilibrium, where

{σt, bt} = {σ∗(xt), b∗(xt)}, it stays there forever: {σt+j , bt+j} = {σ∗(xt+j), b∗(xt+j)}, for
all j ≥ 1. This result is because for any b∗(x−1), the firm can choose σ = σ∗(x) because

π can be non-negative when it chooses σ = σ∗(x) for all x ∈ Λ(x−1).

We define W ∗(x), b∗(x;S), B∗(x;S), Bz(x;S), and B̄z(x) by

W ∗(x) ≡ f(σ∗(x), x)− σ∗(x) + E
[m+1

m
W ∗(x+1)

]
,

b∗(x;S)

R(x)
≡ ϕf(σ∗(x), x)− σ∗(x) + ξS(x),

B∗(x;S) ≡ f(σ∗(x), x)− σ∗(x) +
b∗(x;S)

R(x)
,

Bz(x;S) ≡ f(σz(x), x)− σz(x) + ξS(x),

B̄z(x) ≡ f(σz(x), x)− σz(x) +
bz(x)

R(x)
.

The meanings of the above variables are as follows: W ∗(x) is the first-best value of the

match between the bank and firm in the case where τ = 0; b∗(xt) is the maximum amount

of debt bt feasible in the first-best equilibrium, where σt = σ∗(xt); B∗(xt;S) is the

maximum amount of debt bt−1 repayable in the first-best equilibrium where σt = σ∗(xt);

Bz(xt;S) is the minimum amount of debt bt−1 that makes bt
Rt

≥ ξS(xt); and B̄z(xt) is

the maximum amount of debt bt−1 repayable with certainty given that the current state

in period t is xt. Capital B is used to represent the debt threshold.

In the case where τ = 0, the equilibrium dynamics are qualitatively the same as those

in Albuquerque and Hopenhayn (2004). We can show the following lemma, which is

equivalent to Lemma 3 in Albuquerque and Hopenhayn (2004). The difference is that the

debt in our model is not state-contingent, whereas it is state-contingent in their model.

Lemma 3. For a given state x,

(i) W (b−1, x) is weakly decreasing in b−1.

(ii) For all b−1 ≤ B∗(x;S), W (b−1, x) = W ∗(x).

(iii) For all b−1 > B∗(x;S), W (b−1, x) < W ∗(x) and π = 0.

Proof. The proof of (i) is as follows. As τ = 0, the envelope condition (23) implies

that ∂
∂bW (b, x) = −λπ ≤ 0, that is, W (b−1, x) is weakly decreasing in b−1. (ii) follows

immediately from the facts that B∗(x;S)− b−1 is the dividend when b−1 < B∗(x;S) and
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the firm chooses σ = σ∗(x) and that Assumption 2 implies that if σt = σ∗(xt), then

σt+j = σ∗(xt+j) for all j. (iii) is shown as follows. When B∗(x;S) < b−1 ≤ Bz(x;S), we

have b∗(x;S)
R(x) < b(x;S)

R(x) ≤ ξS(x). This inequality and the definition of b∗(x;S) imply that the

borrowing constraint is tight and σ(x) < σ∗(x). Thus, W (b−1, x) < W ∗(x). Now, suppose

that π > 0 in this case. Then, the firm can relax the borrowing constraint by reducing π

and b and can increase W (b−1, x). This is a contradiction. Therefore, π should be zero.

When b−1 > Bz(x;S), it is clear that W (b−1, x) < W ∗(x), and there exists T such that

the borrowing constraint is σt ≤ ϕf(σt, xt) for 0 ≤ t < T , and σt ≤ ϕf(σt, xt) + ξSt − bt
Rt

for t ≥ T in the sequential problem corresponding to the Bellman equation (17). Suppose

π0 > 0. Then, the firm can relax the borrowing constraint at T by reducing π0 and b0 and

can increase W (b−1, x). This is a contradiction. Thus, π0 should be zero.

This lemma implies that if b−1 > B∗(x;S), then the firm repays as much debt as

possible by setting the dividend to zero: π = 0. This firm’s behavior is the same as that

in Albuquerque and Hopenhayn (2004). If b−1 > Bz(x;S), then σ = σz(x), where σz(x)

is the solution to σ = ϕf(σ, x). Now, we turn to the general case where τ > 0.

A.2 Case with τ > 0

The features of the equilibrium path in the case where τ > 0 are characterized by the

initial amount of inter-period debt b−1. We define

Bce(x;S) ≡ f(σce(x), x)− σce(x) +
bce(x;S)

R(x)
.

Note that the definition of bce(x;S) implies that Bce(x;S) = (1− ϕ)f(σce(x), x) + ξS(x).

Thus, the definition of σz(x) and (9) imply that

Bce(x;S) < Bz(x;S) < bz(x). (24)

Constrained-efficient equilibrium with small debt: We focus on the case where

initial debt b−1 is sufficiently small (i.e., b−1 < Bce(x;S)). In this case, the borrowing

constraint is written as

σ ≤ ϕf(σ, x) + ξS(x)− b

R
. (25)

When µ > 0, the FOCs imply that ∂
∂kF (A, k, l) > rK and ∂

∂lF (A, k, l) > w. It immediately

follows that inputs k and l are inefficiently smaller than their efficient levels, k∗ and l∗,

which are given by ∂
∂kF (A, k∗, l∗) = rK and ∂

∂lF (A, k∗, l∗) = w, respectively. Note that

the borrowing constraint is always binding (i.e., µ > 0) because the firm borrows inter-

temporal debt to exploit the tax advantage. We call the equilibrium constrained-efficient

if λπ,t = νt = 0 for all t. We assume and justify later that λπ = λπ,+1 = ν = 0 when

b−1 < Bce(x;S). In this case, conditions (21)–(23) imply E[m+1

m ] rτR = µ
R , which can
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be rewritten as µ = µce(x). Therefore, the tightness of the borrowing constraint (19)

(or (25)) in the constrained-efficient equilibrium, µce(x), is not dependent on b−1 and

is decided solely by the tax advantage. Therefore, the value of σ in the constrained-

efficient equilibrium, σce(x), is also independent of b−1. The value of b should be bce(x;S).

Note that Assumption 2 guarantees that once the economy enters the constrained-efficient

equilibrium, it stays there forever. This result is because for any bce(x−1;S), the firm

can choose σ = σce(x) because π can be non-negative when it chooses σ = σce(x) for all

x ∈ Λ(x−1). Thus, our assumption that λπ = λπ,+1 = ν = 0 is justified.

Medium-sized debt: Consider the case where initial debt b−1 is medium-sized (i.e.,

Bce(x;S) ≤ b−1 < Bz(x;S)). In this case, the borrowing constraint is still (25). We focus

on the cases in which the parameter values are chosen such that ν = 0 in equilibrium when

b−1 is medium-sized.17 Then, we have the following lemma.

Lemma 4. Consider the case where b−1 is medium-sized and σ < σce(x) in equilibrium.

Then, λπ > 0, and the dividend is equal to zero, π = 0, in equilibrium.

Proof. The proof is by contradiction. Suppose that λπ = 0. Then, conditions (22) and

(23) imply that µ = RE[m+1

m ( rτR − λπ+1)] ≤ rτ
1+r = µce, which, together with (21), implies

that σ ≥ σce(x). This is a contradiction. Thus, λπ = 0 cannot hold in equilibrium. Hence,

λπ > 0 and π = 0 in equilibrium.

The values of {k, l, b, µ} are determined by the budget constraint (3) with π = 0, the

borrowing constraint (25), the FOC (21), and

k

l
=

(
α

1− α

)
w

rK
,

where the last equation is derived from the conditions for k and l to maximize F (A, k, l)

subject to rKk+wl ≤ σ. Given that outstanding debt b−1 is medium-sized, the firm repays

as much debt as possible by setting π = 0 and eventually returns to the constrained-

efficient equilibrium. Assumption 1 implies that it takes a finite number of periods to

return to the constrained-efficient equilibrium. These features are qualitatively the same

as those of debt repayment in Albuquerque and Hopenhayn (2004).

Large debt: If b−1 ≥ Bz(x), the borrowing constraint becomes

σ ≤ ϕf(σ, x). (26)

Then, the FOC (22) implies

E
[
m+1

m

∂

∂b
W (b, x+1)

]
=

ν − λπ

R
.

It immediately follows that

17ν = 0 holds if the parameters satisfy (27).
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• If λπ > 0, then π = 0, b = R{b−1 − f(σz(x), x) + σz(x)}, and ν = 0.

• If ν > 0, debt jumps to the upper limit (i.e., b = bz(x)), λπ = 0, and π > 0.

Note that although the FOCs should be satisfied at the solution, the choice between

b = R{b−1 − f(σz(x), x) + σz(x)} and b = bz(x) cannot be determined by the FOCs

alone because they are the local maxima. The firm compares the total surplus when

b = R{b−1 − f(σz(x), x) + σz(x)} with that when b = bz(x) and then chooses the higher

surplus. Define W (1)(b−1, x) and W (2)(b−1, x) by

W (1)(b−1, x) =
τr−1

R−1
b−1 + f(σz(x), x)− σz(x) + E

[m+1

m
W (bz(x), x+1)

]
,

W (2)(b−1, x) =
τr−1

R−1
b−1 + f(σz(x), x)− σz(x) + E

[m+1

m
W (R{b−1 − f(σz, x) + σz}, x+1)

]
.

Here, W (1)(b−1, x) is the total surplus when the firm chooses b = bz(x) and W (2)(b−1, x)

is that when the firm chooses b = R{b−1 − f(σz(x), x) + σz(x)}. Then, W (b−1, x) is given

by

W (b−1, x) = max {W (1)(b−1, x), W (2)(b−1, x)}.

We assume that the values of the parameters are chosen such that

W (1)(Bz(x;S), x) < W (2)(Bz(x;S), x), for all x. (27)

From the definition of B̄z(x), the following equality holds:

W (1)(B̄z(x), x) = W (2)(B̄z(x), x), for all x. (28)

Then, the following lemma holds.

Lemma 5. There exist Bc(x;S) and B̄c(x;S) such that Bz(x;S) < Bc(x;S) ≤ B̄c(x;S) ≤
B̄z(x) and

• If b−1 ∈ [Bz(x;S),Bc(x;S)), then W (1)(b−1, x) < W (2)(b−1, x), π = 0, and b =

R{b−1 − f(σz(x), x) + σz(x)}.

• If b−1 ∈ [B̄c(x;S), B̄z(x)], then W (1)(b−1, x) ≥ W (2)(b−1, x) and b = bz(x).

Proof. The lemma follows immediately from the continuity ofW (1)(b−1, x) andW (2)(b−1, x)

together with (27) and (28).

In the general case with stochastic shocks, we can only say that B̄c(x;S) ≤ B̄z(x),

whereas, in the deterministic case, where xt evolves deterministically, it is shown that

B̄c,t < B̄z,t. Thus, the firm intentionally increases borrowing to bz,t when outstanding

debt bt−1 is sufficiently large, such that B̄c,t ≤ bt−1 < B̄z,t.
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B Proof of Proposition 2

We prove Proposition 2 using the Schauder fixed point theorem (see, for example, Theorem

17.4 in Stokey and Lucas with Prescott, 1989). First, we posit the following assumption.

Assumption 3. The values of the parameters satisfy infx∈Λ(1−ϕ)f(σz(x), x) > ∇, where

∇ is defined by

∇ = sup
x∈Λ,x+1∈Λ(x),S∈G

∣∣∣∣Bce(x;S)− Bce(x+1;S)

R(x)

∣∣∣∣ .
Note that this assumption is always satisfied in the case where the state and prices

do not change over time. In this case, infx∈Λ(1 − ϕ)f(σz(x), x) > ∇ can be rewritten

as (1 − ϕ)f(σz) = rbz > R−1
R Bce, which is clearly satisfied because 1 < R < 1 + r and

bz > Bce, as (24) in Appendix A implies.

Now, we define several parameters.

Definition 1. Define rmin, Rmax, and fmax as follows:

rmin = inf
x∈Λ

r(x),

Rmax = sup
x∈Λ

R(x),

fmax = sup
x∈Λ

∂

∂σ
f(σz(x), x).

Note that fmax is the upper bound for ∂
∂σf(σ, x) because σ ≥ σz(x) for all x, and f(σ, x)

is increasing and concave in σ. It is easily shown that

fmax =
η

ϕ
.

Proposition 1 shows that, given S(xt), there exists a solution to (6) in which the value

function can be denoted as V (b, x;S). Define the operator T that maps S(xt) to TS(xt),

where

TS(xt) ≡ max
b

Et

[
mt+1

mt
V (b, xt+1;S)

]
+

b

Rt
.

If the mapping T : G → G is continuous and the family T (G) is equicontinuous, then the

Schauder fixed point theorem applies, and it is shown that T has a fixed point in G. Then,

Proposition 2 is proven.

T is clearly a mapping from G to G, because T (G) ⊆ G. The continuity of T follows

directly from the continuity of V (b, x;S) with respect to S, which is shown in the following

lemma.

Lemma 6. V (b, x;S) is continuous with respect to S, that is, for all ε > 0, there exists

δ > 0 such that if |S−S′| < δ for any S, S′ ∈ G, then |V (b, x;S)−V (b, x;S′)| < ε, where

the norms are the sup norm.
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Proof. The equivalence between the functional equation (6) and the corresponding infinite

horizon problem shown in Theorem 9.2 of Stokey and Lucas with Prescott (1989) implies

that

V (b, x;S) = max
{σt,bt}∞t=0

E0

[ ∞∑
t=0

mt

m0
πt

]
,

subject to πt = f(σt, xt)− σt − bt−1 +
bt
Rt

,

σt ≤ ϕf(σt, xt) + max

{
ξS(xt)−

bt
Rt

, 0

}
,

bt ≤ bz(xt),

πt ≥ 0,

b−1 = b,

x0 = x.

The solution to the above problem is a path: {σt, bt}∞t=0. Assumptions 1 and 2 directly

imply that there are three stages in this path, that is, given b−1, there exist two integers,

t1 and t2, where 0 ≤ t1 ≤ t2 ≤ ∞, such that

• Stage 1 (Bz,t < bt−1 ≤ B̄z,t): ξS(xt) <
bt
Rt

for 0 ≤ t < t1;

• Stage 2 (Bce
t < bt−1 ≤ Bz,t): ξS(xt) ≥ bt

Rt
and σt < σce(xt) for t1 ≤ t < t2;

• Stage 3 (bt−1 ≤ Bce
t ): ξS(xt) ≥ bt

Rt
and σt = σce(xt) for t ≥ t2.

Note that the values of t1 and t2 are history-dependent,18 but history dependence does

not affect the following proof. Assumption 1 implies that once the economy enters Stage

2, it never returns to Stage 1. Assumption 2 implies that once the economy enters Stage

3, it never returns to Stage 2. As we saw in Section 2.3, πt = 0 in Stages 1 and 2, and

πt > 0 in Stage 3.

Now, we evaluate |V (b, x;S)−V (b, x;S+δ/ξ)|, where S+δ/ξ = S(x)+δ/ξ for a small

δ > 0. We use {σt(δ), bt(δ)}∞t=0 = {σt + σ̂t(δ), bt − b̂t(δ)}∞t=0 to denote the solution to the

above infinite horizon problem, with S replaced by S + δ/ξ. The corresponding dividend

stream is written as {πt(δ)}∞t=0 = {πt+π̂t(δ)}∞t=0. The boundary of stages, {t1, t2}, changes
to {t1(δ), t2(δ)}. We assume that δ is sufficiently small, such that

(Θ + 1)δ < inf
x∈Λ

(1− ϕ)f(σz(x), x)−∇, (29)

where Θ is defined in (36) below. Note that Assumption 3 warrants the existence of

δ (> 0).

18History dependence is described as follows. Define x̃ = {xt}∞t=0 and x̃′ = {x′
t}∞t=0. The history-

dependent ti is a function of x̃, which is written as ti(x̃), for i = 1, 2. It satisfies that ti(x̃) = ti(x̃
′) if

xt = x′
t for all t ∈ {0, 1, 2, · · · , ti}, for i = 1, 2.
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Stage 1: For t ≤ t1(δ),
bt
Rt

> ξSt + δ. Thus, for t ≤ t1(δ), the change from

ξS to ξS + δ does not change the variables; (σt(δ), bt(δ)) = (σt, bt) or (σ̂t(δ), b̂t(δ)) =

(0, 0). The dividend is also zero: πt(δ) = πt = 0. Therefore, as (29) implies that

δ < infx∈Λ f(σz(x), x) − σz(x), it is clear that t1 − 1 ≤ t1(δ) ≤ t1. We evaluate the

value of bt1−1(δ), which is the initial debt at the beginning of t1, in the case where ξSt

changes to ξSt + δ in the above borrowing constraint.

• Case where t1(δ) = t1 :

In this case, it is obvious that bt(δ) = bt for all t ≤ t1 − 1. Thus, bt1−1(δ) = bt1−1.

• Case where t1(δ) = t1 − 1 :

In this case, bt1−2(δ) = bt1−2 and ξSt1−1 ≥ bt1−1(δ)

Rt1−1
. The budget and borrowing

constraints in period t1 − 1 imply

bt1−2 − ξSt1−1 − δ = (1 + ϕ)f(σt1−1(δ), xt1−1)− 2σt1−1(δ). (30)

In the original problem with ξSt, the budget and borrowing constraints imply

bt1−2 − ξSt1−1 > (1 + ϕ)f(σz,t1−1, xt1−1)− 2σz,t1−1. (31)

The parameter restriction that η
2−η < ϕ in Assumption 3 implies that (1+ϕ) ∂

∂σf(σ, x)−
2 ≤ (1+ϕ)fmax−2 < 0, which implies that function (1+ϕ)f(σ, x)−2σ is decreasing

in σ. Thus, σ̂t1−1(δ) > 0, and (30) and (31) imply

0 ≤ (1 + ϕ)f(σz,t1−1, xt1−1)− 2σz,t1−1 − [(1 + ϕ)f(σt1−1(δ), xt1−1)− 2σt1−1(δ)] ≤ δ.

(32)

The concavity of f(σ, x) and (1 + ϕ) ∂
∂σf(σ, x)− 2 < 0 imply that

(1 + ϕ)f(σt1−1(δ), xt1−1)− 2σt1−1(δ) < (33)

(1 + ϕ)f(σz,t1−1, xt1−1)− 2σz,t1−1 − [2− (1 + ϕ)fmax]σ̂t1−1(δ).

Inequalities (32) and (33) imply that

0 ≤ σ̂t1−1(δ) ≤
δ

2− (1 + ϕ)fmax
.

Then,
bt1−1(δ)

Rt1−1
= ϕf(σt1−1(δ), xt1−1)− σt1−1(δ) + ξSt1−1 + δ must satisfy[

1− (1 + ϕ)fmax

2− (1 + ϕ)fmax

]
δ ≤ bt1−1(δ)

Rt1−1
− bt1−1

Rt1−1
≤
[

2− fmax

2− (1 + ϕ)fmax

]
δ.

Therefore, there exists a positive number C−1 such that bt1−1 − C−1δ < bt1−1(δ) <

bt1−1 + C−1δ.
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Stage 2: Note that πt(δ) = 0 for t ≤ t2(δ) − 1. We denote t = t1 + n and count

time by n. The above analysis of Stage 1 implies that bt1−1(δ) satisfies bt1−1 − C−1δ <

bt1−1(δ) < bt1−1 + C−1δ. We change the subscript of the variables from t to n. Define n̄

as the solution to

ξω̄ =

n̄∑
i=1

(1− ϕ)fz
(1 + rmax)i

.

Note that Assumption 1 warrants that this equation has a finite solution n̄ and that n̄

does not depend on S(x). Then,

t2(δ)− t1(δ) ≤ n̄.

In period n = 0, which corresponds to t = t1, we have f(σ0(δ)) − σ0(δ) ≤ f(σ0) − σ0 +

(fmax−1)σ̂0(δ). The budget constraint implies that b̂0(δ)
R0

≤ (fmax−1)σ̂0(δ)+C−1δ. Then,

the borrowing constraint implies that σ̂0(δ) ≤ ϕfmaxσ̂0(δ) + δ + (fmax − 1)σ̂0(δ) + C−1δ,

which can be rewritten as σ̂0(δ) =
(1+C−1)δ

2−(1+ϕ)fmax
. We define

A0 ≡
fmax − 1

2− (1 + ϕ)fmax
(> 0).

Then, (fmax − 1)σ̂0(δ) = (1 + C−1)A0δ and b0(δ)
R0

≥ b0
R0

− (1 + C−1)A0δ. In period n = 1,

f(σ1(δ)) − σ1(δ) ≤ f(σ1) − σ1 + (fmax − 1)σ̂1(δ). The budget constraint implies that
b̂1(δ)
R1

≤ (fmax − 1)σ̂1(δ) + (1+C−1)RmaxA0δ. Then, the borrowing constraint implies that

σ̂1(δ) ≤ ϕfmaxσ̂1(δ) + δ+ (fmax − 1)σ̂1(δ) + (1+C−1)RmaxA0δ, which can be rewritten as

σ̂1(δ) =
[1+(1+C−1)RmaxA0]

2−(1+ϕ)fmax
δ. We define

A1 ≡ A0[1 + (1 + C−1)RmaxA0].

Then, (fmax − 1)σ̂1(δ) = A1δ and b1(δ)
R1

≥ b1
R1

− [(1+C−1)RmaxA0 +A1]δ. In period n = 2,

f(σ2(δ)) − σ2(δ) ≤ f(σ2) − σ2 + (fmax − 1)σ̂2(δ). The budget constraint implies that
b̂2(δ)
R2

≤ (fmax − 1)σ̂2(δ) + [(1 + C−1)R
2
maxA0 +RmaxA1]δ. Then, the borrowing constraint

implies that σ̂2(δ) ≤ ϕfmaxσ̂2(δ) + δ + (fmax − 1)σ̂2(δ) + [(1 + C−1)R
2
maxA0 + RmaxA1]δ,

which can be rewritten as σ̂2(δ) =
[1+(1+C−1)R2

maxA0+RmaxA1]
2−(1+ϕ)fmax

δ. We define

A2 ≡ A0[1 + (1 + C−1)R
2
maxA0 +RmaxA1].

Then, (fmax − 1)σ̂2(δ) = A2δ and b2(δ)
R2

≥ b2
R2

− [(1 + C−1)R
2
maxA0 + RmaxA1 + A2]δ.

Similarly, the following claim is proven by induction. To simplify the notation, we define

A−1 ≡
C−1A0

Rmax
.

Then, A1 = A0(1+RmaxA0+R2
maxA−1) and A2 = A0(1+RmaxA1+R2

maxA0+R3
maxA−1).

Claim 1. Suppose the economy is in Stage 2 in period n (for 0 ≤ n ≤ n̄). Then,

b̂n(δ)

Rn
≤

(
n+1∑
i=0

Ri
maxAn−i

)
δ, (34)
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where An is defined by

An ≡ A0

[
1 +Rmax

(
n+1∑
i=0

Ri
maxAn−i

)]
.

Proof. This claim holds true for n = 0, 1, 2,, as we see above. Suppose (34) holds true for

n = j. Then, for n = j + 1, the budget constraint and borrowing constraint imply that

0 ≤ (fmax − 1)σ̂j+1(δ) +Rmax

(
j+1∑
i=0

Ri
maxAj−i

)
δ − b̂j+1(δ)

Rj+1
, (35)

σ̂j+1(δ) ≤ ϕfmaxσ̂j+1(δ) + δ +
b̂j+1(δ)

Rj+1
.

These equations imply that

(fmax − 1)σ̂j+1(δ) ≤ A0

[
1 +Rmax

(
j∑

i=0

Ri
maxAj−i

)]
δ.

Defining Aj+1 ≡ A0

[
1 +Rmax

(∑j
i=0R

i
maxAj−i

)]
, this equation is written as (fmax −

1)σ̂j+1(δ) = Aj+1δ, and (35) implies that
b̂j+1(δ)
Rj+1

≤ Aj+1δ + Rmax

(∑j
i=0R

i
maxAj−i

)
δ =(∑j+1

i=0 R
i
maxAj+1−i

)
δ. Therefore, it has been shown that (34) holds true for 0 ≤ n ≤ n̄

as long as period n is in Stage 2. This proves Claim 1.

Now, as t2(δ)− t1(δ) ≤ n̄, it holds true that for n ≤ t2(δ)− t1(δ),

b̂n(δ)

Rn
≤ Θδ,

where the constant, Θ, is defined by

Θ ≡

(
n̄+1∑
i=0

Ri
maxAn̄−i

)
. (36)

Stage 3: Now, we use subscript t instead of n. We can show that t2−1 ≤ t2(δ) ≤ t2 as

follows. Define Bce
t (δ) ≡ f(σce

t , xt) − σce
t +

bcet (δ)
Rt

and
bcet (δ)
Rt

≡ ϕf(σce
t , xt) − σce

t + ξSt + δ.

Thus, Bce
t (δ) = Bce

t + δ and
bcet (δ)
Rt

=
bcet
Rt

+ δ. We know that bt2−1 < Bce
t2 and

bt > Bce
t+1, for t ≤ t2 − 2. (37)

The variables bt(δ) and Bce
t+1(δ) for t1(δ) ≤ t ≤ t2 − 3 satisfy the following inequality:

bt(δ)−Bce
t+1(δ) ≥ bt −Bce

t+1 − (Θ + 1)δ

> inf
x∈Λ

(1− ϕ)f(σz(x), x) +
bt+1

Rt+1
−Bce

t+1 − (Θ + 1)δ

> inf
x∈Λ

(1− ϕ)f(σz(x), x) +
Bce

t+2

Rt+1
−Bce

t+1 − (Θ + 1)δ

> inf
x∈Λ

(1− ϕ)f(σz(x), x)−∇− (Θ + 1)δ > 0.
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The first inequality is due to bt(δ) ≥ bt−Θδ and Bce
t (δ) = Bce

t +δ. The second inequality is

due to bt =
bt+1

Rt+1
+ f(σt+1, xt+1)−σt+1 ≥ bt+1

Rt+1
+inf(1−ϕ)f(σz,t, xt). The third inequality

is due to (37). The fourth inequality is due to the definition of ∇ in Assumption 3. The

final inequality is due to (29). Thus, we have shown that the economy is in Stage 2

for t ≤ t2 − 2. Therefore, it must be the case that t2(δ) = t2 − 1 or t2. We evaluate

|V (b, x;S)− V (b, x;S + δ/ξ)| for each case.

• Case where t2(δ) = t2:

In this case,

πt2(δ) = f(σce
t2 , xt2)− σce

t2 +
bcet2 (δ)

Rt2

− bt2−1(δ)

≤ f(σce
t2 , xt2)− σce

t2 +
bcet2
Rt2

+ δ − bt2−1 +Θδ

= πt2 + (Θ + 1)δ.

The inequality is due to
bcet2

(δ)

Rt2
=

bcet2
Rt2

+ δ and bt2−1(δ) ≥ bt2−1 −Θδ. For t ≥ t2 + 1,

πt(δ) = f(σce
t , xt)− σce

t +
bcet (δ)

Rt
− bcet−1(δ)

= πt + (1−Rt−1)δ.

In this case, using the fact that t2(δ) ≥ 0,

|V (b, x;S)− V (b, x;S + δ/ξ)| ≤ E0

[ ∞∑
t=0

mt

m0
|πt − πt(δ)|

]

≤ (Θ + 1)δ +

∞∑
t=1

Rmax − 1

(1 + rmin)t
δ

=

(
Θ+ 1 +

Rmax − 1

rmin

)
δ.

• Case where t2(δ) = t2 − 1:

In the original firm’s problem with S, it holds true that bt2−2 > Bce
t2−1 and bt2−1 ≤

Bce
t2 , whereas in the modified firm’s problem with S+δ/ξ, it holds true that bt2−2(δ) ≤

Bce
t2−1(δ), where bt2−2(δ) ≥ bt2−2−Θδ. In the original problem, the budget constraint

with πt2−1 = 0 and the borrowing constraint imply

(1 + ϕ)f(σt2−1, xt2−1)− σt2−1 = bt2−2 − ξSt2−1. (38)

In the modified problem, there exists Ĉ(bt2−2) such that 0 < Ĉ(bt2−2) ≤ Θ and

bt2−2 − Ĉ(bt2−2)δ = Bce
t2−1(δ).

This equation and the borrowing constraint σce
t2−1 = ϕf(σce

t2−1, xt2−1) + ξSt2−1 + δ−
bcet2−1(δ)/Rt2−1 together imply that

(1 + ϕ)f(σce
t2−1, xt2−1)− σce

t2−1 = bt2−2 − ξSt2−1 − (Ĉ(bt2−2) + 1)δ. (39)
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The derivative of function (1 + ϕ)f(σ, x)− 2σ satisfies

−2 < (1 + ϕ)
∂

∂σ
f(σ, x)− 2 < (1 + ϕ)fmax − 2 < 0. (40)

The rightmost inequality is due to fmax = η/ϕ and η
2−η < ϕ. Then, because (1 +

ϕ)f(σ, x) − 2σ is concave and continuously differentiable with respect to σ, the

equations (38) and (39), together with inequality (40), imply that

σce
t2−1 −

Ĉ(bt2−2) + 1

2− (1 + ϕ)fmax
δ ≤ σt2−1 ≤ σce

t2−1 −
Ĉ(bt2−2) + 1

2
δ.

The fact that 0 < Ĉ(bt2−2) ≤ Θ implies that

σce
t2−1 − Φδ ≤ σt2−1 ≤ σce

t2−1 −
1

2
δ, (41)

where Φ ≡ Θ+1
2−(1+ϕ)fmax

. This inequality and the concavity and differentiability of

f(σ, x) imply that

bcet2−1(δ)

Rt2−1
+ (ηΦ+ 1)δ <

bt2−1

Rt2−1
<

bcet2−1(δ)

Rt2−1
+ (Φ− 1)δ (42)

because bt2−1/Rt2−1 = ϕf(σt2−1, xt2−1)−σt2−1+ ξSt2−1. Now, we evaluate πt(δ) for

t = t2−1, t2, t2+1, · · · . We know πt2−1 = 0 in the original problem. The inequalities

(41) and (42), together with bt2−2(δ) ≥ bt2−2 −Θδ, imply that

πt2−1(δ) ≤ f(σce
t2−1, xt2−1)− σce

t2−1 +
bcet2−1(δ)

Rt2−1
− bt2−2 +Θδ

≤ f(σt2−1 +Φδ, xt2−1)− σt2−1 −
1

2
δ +

bt2−1

Rt2−1
− (ηΦ+ 1)δ − bt2−2 +Θδ

<

[
(fmax − η)Φ + Θ− 3

2

]
δ.

Similarly,

πt2(δ) = f(σce
t2 , xt2)− σce

t2 +
bcet2 (δ)

Rt2

− bcet2−1(δ)

≤ f(σce
t2 , xt2)− σce

t2 +
bcet2
Rt2

+ δ − bt2−1 +Rt2−1(Φ− 1)δ

= πt2 + [1 +Rt2−1(Φ− 1)]δ.

For t ≥ t2 + 1, the same result holds as in the case where t2(δ) = t2:

πt(δ) = πt + (1−Rt−1)δ.
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Define Ψ ≡ supx∈Λ |1 +R(x)(Φ− 1)|. Then, using t2 − 1 ≥ 0,

|V (b, x;S)− V (b, x;S + δ/ξ)|

≤ E0

[ ∞∑
t=0

mt

m0
|πt − πt(δ)|

]

≤
[
(fmax − η)Φ + Θ− 3

2

]
δ +

Ψ

1 + rmin
δ +

∞∑
t=2

Rmax − 1

(1 + rmin)t
δ

=

[
(fmax − η)Φ + Θ− 3

2
+

Ψ

1 + rmin
+

Rmax − 1

(1 + rmin)rmin

]
δ.

The above analysis of Stages 1–3 implies that there exists a positive number C that

does not depend on (ε, δ, S) such that for a sufficiently small and positive number δ that

satisfies (29),

|V (b, x;S + δ/ξ)− V (b, x;S)| < Cδ.

This inequality implies that, for any small ε > 0, there exists δ ≤ ε
C , such that |V (b, x;S′)−

V (b, x;S)| < ε if |S′−S| < δ. Thus, V (b, x;S) is continuous with respect to S. This proves

Lemma 6.

Given the continuity of V , it is clear that T is continuous with respect to S; that is, for

any ε > 0, there exists δ > 0 such that |TS′ − TS| < ε if |S′ − S| < δ. The equicontinuity

of T (G) is also shown as follows.

Lemma 7. T (G) is an equicontinuous family; that is, for all ε > 0, there exists δ > 0

such that for all TS(x) ∈ T (G), |TS(x′)− TS(x)| < ε if |x′ − x| < δ.

Proof. Pick a small ε (> 0) arbitrarily. We fix ε throughout this proof. As TS is defined

as TS(x) = maxb E
[

m′

m(x)V (b, x′, S)
]
+ b

R(x) , the continuity of V with respect to x (see

Proposition 1) implies that there exists δ > 0 such that |TS(x′)−TS(x)| < ε
2 , if |x

′−x| < δ.

Note that the maximum value of δ that satisfies the above condition must depend on S ∈ G.

Define δ(S) by

δ(S) ≡ sup{δ| |TS(x′)− TS(x)| < ε
2 , if |x

′ − x| < δ}.

Pick an arbitrary sequence of positive real numbers {δn}∞n=0 that satisfies 0 < δn+1 < δn

and limn→∞ δn = 0. Define

Gn ≡ {S|δ(S) ≥ δn, S ∈ G}.

Clearly,

Gn ⊆ Gn+1 ⊆ G, and lim
n→∞

Gn = G.

Now, the following claim holds.
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Claim 2. For all δ > 0, there exists n such that for all S ∈ G, there exists Sn ∈ Gn such

that |S − Sn| ≤ δ.

Proof. Suppose that this claim is false. Then, there exists δ > 0 such that for all n > 0,

there exists Sc
n ∈ G such that |Sc

n − Sn| > δ for all Sn ∈ Gn. We denote the set of Sc
n

by Gc
n(δ). The assumption implies that Gc

n(δ) ̸= ∅, for all n. Clearly, Gn ∩ Gc
n(δ) = ∅,

Gn ∪ Gc
n(δ) ⊆ G, and Gc

n+1(δ) ⊆ Gc
n(δ) ⊆ G. Taking the limit of n → ∞ implies that

limn→∞Gc
n(δ) ̸= ∅, which contradicts limn→∞Gn = G. This proves Claim 2.

The continuity of T implies that there exists δ1 such that |TS′−TS| < ε
4 if |S′−S| ≤ δ1.

The above claim implies that there exists n such that, for all S ∈ G, there exists Sn ∈ Gn

that satisfy |S − Sn| ≤ δ1. By definition, |TSn(x
′) − TSn(x)| ≤ ε

2 if |x′ − x| < δn. Now,

we show the equicontinuity of T (G). For a given ε(> 0), we choose δ1 and Gn as above.

Given (ε, δ1, δn), it holds that for all S ∈ G, there exists Sn ∈ Gn such that the following

inequality holds for any x and x′ (∈ Λ) that satisfy |x− x′| ≤ δn:

|TS(x′)− TS(x)| = |TS(x′)− TSn(x
′)− TS(x) + TSn(x) + TSn(x

′)− TSn(x)|

≤ |TS(x′)− TSn(x
′)|+ |TS(x)− TSn(x)|+ |TSn(x

′)− TSn(x)|

≤ ε

4
+

ε

4
+

ε

2
= ε.

Thus, it has been shown that T (G) is equicontinuous. This proves Lemma 7.

As the mapping T : G → G is continuous and the family T (G) is equicontinuous, then,

given that G is non-empty, closed, bounded, and convex, the Schauder fixed point theorem

implies that T has a fixed point in G.

C Details of the deterministic case in Section 2.5

In this Appendix, we use prime (′) to indicate differentiation.

The firm’s problem is

Wt(bt−1) =max
σt,bt

rt−1τ

Rt−1
bt−1 + ft(σt)− σt +

mt+1

mt
Wt+1(bt),

subject to ft(σt)− σt − bt−1 +
bt
Rt

≥ 0,

σt ≤ ϕft(σt) + max

{
ξSt −

bt
Rt

, 0

}
,

bt ≤ bz,t.
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The FOCs and envelope condition are

f ′
t(σt) =

1 + µt

1+λπ,t

1 + ϕ µt

1+λπ,t

,{
mt+1

mt
W ′

t+1(bt) +
λπ,t−νt−µt

Rt
= 0, if ξSt ≥ bt

Rt
,

mt+1

mt
W ′

t+1(bt) +
λπ,t−νt

Rt
= 0, if ξSt <

bt
Rt

,

W ′
t(bt−1) =

τrt−1

Rt−1
− λπ,t.

Permanent inefficiency of a debt-ridden firm: If a firm is debt-ridden (i.e., bt−1 =

bz,t−1), inefficiency continues permanently because the firm’s debt does not decrease even

if it sets πt = 0 and repays as much debt as possible for all t. The following lemma is

established immediately from the definition of bz,t in the deterministic economy (see (8)).

Lemma 8. Once bt = bz,t, then bt+j = bz,t+j and σt+j = σz,t+j for all j ≥ 0.

This lemma means that once a firm becomes debt-ridden, it continues to be debt-ridden

and production is inefficient forever. Note that the value of a debt-ridden firm is zero

because πt = 0 for all t, that is,

Vt(bz,t−1) = 0 and Wt(bz,t−1) =
1 + rt−1

Rt−1
bz,t−1.

Note that the deterministic version of our model has two steady states, the constrained-

efficient and debt-ridden steady states, whereas Jermann and Quadrini’s (2012) model has

only the constrained-efficient steady state. The debt-ridden steady state does not exist

in Jermann and Quadrini’s economy because ϕ = 0 in their model. We define W ∗
t ,

b∗t
Rt

,

B∗
t , Bz,t, B̄z,t, and Bce

t using the same definitions as those of their counterparts in the

stochastic case. Note that B̄z,t = bz,t.

C.1 Special case where τ = 0

In this case, the optimal equilibrium is characterized by λπ,t = νt = µt = 0 and f ′
t(σt) = 1.

The FOCs and envelope condition imply the following lemma.

Lemma 9. If λπ,t = 0, the economy stays in the optimal equilibrium from t onward, that

is, λπ,t+j = νt+j = µt+j = 0 and f ′
t+j(σt+j) = 1 for all j ≥ 0.

Lemma 10. (i) Wt(b) is weakly decreasing in b.

(ii) For all bt−1 ≤ B∗
t , the economy is in the optimal equilibrium (i.e., Wt(bt−1) = W ∗

t ).

(iii) For all bt−1 > B∗
t , Wt(bt−1) < W ∗

t and πt = 0.

The above item (i) follows from W ′
t(bt−1) = −λπ,t and λπ,t ≥ 0. This lemma implies

that if bt−1 ∈ (B∗
t , B̄z,t), where B̄z,t = bz,t−1, production is inefficient (f ′

t(σt) > 1), and the
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firm sets πt = 0 and repays as much debt as possible to reduce the amount of remaining

debt bt. When bt−1 becomes small and satisfies bt−1 ≤ B∗
t , production becomes efficient

(f ′
t(σt) = 1) and the firm is indifferent about the amount of debt because its value no

longer changes by repaying debt. If a firm is debt-ridden (i.e., bt−1 = bz,t−1), inefficiency

continues permanently (see Lemma 8). Thus, in the case where τ = 0, the firm repays

debt and returns to normal eventually as long as the initial debt, b−1, is strictly smaller

than the upper limit, bz,−1. However, it remains debt-ridden and continues inefficient

production permanently if the initial debt is bz,−1.

C.2 Case with τ > 0

In the case where τ > 0, the constrained-efficient equilibrium, characterized by λπ,t = νt =

0, πt > 0, µce
t = τrt

1+rt
, f ′(σce

t ) =
1+µce

t
1+ϕµce

t
, and bt = bcet for all t, is attained when the debt is

sufficiently small (i.e., bt−1 < Bce
t ). For medium-sized debt (i.e., bt−1 ∈ [Bce

t , Bz,t)), the

firm sets the dividend to zero (πt = 0) and repays as much debt as possible. Assumption

1 guarantees that it goes to the constrained-efficient equilibrium within finite periods.

This result is the same as in Albuquerque and Hopenhayn (2004). For large debt (i.e.,

bt−1 ∈ [Bz,t, B̄z,t]), the borrowing constraint becomes (26). Note that B̄z,t = bz,t−1 in the

deterministic economy. When debt is large, the following two cases exist in equilibrium:

(i) νt = 0: Either λπ,t > 0 or λπ,t = 0. If λπ,t > 0, then bt+1 < bt, and the FOC and

envelope condition imply that λπ,t+j > 0 for j = 1, 2, · · · as long as the borrowing

constraint at t + j is (26). If λπ,t = 0, then the FOC and envelope condition imply

that λπ,t+1 > 0 and, thus, that λπ,t+j > 0 for j = 2, 3, · · · , as long as the borrowing

constraint at t+j is (26). In any case, the firm eventually returns to the constrained-

efficient equilibrium by setting πt = 0 to repay as much debt as possible.

(ii) νt > 0: In this case, bt = bz,t, that is, the firm intentionally chooses to increase

borrowing and become debt-ridden. Once the firm becomes debt-ridden, it stays

there forever (Lemma 8).

For bt−1 ∈ (Bz,t, B̄z,t), where B̄z,t = bz,t−1, the equilibrium path is determined as follows.

The firm compares the total surplus when bt = Rt{bt−1 − ft(σz,t) + σz,t} with that when

bt = bz,t and then chooses the higher surplus. For Bz,t ≤ bt−1 < bz,t−1, the Bellman

equation reduces to

Wt(bt−1) = max{W (1)
t (bt−1), W

(2)
t (bt−1)},

where W
(1)
t (bt−1) =

τrt−1

Rt−1
bt−1 + ft(σz,t)− σz,t +

1

1 + rt
Wt+1(bz,t),

W
(2)
t (bt−1) =

τrt−1

Rt−1
bt−1 + ft(σz,t)− σz,t +

1

1 + rt
Wt+1(Rt{bt−1 − ft(σz,t) + σz,t}).
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We show that there exists B̄c,t such that B̄c,t < bz,t−1 and W
(1)
t (bt−1) > W

(2)
t (bt−1) for

bt−1 ∈ (B̄c,t, bz,t−1). To prove this result, we need the following restriction on the parameter

values.

inf
t

1 + rt
Rt

> 1. (43)

Proposition 11. In the deterministic case, there exist Bc,t and B̄c,t, where Bz,t ≤ Bc,t ≤
B̄c,t < bz,t−1, such that

• If Bz,t ≤ bt−1 < Bc,t, then W
(1)
t (bt−1) < W

(2)
t (bt−1). Here, the firm sets the dividend

to zero (i.e., πt = 0) to repay as much debt as possible and goes to the constrained-

efficient equilibrium in finite periods.

• If bt−1 > B̄c,t, then W
(1)
t (bt−1) > W

(2)
t (bt−1). In this case, the firm intentionally

increases debt to the upper limit (i.e., bt = bz,t) and remains debt-ridden forever.

Proof. As Lemma 5 holds in the deterministic case, it is sufficient to show that B̄c,t is

strictly smaller than B̄z,t = bz,t−1 to prove Proposition 11. Define ∆t ≡ ft(σz,t)−σz,t. We

also define V
(i)
t (bt−1) for i = 1, 2 by V

(i)
t (bt−1) = W

(i)
t (bt−1)− 1+rt−1

Rt−1
bt−1. These functions

are written as follows when the borrowing constraint is (26) for periods t and t+ 1:

V
(1)
t (bt−1) = ∆z

t − bt−1 +
bz,t
Rt

+
1

1 + rt
Vt+1(bz,t) = ∆z

t − bt−1 +
bz,t
Rt

,

V
(2)
t (bt−1) =

1

1 + rt
Vt+1(Rt{bt−1 −∆z

t }),

Vt(bt−1) = max {V (1)
t (bt−1), V

(2)
t (bt−1)}.

We can show the following lemma.

Lemma 12. If V
(1)
t (bt−1) < V

(2)
t (bt−1), then Vt+j(bt+j−1) = V

(2)
t+j(bt+j−1) for all j ∈

{1, 2, · · · , J}, where bt+j−1 = Rt+j−1{bt+j−2−∆z
t+j−1} and J is defined by J = min{j|bt+j <

Bz,t+j+1}.

Proof. The proof is by contradiction. Suppose, on the contrary, that V
(1)
t (bt−1) < V

(2)
t (bt−1)

and Vt+1(bt) = V
(1)
t+1(bt), where bt = Rt{bt−1 −∆z

t }. It is calculated that

V
(2)
t (bt−1) =

1

1 + rt
Vt+1(Rt{bt−1 −∆z

t }) =
1

1 + rt
V

(1)
t+1(Rt{bt−1 −∆z

t })

=
1

1 + rt

[
∆z

t+1 −Rt{bt−1 −∆z
t }+

bz,t+1

Rt+1

]
=

Rt

1 + rt

[
∆z

t − bt−1 +
bz,t
Rt

]
=

Rt

1 + rt
V (1)(bt−1) < V

(1)
t (bt−1).

The last inequality is due to Rt
1+rt

< 1. This inequality contradicts the assumption. Thus,

it has been shown that if V
(1)
t (bt−1) < V

(2)
t (bt−1), then V

(2)
t+1(bt) ≥ V

(1)
t+1(bt) and Vt+1(bt) =

V
(2)
t+1(bt). The above argument continues to hold in period t+ j as long as the borrowing

constraint is (26), which means that j = 1, 2, · · · , J . This proves Lemma 12.
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This lemma implies that if V
(1)
t (bt−1) < V

(2)
t (bt−1), then V

(2)
t+j(bt+j−1) =

1
1+rt+j

V
(2)
t+j+1(bt+j)

for j = 1, 2, · · · , J , and, therefore, V (2)
t (bt−1) = Ṽ

(2)
t (bt−1), where

Ṽ
(2)
t (bt−1) ≡

1∏J
j=0(1 + rt+j)

Vt+J+1(bt+J),

where J and bt+J are defined in the above lemma. First, we restrict our attention to the

case where debt bt−1 takes discrete values. We assume that bt−1 ∈ Γt−1, where Γt−1 =

{b[n]t−1|n = 1, 2, · · · ,∞}, where b
[n]
t−1 is specified below shortly. Under this assumption, we

show that there exists n∗ such that b
[n∗]
t−1 is the closest to B̄c,t among all of the elements of

Γt−1. We then proceed to the case where bt−1 takes a continuous value. We define

BS
t = RtξSt.

The definition of b
[n]
t−1 is the debt that becomes

BS
t+n−1

Rt+n−1
in period t+n−1 if the firm repays

∆z
t+j in period t+ j for j = 0, 1, · · · , n− 1. Thus, it is written as follows:

b
[n]
t−1 =

n−1∑
j=0

∆z
t+j∏j−1

i=0 Rt+i

+
BS

t+n−1∏n−1
j=0 Rt+j

,

where we define
∏−1

j=0Rt+j = 1. The upper limit of the debt is also written as follows:

bz,t−1 =
∞∑
j=0

∆z
t+j∏j−1

i=0 Rt+i

.

Now, let us consider the discrete case where bt−1 ∈ Γt−1. Then, V
(1)
t (b

[n]
t−1) = ∆z

t − b
[n]
t−1 +

bz,t
Rt

= bz,t−1 − b
[n]
t−1 is written as follows:

V
(1)
t (b

[n]
t−1) =

1∏n−1
j=0 Rt+j

[bz,t+n−1 −BS
t+n−1].

Ṽ
(2)
t (b

[n]
t−1) is written as follows:

Ṽ
(2)
t (b

[n]
t−1) =

1∏n−1
j=0 (1 + rt+j)

Vt+n(B
S
t+n−1).

Therefore,

V
(1)
t (b

[n]
t−1)

Ṽ
(2)
t (b

[n]
t−1)

=

[
bz,t+n−1 −BS

t+n−1

Vt+n(BS
t+n−1)

]
n−1∏
j=0

(
1 + rt+j

Rt+j

)
.

As it is always the case that BS
t = ξRtSt ≤ ξRtωt and Vt(b) ≤ ωt, the above equation

implies that

V
(1)
t (b

[n]
t−1)

Ṽ
(2)
t (b

[n]
t−1)

≥
[
bz,t+n−1 − ξRt+n−1ωt+n−1

ωt+n

] n−1∏
j=0

(
1 + rt+j

Rt+j

)
. (44)
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Then, it is immediate from (9), (43), and (44) that there exists a finite integer n∗ (> 0)

such that V
(1)
t (b

[n]
t−1) > Ṽ

(2)
t (b

[n]
t−1) for all n ≥ n∗. Because the parameters are chosen such

that BS
t < bz,t (see (9)), it is immediate from the definition of b

[n]
t−1 that b

[n∗]
t−1 < bz,t−1.

Thus, we have established that the threshold value b
[n∗]
t−1 exists and is strictly smaller than

bz,t−1 in the discrete case where bt−1 ∈ Γt−1. Let us proceed to the continuous case where

bt−1 is not restricted to an element of Γt−1 but is a positive real number. We know from

Lemma 5 that B̄c,t ≤ bz,t−1. We prove B̄c,t < bz,t−1 by contradiction. Suppose that

B̄c,t = bz,t−1. We know that V
(2)
t (bt−1) is continuous and decreasing in bt−1 and that

V
(1)
t (bt−1) is a linear function of bt−1. These facts imply that there must exist a small

positive number ε (> 0) such that for all bt−1 ∈ [bz,t−1−ε, bz,t−1), V
(1)
t (bt−1) ≤ Ṽ

(2)
t (bt−1).

However, this result obviously contradicts V
(1)
t (b

[n]
t−1) > Ṽ

(2)
t (b

[n]
t−1) for all n ≥ n∗, because

there exists n(> n∗) such that b[n] ∈ [bz,t−1 − ε, bz,t−1), as limn→∞ b
[n]
t−1 = bz,t−1. Thus, it

cannot hold that B̄c,t = bz,t−1. Therefore, B̄c,t < bz,t−1. This proves Proposition 11.

Note that the threshold B̄c,t is strictly smaller than bz,t−1.

Numerical example of the deterministic case: Figure 6 shows the numerical

example of the deterministic case. We assume that prices are invariant over time. The

values of the parameters are chosen such that α = 0.31, τ = 0.3, A = 0.73, w = 0.65, r =

0.02, rK = 0.12, R = 1.014, η = 0.72, ϕ = 0.5, and ξ = 0.08. Most of these parameter

values are taken from Table 1 (see Section 3.3 for details). Figure 6 shows the response

of the economy to a buildup of debt. Initially, the economy is in the steady state, where

the level of debt is 0.30. At t = 0, debt b−1 suddenly increases to 0.53 because of an

exogenous shock (e.g., the breakout of a financial crisis). The value of b−1 is chosen such

that Bz < b−1 < bz, where Bz and bz are 0.44 and 4.63, respectively. The firm repays

as much debt as possible, meaning that the dividend is zero for periods 0–2. Production

is inefficient for periods 0–2 and returns to the constrained-efficient level in period 3.

In this example, the borrowing constraint is σt ≤ ϕf(σt) for periods 0 and 1, and it is

σt ≤ ϕf(σt) + ξS − bt
R from period 2 onward. Note that σ0 = σ1 = 0.065 (= σz). In the

case where the initial increase in debt b−1 is larger, the borrowing constraint continues to

stay at σt ≤ ϕf(σt) for arbitrarily longer periods, thereby allowing inefficient production,

σt = σz, to continue persistently. This example shows that bz
R = 4.56 and ξS = 0.37,

meaning that ξS < bz
R .
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Figure 6: Responses to a buildup of debt

D The BGP

The detrended variables of the BGP are determined by the following system of equations:

A = Y 1−η,

Y = KαL1−α
p = AKαηL(1−α)η

p ,

C + (gE − 1 + ρ)K = Y,

w =
γC

1− L
,

w =
(1− α)η(1 + ϕµ)

1 + µ

Y

Lp
,

rK =
αη(1 + ϕµ)

1 + µ

Y

K
,

1 + r =
gE

β
,

R = 1 + (1− τ)r,

µ = 1− β

gE
R,

1 =
β

gE
(
rK + 1− ρ

)
,

g = [1 + κ(L− Lp)] ,

π = Y − wL− rKK −B

[
1− gE

R

]
,

Vn =
π

1− β
,

S =
β

g
Vn +

gE−1

R
B,

wL+ rKK = ϕY +

[
gξS − gEB

R

]
,

β

g
κVn = (1 + µ)w − κgE−1B

R
− µκ

[
ξS − gE−1B

R

]
.

where µ is the Lagrange multiplier associated with the borrowing constraint and B is the

total amount of corporate lending, which satisfies B = b, where b is the outstanding debt
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for a firm. There are 16 equations for 16 unknowns: {g,A, Y,K,L, Lp, C, w, µ, r, r
K , R, π,B, Vn, S}.

The following condition must be satisfied on the BGP:

ξS > gE−1B

R
.

Then, the variables for debt-ridden firms on the BGP, {kz, lz, bz, µz

λz
,
λl,z

λz
}, are calculated

as follows:

w =
(1− α)η

(
1 + ϕµz

λz

)
1 + µz

λz

Akαηz l(1−α)η−1
z ,

rK =
αη
(
1 + ϕµz

λz

)
1 + µz

λz

Akαη−1
z l(1−α)η

z ,

wlz + rKkz = ϕAkαηz l(1−α)η
z ,

0 = Akαηz l(1−α)η
z − wlz − rKkz + gE−1 bz

R
− bz,

0 =

(
1 +

µz

λz

)
w − κgE−1 bz

R
−

λl,z

λz
.

The following conditions must be satisfied on the BGP:

λl,z

λz
> 0,

ξS < gE−1 bz
R

< S.

E Data

Table 2 provides data sources that are used for calibration and figures. Note that the Euro-

pean Commission’s Annual macro-economic (AMECO) database is constructed by Havik,

Morrow, Orlandi, Planas, Raciborski, Roeger, Rossi, Thum-Thysen and Vandermeulen

(2014).

The actual data of Lt is used for the labor wedge in the figures and is constructed by

Lt =
Average annual hours worked per employee

Total hours
× Employees

15-64 aged population
,

where “total hours” is defined as 24 hours × 12 months × 20 days = 5760 hours.

The average annual hours worked per employee for the EU is only available starting

from 2008 because Estonia and Malta are only available starting from 2000 and Croatia is

only available starting from 2008. We calculate the average annual hours as the weighted

average excluding these countries in the years with deficient data, where the weight is

proportional to the number of employees.

Similarly, Eurostat provides the population aged 15–64 for the EU only from 2001

because of missing data in Croatia before 2001. However, the World Bank World De-

velopment Indicators provide “Population ages 15–64 (% of total)”. We complement the

Eurostat data with World Bank data.
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Variable(s) Japan United States EU

Y, C SNA NIPA AMECO

TFP JIP Fernald (2012) AMECO

α JIP Fernald (2012) Havik et al. (2014)

Average hours worked JIP NIPA AMECO

Employees LFS BLS AMECO

15–64 aged population OECD OECD Eurostat; WDI

Table 2: Data sources

Note: SNA: Cabinet Office, Government of Japan, Annual Report on National Accounts

NIPA: U.S. Bureau of Economic Analysis, National Income and Product Accounts

AMECO: European Commission, Macro-economic database AMECO

JIP: The Research Institute of Economy, Trade, and Industry, JIP 2014 database

LFS: Statistics Bureau of Japan, Labor Force Survey

BLS: U.S. Bureau of Labor Statistics, Current Employment Status

OECD: OECD, Working age population (indicator). doi: 10.1787/d339918b-en

WDI: World Bank, World Development Indicators

F Calibration and parameter region

Table 1 reports the values of the calibrated parameters. First, the parameters β, ρ, and

η are common values for all countries. We set the discount factor β equal to 0.98, the

depreciation rate ρ equal to 0.1, and the parameter for the aggregation function η equal

to 0.7. These are the standard settings for an annual model in the literature.

Second, we calibrate the country-specific parameters and some BGP values. The tax

advantage τ is set equal to 0.3 for Japan and 0.35 for the United States and the EU. These

numbers are the corporate income tax rates in Japan and the United States, respectively.

The share of labor in production (α), the total labor supply on the BGP (L), and the

growth rate of TFP on the BGP (gTFP ) are set from the data. Then, gTFP is defined by

gTFP = g
1−η
η , as we see in Appendix E, and L is set to the ratio of total labor supply.

The sample period is from 1981 to 2008 for Japan and from 1997 to 2016 for the United

States and the EU. We assume that the economy is on the BGP before a financial crisis.

In the case of Japan, the financial crisis starts in 1991, whereas, in the case of the United

States and EU, it starts in 2009. Then, α, L, and gTFP in Japan are taken as the average

for 1981–1989, and for the United States and the EU they are taken as the average for

1997–2007. When we calculate the variables on the BGP, L and gTFP are given by the

data. Hence, the inverse of the elasticity of labor supply γ and the efficiency of R&D κ

are determined endogenously in the system of the BGP, which is given in Appendix D.

Lastly, the parameters (ϕ, ξ, z) are identified by the simulated least squares criterion;

that is, they are determined as the solution to the following minimization of the residual
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sum of squares (RSS) using a grid search method:

min
ϕ, ξ, z

(Xt − X̂t)
′ (Xt − X̂t)

subject to

0 < ϕ < η, 0 < ξ < 1,
λlz

λz
> 0, ξS < gE−1 bz

R
< S, bn > 0,

gE > mean(gEt ), t = 1990-2008 in Japan; t = 2009-2025 in EU and the United States

where Xt is the observed variables vector and X̂t is the simulation-generated variables

vector. Xt = [TFP growth rate; Real GDP per caita growth rate]. We extend the ob-

served variables to 2025 by extrapolating the average growth rates in 2011–2016 for the

United States and the EU. The simulation-generated variables, X̂t = [TFPt/TFPt−1 −
1; Yt/Yt−1−1], are calculated by the method presented in Appendix I, taking (γ, κ, ϕ, ξ, χ, z)

as the given exogenous parameters, where the debt shock hits the economy in period 10

(i.e., zt = 0 for t ≤ 9 and z10 = z). Period 10 corresponds to 1991 for Japan and 2009 for

the United States and the EU. Minimization is done for the period 1990–2008 in the case

of Japan and for 2009–2025 in the case of the United States and the EU.

We restrict the domain of the parameters (ϕ, ξ) for the above minimization to the region

that enables all constraints to be satisfied on the BGP. Figure 7 denotes the domain of

the parameters (ϕ, ξ) as the white region, whereas the values of the other parameters are

given as those for Japan in Table 1.

To calibrate the parameters, we choose the optimum parameters to minimize the dis-

tance between the simulation implied by our model and the actual data. This procedure

is similar to impulse response matching, as described in, for example, Rotemberg and

Woodford (1997), who choose the parameters to minimize the distance between the im-

pulse responses implied by a reduced-form VAR and those implied by a DSGE model.19

As we saw in Figures 2–5, our model with the parameter values chosen by the above

minimization exhibits an economic slowdown. However, economic growth may not slow

down if the values of the parameters are different. The white region in Figure 8 shows

the values of (ϕ, ξ), for which economic growth is accelerated when the economy is hit by

a debt shock with maximum z. An economic slowdown occurs only in the red region of

Figure 8. In the white region, economic growth is accelerated because a larger amount of

labor is used in the R&D sector than before. More labor is used for R&D activities because

the marginal product of labor becomes lower in the production sector. When a debt shock

hits the economy, the marginal product of labor in the R&D sector can become higher or

lower than that in the production sector, depending on the values of the parameters (ϕ,

ξ).

19Our method can be regarded as a variant of impulse response matching if the actual data are interpreted

as a response to a one-time shock of debt buildup.
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G Condition of no R&D

The following claim provides the condition for a debt-ridden firm on the BGP to refrain

from conducting the R&D activity.

Claim 3. There exists a threshold ϕ̄ ∈ (0, 1] such that for ϕ < ϕ̄, a debt-ridden firm does

not conduct R&D on the BGP (i.e., lz = lz,p) given that the BGP exists.

Proof. As we saw in Appendix D, the FOC with respect to lz for a debt-ridden firm is

λl,z

λz
=

(
1 +

µz

λz

)
w − κgE−1 bz

R
. (45)

The first term on the right-hand side of (45) is the marginal cost of labor input. The

second term is the marginal gain from R&D activity. If λl,z/λz > 0, then the constraint

lz,p ≤ lz is binding, where lz,p is the labor input for production, and the debt-ridden firm
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Figure 8: Domain of (ϕ, ξ) for an economic slowdown

does not conduct R&D. With some tedious calculation, we can rewrite (45) to

λl,z

λz
=

η(1− ϕ)

ϕ(1− η)

{
ϕ− 1 +

(
1 +

[
γ(1− [gE − 1 + ρ])− rK

] αη 1+ϕµ
1+µ

rK

)
W
}

W − (1+µ)Z
U︸ ︷︷ ︸

≡Ωw

Y

−
κgE−1(1− ϕ)

[
ϕ

η
(

1+ϕµ
1+µ

)
] η

1−η

R− gE−1
Y, (46)

where X ≡ βκ(1+µξ)
g(1−β) , U ≡ X

(
1− gE

R

)
− κgE−1

R [1 − µ(1 − ξ)], Z ≡ ξβ
1−β

(
1− gE

R

)
+ (1 −

ξ)g
E

R , W = ξβ
1−β +1− XZ

U , R = 1+(1− τ)r, µ = 1− β
gE

R, and rK = gE

β − 1+ρ. R− gE−1

is always positive under a standard parameter setting.20 The definition of Ωw ≡ w
Y implies

that there exist Ω and Ω̄ such that 0 < Ω ≤ Ωw ≤ Ω̄ < ∞ for any ϕ ∈ [0, 1]. We divide

20R − gE−1 > 0 can be written as τ < gE−βgE−1

gE−β
≡ f(g), where E = 1−η

(1−α)η
> 0. It holds that E < 1,

under a standard parameter setting. Thus,

f(g) = 1 + β
1− 1

g1−E

gE − β
> 1,

for all g > 1. As τ < 1, the inequality τ < f(g) is always satisfied, meaning that R− gE−1 > 0.
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(46) by Y and take the limit of ϕ → 0 using the fact that Ω ≤ Ωw ≤ Ω̄:

lim
ϕ→0

η(1− ϕ)

ϕ(1− η)
Ωw = ∞,

lim
ϕ→0

κgE−1(1− ϕ)

[
ϕ

η
(

1+ϕµ
1+µ

)
] η

1−η

R− gE−1
= 0.

These results imply that there exists ϕ̄ ∈ (0, 1] such that if ϕ < ϕ̄, then λl,z/λz > 0.

The intuitive explanation is as follows. Debt-ridden firms’ borrowing constraints are

tight because of the pressure from the huge amount of inter-temporal debt, and thus their

effective costs of labor are high. With our parameter values, the marginal product of labor

in production for debt-ridden firms can be equalized to the marginal cost of labor, which

is strictly larger than the marginal product of labor in R&D. For this reason, these firms

do not conduct R&D. Figure 7 in Appendix F shows the parameter region in the (ϕ, ξ)

space in which the BGP exists given that the other parameters are fixed. This figure

numerically confirms that ϕ < ϕ̄ is satisfied in the region in which the BGP exists. Thus,

the debt-ridden firms in our simulation do not conduct the R&D on the BGP.

H Detrending for a firm’s problems

We detrend the variables as follows: At = ÃtN
(1−η)E
t−1 , Yt = ỸtN

E
t−1, Ct = C̃tN

E
t−1, Kt =

K̃tN
E
t , kz,t = k̃z,tN

E−1
t−1 , kn,t = k̃n,tN

E−1
t−1 , lz,t = l̃z,t/Nt−1, ln,t = l̃n,t/Nt−1, wt = w̃tN

E
t−1,

πt = NE−1
t−1 π̃t, bn,t = b̃n,tN

E−1
t−1 , bz,t = b̃z,tN

E−1
t−1 , Vn,t = Ṽn,tN

E−1
t−1 zt = Zt/Nt−1, and

gt = Nt/Nt−1.

Detrending TFP: Suppose that TFP = ˜TFP ·Na. The equation Y = TFP ·KαL1−α

implies that

Ỹ N
1−η

(1−α)η = ˜TFP ·NaK̃αN
(1−η)α
(1−α)ηL1−α,

which implies that a = 1−η
η and, thus,

TFP = ˜TFP ·N
1−η
η .

I Transition dynamics with z > 0

In this appendix, we describe the transition dynamics in the case where the economy is

initially on the BGP and a proportion z of firms are suddenly imposed with the maximum

debt bz at time 10, where 0 < z < 1. The economy eventually converges to the BGP.

All agents have perfect foresight on the path after the one-time buildup of debt, which

is the only unexpected event. In our model, the borrowing constraint is always binding
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both in transition and on the BGP. The equilibrium is calculated by solving a full non-

linear system of simultaneous equations using a modified Newton–Raphson algorithm. The

details of the algorithm can be found in Juillard (1996). This algorithm solves 31 × 300

simultaneous equations, where 31 is the number of endogenous variables and 300 is the

number of simulation periods.

Altogether, 31 variables—{Ãt, Ỹt, K̃t, C̃t, Lt, Rt, l̃n,p,t, l̃z,p,t, l̃z,t, l̃n,t, k̃z,t, k̃n,t, b̃z,t, b̃n,t, ỹz,t,

ỹn,t, gt, rt, r
K
t , w̃t, zt, Ṽn,t, S̃t, π̃n,t, π̃z,t,

µz,t

λz,t
,
µn,t

λn,t
,
λl,n,t

λn,t
,
λl,z,t

λz,t
, λπ,n,t, λn,t}—are calculated from

the following 31 equations:

Ãt = Ỹ 1−η
t ,

Ỹt = {ztỹηz,t + (1− zt)ỹ
η
n,t}

1
η ,

Lt = zt l̃z,t + (1− zt)l̃n,t,

K̃t−1 = ztk̃z,t + (1− zt)k̃n,t,

C̃t + gEt K̃t − (1− ρ)K̃t−1 = Ỹt,

w̃t =
γC̃t

1− Lt
,

1 =
βC̃t

gEt C̃t+1

(
rKt+1 + 1− ρ

)
,

1 + rt =
gEt
β

C̃t+1

C̃t

,

Rt = 1 + (1− τ)rt,

gt =
[
1 + κ (1− zt)

(
l̃n,t − l̃n,p,t

)]
,

zt = gtzt+1,

S̃t = gE−1
t

[
Ṽn,t+1

1 + rt
+

b̃n,t
Rt

]
,

equations for both normal firms and debt-ridden firms, i = n, z:

w̃t =
(1− α)η

(
1 + ϕ

µi,t

λi,t

)
1 +

µi,t

λi,t

Ãtk̃
αη
i,t l̃

(1−α)η−1
i,p,t ,

rKt =
αη
(
1 + ϕ

µi,t

λi,t

)
1 +

µi,t

λi,t

Ãtk̃
αη−1
i,t l̃

(1−α)η
i,p,t ,

ỹi,t = k̃αi,t l̃
1−α
i,p,t ,
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equations for normal firms only:

π̃n,t = Ãtk̃
αη
n,t l̃

(1−α)η
n,p,t − w̃t l̃n,t − rKt k̃n,t +

b̃n,t
Rt

[
1 + κ

(
l̃n,t − l̃n,p,t

)]
gE−1
t − b̃n,t−1,

l̃n,p,t ≤ l̃n,t,
λl,n,t

λn,t

(
l̃n,t − l̃n,p,t

)
= 0,

βC̃t

gtC̃t+1

κṼn,t+1

λn,t
=

(
1 +

µn,t

λn,t

)
w̃t − κgE−1

t

b̃n,t
Rt

−
λl,n,t

λn,t
− κ

µn,t

λn,t
max

{
ξS̃t −

gE−1
t b̃n,t
Rt

, 0

}
,

if ξS̃t − gE−1
t b̃n,t

Rt
≤ 0, 1 =

βC̃t

gEt C̃t+1

λn,t+1

λn,t
Rt,

if ξS̃t − gE−1
t b̃n,t

Rt
> 0, 1− µn,t

λn,t
=

βC̃t

gEt C̃t+1

λn,t+1

λn,t
Rt,

if µn,t > 0, w̃t l̃n,t + rKt k̃n,t = ϕÃtk̃
αη
n,tl

(1−α)η
n,p,t +

[
1 + κ

(
l̃n,t − l̃n,p,t

)]
·max

{
ξS̃t − gE−1

t b̃n,t

Rt
, 0
}
,

if µn,t ≤ 0, µn,t = 0,

Ṽn,t = π̃n,t +
βC̃t

gtC̃t+1

[
1 + κ

(
l̃n,t − l̃n,p,t

)]
Ṽn,t+1,{

if λπ,n,t ≤ 0, λn,t = 1,

if λπ,n,t > 0, π̃n,t = 0,

λn,t = 1 + λπ,n,t,

equations for debt-ridden firms only:

b̃z,t = bz,

l̃z,t = l̃z,p,t,

π̃z,t = 0,

w̃t l̃z,t + rKt k̃z,t = ϕÃtk̃
αη
z,t l

(1−α)η
z,p,t ,

µz,t

λz,t
=

η − ϕ

ϕ(1− η)
,

λl,z,t

λz,t
=

(
1 +

µz,t

λz,t

)
w̃t − κgE−1

t

b̃z,t
Rt

> 0.

The equilibrium variables must satisfy the following conditions:

gE−1
t b̃n,t
Rt

< ξS̃t,

ξS̃t <
gE−1
t b̃z,t
Rt

< S̃t.
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