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Abstract

This paper presents a theoretical model for analyzing the effect of the maturity structure
of government debt on the yield curve. It is an ATSM (affine term structure model)
in which the factors for the yield curve include, in addition to the short rate, the
government bond supply for each maturity. The supply shock is not restricted to be
perfectly correlated across maturities. The effect on the yield curve of a bond supply
shock that is local to a maturity is largest at the maturity. This hump-shaped response
of the yield curve obtains in spite of the absence of preferred-habitat investors.
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1 Introduction

How does the maturity structure of government debt affect the yield curve? The question has

recently gained prominence due to the arrival of unconventional monetary policy, whose main aim

is to lower the long-term interest rates by making the supply of long-term bonds scarce through

reserve-financed open-market purchases. The theoretical justification often cited by central bankers

is the portfolio balance channel.1 This paper provides a formulation of it.

To be sure, such a channel cannot exist according to the irrelevance theorem of Wallace (1981).

However, recent theoretical studies show that it can be reconnected if suitable transactions costs are

considered,2 and recent empirical studies on the effect of unconventional monetary policy find that

the maturity structure matters for the yield curve.3

This paper proceeds under the assumption that relevant transactions costs exist so that the

bond market can be studied in isolation. More specifically, it is closely related to the recent explicit

models of the bond market by Vayanos and Villa (2009) and, especially, Greenwood and Vayanos

(2014). The model in the former has two types of bond investors: arbitrageurs with the

mean-variance preferences and preferred-habitat investors for each maturity. The net supply of

bonds is zero for each maturity. An attractive feature of the model is that the equilibrium yields are

affine functions of the factors that drive the short rate and the preferred-habitat investors’ demand

for bonds of various maturities, thus providing a link to the ATSM (affine term structure model), the

reigning theory of the yield curve in finance.

Greenwood and Vayanos (2014, GV henceforce) simplify Vayanos and Vila (2009) by assuming

that the preferred-habitat investors’ demand is price-inelastic, or equivalently, by replacing the

preferred habitats by an entity that sets the supply of bonds of various maturities inelastically. That

entity can be interpreted as the government composed of the treasury and the central bank. Let bn

be the loading (the coefficient in the affine equation) on the supply factor for the yield of maturity n.

GV show that (i) an increase in the supply factor raises all yields (i.e., bn > 0 for all n) (ii) the profile

1To cite Bernanke (2010): “I see the evidence as most favorable to the view that such purchases work
primarily through the so-called portfolio balance channel [italics by the author]... Specifically, the Fed’s strategy
[the operation twist] relies on the presumption that different financial assets are not perfect substitutes in
investors’ portfolios, so that changes in the net supply of an asset available to investors affect its yield and
those of broadly similar assets.”

2See Andres, Lopez-Salido, and Nelson (2004) and Chen, Curdia, and Ferrero (2012).

3For a list of recent empirical studies, see the survey in Woodford (2012) and also Bauer and Rudebusch
(2014).
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of this supply effect can be hump-shaped (i.e., bn is increasing and then decreasing in n), (iii) for the

risk premium, its profile is increasing across all maturities (i.e., the bn for the risk premium is an

increasing function of n), and (iv) it lies above the yield profile (i.e., the bn for the risk premium is

greater than the bn for the yield for all n).

Our paper differs from GV in two respects.4 First, the supply factor in GV is one-dimensional,

while in our model there can be as many supply factors as there are maturities. Put differently, the

maturity structure in GV is controlled by the global factor, while in our model the supply shock can

be local, not restricted to be perfectly correlated across maturities. Despite the vastly expanded list

of factors, the yields are still affine in the factors. Second, instead of characterizing the factor

loadings, we employ the IR (impulse response) analysis to describe the dynamic version of the four

results mentioned above (suitably modified to accommodate by local supply factors). We can thus

examine the dynamic effect on the yield curve of what we call the “legacy” feature of bond supply

that n-period bonds purchased by the government form part of the stock of n − 1 period bonds next

period barring an offsetting market operation.

The rest of the paper is organized as follows. Section 2 is a restatement in discrete time of GV’s

continuous-time model. Section 3 and the two appendixes show how multiple supply shocks can be

incorporated into the model of GV. Section 4 conducts the IR analysis. Section 5 is a brief conclusion.

2 The Greenwood-Vayanos Model in Discrete Time

We first present the discrete-time version of the bond pricing model of Greenwood and Vayanos

(2014) (hereafter, GV). Denote by P(n)
t the price of the zero-coupon bond with maturity n in period t.

By convention, P(0)
t = 1. The (continuously compounded) yield to maturity y(n)

t is therefore

y(n)
t = −

1
n

log P(n)
t . (2.1)

The nominal share of the n-period bond supplied is denoted by s(n)
t . The longest maturity of bonds

supplied is N. The shares add up to 1 (i.e.,
∑N

n=1 s(n)
t = 1) but some shares can be negative. The profile

(s(2)
t , s

(3)
t , ..., s

(N)
t ) will be referred to as the maturity structure of bonds supplied.

Those bonds are traded by arbitrageurs. If z(n)
t is the nominal share of their n-period bond

4Like Vayanos and Vila (2009) and GV, our model ignores the zero lower bound for the interest rates. See
Hamilton and Wu (2012) and Koeda (2015) for how the lower bound can be incorporated in the model of
Vayanos and Vila (2009).

3



holdings, the (one plus) holding period return on their bond portfolio is

Rt+1 ≡

N∑
n=1

P(n−1)
t+1 − P(n)

t

P(n)
t

z(n)
t . (2.2)

The arbitrageurs’ decision problem is to maximize this risk-adjusted portfolio return subject to the

adding-up constraint:5

max
{z(n)

t }
N
n=1

[
Et(Rt+1) −

γ

2
Vart(Rt+1)

]
subject to

N∑
t=1

z(n)
t = 1. (2.3)

Here, γ is a risk-aversion coefficient.

The bond market equilibrium is that z(n)
t = s(n)

t for n = 1, 2, ...,N. With the arbitrageurs caring

only about the portfolio return and with the maturity structure exogenously given by the

government, there are no preferred-habitat investors in the model. Because of the adding-up

constraint
∑N

t=1 z(n)
t = 1, only N − 1 of these equilibrium conditions are independent. In GV and

many others, the shortest yield y(1)
t is exogenous, being determined outside the model.

The equilibrium bond prices are assumed to be a time-invariant function of a vector, ft, of

factors whose dynamics is given by a Gaussian VAR(1):

ft+1 = c +Φ ft + εt+1, εt ∼ N(0,Ω). (2.4)

The state vector ft in GV is two-dimensional. The first factor determines the shortest yield y(1)
t . The

second factor is a single variable that drives the maturity structure.6 It is a global supply factor

because bonds supplied at two different maturities are perfectly correlated. GV show that, as in the

standard ATSM (affine term structure model), the time-invariant function is exponential affine, that

is,

log P(n)
t = ān + b̄′nft, so by (2.1), y(n)

t = an + b′nft where an ≡ −
ān

n
, bn ≡ −

b̄n

n
, n = 1, 2, ...,N. (2.5)

5We follow the discrete-time formulation by Hamilton and Wu (2012) of Vayanos and Vila (2009) to take
Rt+1 to be the portfolio return rather than the increase in wealth. In the latter case, z(n)

t is the level of nominal
investment in bonds of maturity n. We are thus normalizing Rt+1 and z(n)

t to the initial wealth. We do this
because the model’s calibration later in the paper is more straightforward.

6More precisely,
s(n)

t = ζ(n) + θ(n) f2t, n = 1, 2, ...,N,

where ζ(n) and θ(n) are deterministic function of n and f2t is the second factor.
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3 Affine Bond Pricing with Bonds Supply as Factors

We modify the model of GV and allow the bond supply to have local actors that are specific to each

maturity. This is accomplished by treating the maturity structure as additional factors. We show

that the bond prices are exponential affine as in (2.5), even with this expanded state vector ft.

As in Vayanos and Vila (2009), GV, and many others, we proceed in two steps:

(a) Derive the arbitrageurs’ FOCs (first-order conditions) that involve the affine coefficients (ān, b̄n)

under the VAR dynamics (2.4) and the conjecture of the affine bond pricing (2.5).

(b) Impose on the FOC the bond market equilibrium conditions, z(n)
t = s(n)

t for n = 2, 3, ...,N, to

derive a set of equations for the affine coefficients.

Regarding (a), the FOCs for n-period bonds are (see Appendix 1 for a derivation)

Et

P(n−1)
t+1 − P(n)

t

P(n)
t

︸              ︷︷              ︸
holding-period return

−
1 − P(1)

t

P(1)
t︸   ︷︷   ︸

short rate︸                                 ︷︷                                 ︸
risk premium on n-period bonds

= γ
1
2
∂Vart(Rt+1)

∂z(n)
t

, n = 2, 3, ...,N, (3.1)

which captures the trade-off between risk and return: the higher the risk-aversion coefficient γ, the

more risk premium demanded by arbitrageurs. Using (2.4) and (2.5), we can rewrite the risk

premium (the left-hand side of (3.1)) and 1
2
∂Vart(Rt+1)

∂z(n)
t

(the right-hand side of (3.1)) as

Et

P(n−1)
t+1 − P(n)

t

P(n)
t

 − 1 − P(1)
t

P(1)
t

≈ Et

(
log P(n−1)

t+1

)
− log P(n)

t +
1
2

b̄′n−1Ωb̄n−1 − y(1)
t (3.2)

= ān−1 + b̄′n−1 (c +Φft) − ān − b̄′nft +
1
2

b̄′n−1Ωb̄n−1 + ā1 + b̄′1ft,

=
(
ān−1 + b̄′n−1c − ān +

1
2

b̄′n−1Ωb̄n−1 + ā1

)
+

(
b′n−1Φ − b̄′n + b̄′1

)
ft, (3.3)

1
2
∂Vart(Rt+1)

∂z(n)
t

≈ b̄′n−1Ω
(
b̄1z(2)

t + · · · + b̄N−1z(N)
t

)
. (3.4)

These expressions, while exact in continuous time, are only approximations in discrete time.7

Turning to (b), upon the imposition of the market equilibrium conditions, the expression (3.4) of

7The derivation can be found in Hamilton and Wu (2012). For the sake of completeness, Appendix 1 has a
derivation.
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1
2
∂Vart(Rt+1)

∂z(n)
t

can be written as (with F denoting the dimension of ft)

1
2
∂Vart(Rt+1)

∂z(n)
t

≈ b̄′n−1
(1×F)

Ω
(F×F)

(
b̄1s(2)

t + · · · + b̄N−1s(N)
t

)
︸                       ︷︷                       ︸

(F×1)

(by replacing z(i)
t by s(i)

t , i = 2, ...,N)

= b̄′n−1
(1×F)

Ω
(F×F)

[
b̄1 b̄2 · · · b̄N−1

]
︸                     ︷︷                     ︸

(F×(N−1))



s(2)
t

s(3)
t
...

s(N)
t

︸︷︷︸
((N−1)×1)

= b̄′n−1
(1×F)

Ω
(F×F)

[
b̄1 b̄2 · · · b̄N−1

]
︸                     ︷︷                     ︸

(F×(N−1))

S
((N−1)×F)

ft
(F×1)

.

(3.5)

The key here is to use the selection matrix S to extract the maturity structure (s(2)
t , s

(3)
t , ..., s

(N)
t ) from ft.8

Substituting (3.3) and (3.5) into (3.1), we obtain an equation that is affine in ft. This has to hold

for any ft. Setting both the constant term and the coefficients of ft to zero, we obtain

b̄′n
(1×F)

= b̄′n−1
(1×F)

Φ
(F×F)

− γ b̄′n−1
(1×F)

Ω
(F×F)

[
b̄1

(F×1)
b̄2

(F×1)
· · · b̄N−1

(F×1)

]
︸                          ︷︷                          ︸

(F×(N−1))

S
((N−1)×F)

+ b̄′1
(1×F)

, n = 2, 3, ...,N, (3.7)

ān = ān−1 + b̄′n−1
(1×F)

c
(F×1)

+
1
2

b̄′n−1
(1×F)

Ω
(F×F)

b̄n−1
(F×1)

+ ā1, n = 2, 3, ...,N. (3.8)

Given an initial condition about b̄1, equation (3.7) determines the factor loading coefficients b̄n,

n = 2, 3, ...,N. Given an initial condition about ā1 and given the factor loadings (b̄′s) thus

determined, the recursion (3.8) generates ān, n = 2, 3, ...,N. Unlike in the standard textbook ATSM

and in contrast to (3.8), equation (3.7) is not a recursion thanks to the quadratic term (the second

term on the right-hand side of the equation); it is a QVE (quadratic vector equation). Appendix 2

shows how we solved this QVE.

Before closing this section, we note for later reference that there is a link between yields and risk

premia. Define the risk premium rp(n)
t by the right-hand side of (3.2). The usual forward iteration

8If (s(2)
t , s

(3)
t , ..., s

(N)
t ) are placed last in ft, the S matrix can be written as

S
((N−1)×F)

=
[

0
((N−1)×(F−(N−1)))

IN−1

]
. (3.6)
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argument then yields:9

y(k)
t =

1
k

k−1∑
i=0

Et

(
y(1)

t+i + rp(k−i)
t+i

)
+

1
k

Ak, k = 1, 2, ...,N, (3.9)

where Ak ≡ −
1
2

∑k−1
i=0 b̄′k−i−1Ωb̄k−i−1.

4 Impulse Responses

Our model’s parameters are: γ (the arbitrageurs’ risk-aversion coefficient), N (the maximum

maturity), and (c,Φ,Ω) (the VAR parameters describing the factor dynamics). The previous section

and Appendix 2 were about how to map the model parameters to the affine yield curve coefficients

(an,bn, n = 1, 2, ...,N) through the QVE (3.7) and the recursion (3.8) in {an}. In this section, we

calculate the IR (impulse response) of the yield curve to shocks originating in the maturity structure.

Specifying the Factor Dynamics

The example we consider has only one factor besides the maturity structure. Without loss of

generality, we can take that non-supply factor to be the short rate y(1)
t . Thus F (the number of factors)

equals N, and the factors are given by

ft
(N×1)

=
(
y(1)

t , s
(2)
t , s

(3)
t , ..., s

(N)
t

)′
. (4.1)

With this choice of the factor vector, the initial condition to be fed to the recursion (3.8) and the QVE

(quadratic vector equation) (3.7) is given by

ā1 = 0, b̄′1 = (1, 0, ..., 0). (4.2)

9By the definition of rp(k)
t , we have

Et

(
log P(k−1)

t+1

)
− log P(k)

t − y(1)
t = rp(k)

t −
1
2

b̄′n−1Ωb̄k−1.

The usual forward iteration trick with the terminal condition log P(0)
t+k = 0 yields

− log P(k)
t =

k−1∑
i=0

Et

(
y(1)

t+i + rp(k−i)
t+i −

1
2

b̄′k−i−1Ωb̄k−i−1

)
.

(3.9) obtains because y(k)
t = − 1

k log P(k)
t .
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The VAR dynamics are specified as

(short rate) y(1)
t = c1 + ρy(1)

t−1 + ε1t, ε1t ∼ N(0, σ2
1), (4.3)

(maturity structue) s(n)
t =


cn + θs(n+1)

t−1 + εnt, εnt ∼ N(0, σ2
n) if n = 2, 3, ...,N − 1,

cN + εNt, εNt ∼ N(0, σ2
N) if n = N.

(4.4)

Here, the supply shocks (ε1t,...,εNt) are uncorrelated.10 Four points about the dynamics.

• Since the bond supply shocks (ε2t, ..., εNt) are uncorrelated across maturities, each of them

represent a purely local supply shock in the maturity spectrum.

• The short rate is exogenous because there is no feedback to the short rate from the maturity

structure and the short rate shock ε1t is uncorrelated with the bond supply shocks. Therefore, the

response of the yield curve to a bond supply shock would represent what is referred to as the

portfolio balance effect.

• The maturity structure dynamics (4.4) captures the “legacy” property of bonds that an n-period

bond becomes an n − 1-period bond next period. The strength of legacy is represented by θ.

Calibration

To avoid heavy demand on CPU time, we choose the unit interval to be a quarter, not a month. So

y(1)
t is the 3-month interest rate. We set N to be 80 quarters (20 years). For calibration purposes we

use the U.S. Treasury zero-coupon yield curve calculated by Gurkaynak, Sack, and Wright (2007).11

10 The implied restrictions on the factor dynamics parameters (c,Φ,Ω) are as follows.

c
(N×1)

= (c1, c2, ..., cN−1, cN)′, Φ
(N×N)

=

 ρ 0′
(1×(N−1))

0
((N−1)×1)

Φ̃
((N−1)×(N−1))

 , Ω
(N×N)

=

 σ2
1 0′

(1×(N−1))

0
((N−1)×1)

Ω̃
((N−1)×(N−1))

 ,
where Ω̃ = diag{σ2

2, ..., σ
2
N} and Φ̃ is given by

Φ̃
((N−1)×(N−1))

=



0 θ 0 0 · · · 0
0 0 θ 0 · · · 0
...

...
. . .

. . .
. . . 0

0 0 · · · 0 θ 0
0 0 · · · · · · 0 θ

0 0 · · · · · · · · · 0


.

11The parameterized function used to fit the yields of various observed maturities is given as equation (22)
in Gurkaynak et. al. (2007). The daily parameter values can be downloaded from the Federal Reserve Board
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The values for (c1, ρ, σ1) are obtained from an AR1 estimation on the short rate. Our results to

be reported below are sensitive to the calibrated values for those parameters, particularly for σ1,

which in turn depend on the choice of the sample period. We report results based on the period

under Alan Greenspan’s chairmanship (1987:Q3 - 2005:Q4). The estimated AR1 model is (with

standard errors in parentheses)

y(1)
t = 0.0003829

(0.00037)
+ 0.9592

(0.029)
y(1)

t−1, S.E.R = 0.001291, t = 1987:Q4-2005:Q4. (4.5)

(y(1)
t is expressed as a rate per quarter.) This estimated AR1 determiens ρ and σ1: ρ = 0.9592, and

σ1 = 0.001291. The value of c1 is set so that the AR1 process’s steady-state value, c1/(1 − ρ), equals

the sample mean over 1987:Q3-2005:Q4 of y(1)
1 .12

We pick (c2, ..., cN) so that the steady-state value of s(n)
t is 1/N for n = 2, ...,N.13 We set σn = λ/N

with λ = 0.01 for n = 2, 3, ...,N. The affine coefficients turned out to be fairly insensitive to λ; for

both the yield curve and the risk premium, the results about the level and the IR to a supply shock

of a fixed size (we will consider a 1 percentage point shock to s(n)
t ) are very similar for a wide range

of λ including [0.001, 0.1].

This leaves two parameters, γ (the risk aversion parameter) and θ (which controls the maturity

structure dynamics). As it turns out, the latter has no effect on the steady-state yield curve (the yield

curve given by the affine equation (2.5) when ft equals to its steady-state value).14 We can therefore

website. From this we can calculate y(n)
t for any maturity n. We take the yield for the quarter to be for the last

business day of the quarter. For the short rate we use the value implied by the parameterized yield curve at
n = 1 (3 months). This short rate series is very similar to the constant-maturity 3-month rate available from
Federal Reserve Board’s Table H-15.

12Let ȳ, ¯̄y, and ỹ be the sample mean of y(1)
t over 1987:Q3-2005:Q4, 1987:Q4-2005:Q4, and 1987:Q3-2005:Q3,

respectively. Let ĉ1 and ρ̂ be the AR1 estimates shown in (4.5) of c1 and ρ (so ĉ1 = 0.0003829 and r̂ = 0.9592).
Then ¯̄y = ĉ1 + ρ̂ŷ, or ĉ1/(1− ρ̂) = ŷ− (ŷ− ¯̄y)/(1− ρ̂). In our sample, the three sample means are different enough
to make ĉ1/(1 − ρ̂) deviate substantially from the sample mean ȳ. (ĉ1/(1 − ρ̂) = 3.75% in APR while ȳ = 4.64%
in APR.) So, instead of setting c1 = ĉ1, we choose c1 so that c1/(1 − ρ̂) = ȳ.

13 Let st
((N−1)×1)

≡ (s(2)
t , ..., s

(N)
t )′ be the maturity structure, c̃ ≡ (c2, ..., cN−1, cN)′, and let Φ̃ be as in footnote 10.

Then the steady-state value of st, call it s, satisfies: (I − Φ̃)s = c̃.

14As noted in the text and in footnote 13, we chose (c2, ..., cN) so that the maturity structure in the steady
state is flat. Thus the factor vector in the steady state is

factor vector in the steady state =
( c1

1 − ρ
,

1
N
, ...,

1
N︸    ︷︷    ︸

N − 1 terms

)
.

If the staedy-state maturity structure is flat, as here, then θ does not affect the steady-state yield curve given
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calibrate γ to the steady-state yield curve without specifying the value of θ. We set γ = 52/4 (or

γ = 52 if the quarterly portfolio return Rt+1 in (2.3) is expressed at an annual rate) because, as shown

in Figure 1, the steady-state yield curve and the corresponding sample mean for the sample period

(1987:Q3 - 2005:Q4) are reasonably close to each other under this value of γ.15

Impulse Responses

The N-dimensional factor dynamics consisting of (4.3) and (4.4) has the IR (impulse response)

function of ft to the bond supply shocks (ε2, ..., εN) given by

∂f′t+ j

∂εnt︸︷︷︸
(1×N)

=


(0, 0, ..., 0, θ j

(n− j)
, 0, ..., 0) for j = 0, 1, ...,n − 2, (with θ j = 1 for θ = 0 and j = 0),

0′
(1×N)

for j = n − 1,n, ....

for n = 2, 3, ...,N.

(4.6)

That is, a unit supply shock originating at maturity n becomes a supply shock of size θ j at maturity

n − j in j periods, and gets absorbed at maturity 1 in n − 1 periods (recall that the short rate is

exogenous to supply shocks).

The factor IR readily translates to the yield-curve IR via the affine equation (2.5). Thanks to the

special feature of the factor IR, there is a tight connection between the factor loadings (bn’s in (2.5))

and the yield IR profile. The latter is a profile of N elements given by:

∂
(
y(1)

t+ j, y
(2)
t+ j, y

(3)
t+ j, ..., y

(N)
t+ j

)
∂εnt︸                         ︷︷                         ︸
(1×N)

=


(0, b2,n− j, b3,n− j..., bN,n− j)︸                       ︷︷                       ︸

(1×N)

θ j for j = 0, 1, ...,n − 2,

0′
(1×N)

for j = n − 1,n, ....

for n = 2, 3, ...,N,

(4.7)

where bn,k is the k-th element of bn
(N×1)

. To understand this formula, imagine an N ×N matrix whose

columns are [0 b2 ... bN]. The impact response profile (the profile for j = 0) is the n-th row of this

matrix. The fifth row up from this row, if it is scaled by the legacy parameter θ5, is the profile for

j = 5, for example. The factor loadings for the short rate, b1, do not enter the profile because the

short rate is exogenous. The legacy parameter θ, while irrelevant for the steady-state analysis,

by the affine equation (2.5), despite the fact that θ affects the affine coefficients (an,bn) (n = 2, 3, ...,N).

15This value of γ = 52 is close to the value for the same parameter calibrated by GV (Greenwood and
Vayanos (2014)) of 57.
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affects the IR profile in two ways: it scales the factor loadings (as just mentioned) and it is a

determinant of the factor loadings themselves. Below we consider two values for θ: 0 and 1.

Assume first θ = 1. The set of across-maturity profiles shown in the left panel of Figure 2 are

the yield IR profiles for j = 0 (the impact response), j = 20 (5 years out), j = 40 (10 years), and j = 60

(15 years). The shock considered here originates at the longest maturity with n = N (= 80), with a

shock size of 1 percentage point. With θ = 1, (4.7) shows that the yield IR profile depends on n and j

only thorough n − j. Therefore, for example, the IR profile after 15 years to a shock originating at

n = 80 quarters (20 years) (the dashed profile in the panel) is also the impact response profile (the IR

profile for j = 0) to a shock originating at n = 20 quarters (5 years).

As the panel shows, the IR profiles are hump-shaped, peaking near the maturity where the

local supply shock originates. To explain why, it is useful to temporarily turn our attention to the

risk premium.16 Since, as seen from (3.3), the risk premium, too, is an affine function of the factor

vector, the IR formula (4.7) can be used to calculate the IR of the risk premium if the factor loading

coefficients bn,k are interpreted as the coefficients of ft in (3.3). The right panel of Figure 2 shows the

risk-premium IR profiles for different horizons thus calculated. Two points to note.

• Unlike the yield IR profiles, which are hump-shaped, the risk-premium IR profiles are

upward-sloping. The intuition is the same as given in GV (Greenwood and Vayanos (2014)) for

factor loadings: since long-term bonds are more sensitive to duration risk than short-term bonds,

the risk premium demanded by arbitrageurs must increase with the maturity. This explains why

a local shock, no matter where in the maturity spectrum it originates, raises the risk premium for

long-term bonds. This is illustrated for the impact response profile with the originating maturity

n of 20 (5 years) by the dashed profile in the right panel.

• For all j, the risk-premium IR profile lies above the yield IR profile.

This last point follows from the relationship shown in (3.9) that the current yield is the average

of the risk premium over the bond’s life. Replacing t by t + j in the formula and differentiating both

sides with respect to the bond supply shock at the originating maturity n, εnt, and noting that the

shock does not affect the future short rates, we obtain a link between the yield and the risk-premium

IRs:
∂y(k)

t+ j

∂εnt
=

1
k

∂ rp(k)
t+ j

∂εnt
+
∂ rp(k−1)

t+ j+1

∂εnt
+ · · · +

∂ rp(2)
t+ j+k−2

∂εnt
+
∂ rp(1)

t+ j+k−1

∂εnt

 , k = 1, 2, ...,N. (4.8)

16A similar argument can be found in GV (Greenwood and Vayanos (2014), see the introduction) for factor
loadings.
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The yield IR,
∂y(k)

t+ j

∂εnt
, is less than the risk-premium IR,

∂ rp(k)
t+ j

∂εnt
, because it is the average of a declining

sequence whose first term is the risk-premium IR.17

A similar reasoning explains the hump-shaped yield IR profiles. If the risk-premium IR profile

were flat so that
∂ rp(k)

t+ j

∂εnt
did not depend on the maturity k, then the average in (4.8) would be declining

in k and the yield IR profile would be downward-sloping. But the risk-premium IR profile is

upward sloping, which changes the sign of the slope for short maturities.

Finally, turn to the case θ = 0. Since supply shocks are now temporary, only the impact

response is non-zero for both the yield and the risk premium. The impact response profile is given

by (4.7) for j = 0, which shows that it is invariant to θ (θ j = 1 for j = 0 regardless of θ). For example,

in the right panel of Figure 2, the impact response profile for the risk premium to a supply shock

originating at 20 quarters (5 years) is the dotted profile in the panel. Since the effect on the risk

premium is temporary, as one can surmise from the formula (4.8), a local supply shock originating

at any maturity has very little effect on the yield curve.

5 Conclusion

We have developed a model that provides a mapping from an arbitrary change in the maturity

structure to the yield curve. The model can be viewed as a modern incarnation of Tobin’s (1969)

formulation of portfolio balance channel. Unlike in Tobin’s, the mapping is explicitly tied to the

dynamics of the supply factors, so that the strength of the portfolio channel can be made a function

of the persistence of the supply shock.

17The sequence is declining because, as shown in the right panel of Figure 2,
∂ rp(k)

t+ j

∂εnt
declines as k falls given j

and as j increases given k.
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Figure 1: Average Yield Curve
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Note: The solid line is the steady-state yield curve implied by the model. The filled-in squares are the sample
means from data.

Figure 2: Impulse Responses, θ = 1
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Note: The profiles across maturities of the impulse responses of the yield and the risk premium. The shock is a
1 percentage point increase in the share of 20-year bonds in the maturity structure.
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Appendix 1 Derivation of (3.1), (3.2), and (3.4)

The arbitrageurs’s decision problem is described by (2.3) with (2.2) of the text. If φt is the Lagrange
multiplier for the constraint

∑N
n=1 z(n)

t = 1, the FOCs (first-order conditions) are

Et

P(n−1)
t+1 − P(n)

t

P(n)
t

 − γ 1
2
∂Vart(Rt+1)

∂z(n)
t

= φt, n = 1, 2, ...,N, (A1.1)

N∑
n=1

z(n)
t = 1. (A1.2)

Since P(0)
t+1 = 1, the holding period return on the 1-period bond is (1 − P(1)

t )/P(1)
t , which is known in

date t. Hence ∂Vart(Rt+1)
∂z(n)

t
= 0 for n = 1 and the FOC for n = 1 is: (1 − P(1)

t )/P(1)
t = φt. Substituting this

into the rest of the FOCs in (A1.1), we obtain (3.1) of the text, which is reproduced here:

Et

P(n−1)
t+1 − P(n)

t

P(n)
t

︸              ︷︷              ︸
holding-period return

−
1 − P(1)

t

P(1)
t︸   ︷︷   ︸

short rate︸                                 ︷︷                                 ︸
risk premium on n-period bonds

= γ
1
2
∂Vart(Rt+1)

∂z(n)
t

, n = 2, 3, ...,N, (3.1)

In the rest of this appendix, we derive (3.2) and (3.4) under the VAR dynamics (2.4) and affine
pricing (2.5). This can be done easily if we show the following.

• Show: (1 − P(1)
t )/P(1)

t ≈ y(1)
t . This immediately follows from the approximation 1/x ≈ 1 − log(x) for

x ≈ 1 and the relation y(1)
t ≡ − log P(1)

t .

• Let p(n)
t ≡ log P(n)

t . Show: the distribution conditional on date t of p(n−1)
t+1 − p(n)

t is normal with mean
ān−1 + b̄′n−1 (c +Φft) − ān − b̄′nft and variance b̄′n−1Ωb̄n−1. This follows immediately from

p(n−1)
t+1 − p(n)

t = ān−1 + b̄′n−1 (c +Φft) − ān − b̄′nft + b̄′n−1εt+1, (A1.3)

which can be obtained by combining (2.4) and (2.5).

• Show:

Et

P(n−1)
t+1 − P(n)

t

P(n)
t

 = Et

[
exp(p(n−1)

t+1 − p(n)
t )

]
− 1 ≈ Et

(
p(n−1)

t+1 − p(n)
t

)
+

1
2

Vart

(
p(n−1)

t+1 − p(n)
t

)
. (A1.4)

This can be obtained easily from two well-known formulas. One is that, for a normally
distributed random variable X, E[exp(X)] = exp[E(X) + 1

2 Var(X)], and the other is exp(x) ≈ 1 + x
for x ≈ 0. In the former, we can set X = p(n−1)

t+1 − p(n)
t because, as shown above, p(n−1)

t+1 − p(n)
t is

normally distributed conditional on date t information. In the latter formula, set
x = Et

(
p(n−1)

t+1 − p(n)
t

)
+ 1

2 Vart

(
p(n−1)

t+1 − p(n)
t

)
.
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• Show:

Vart (Rt+1) ≈ d′tΩdt where dt ≡

N∑
i=2

b̄i−1z(i)
t . So

1
2
∂Vart(Rt+1)

∂z(n)
t

= b̄′n−1Ωdt. (A1.5)

To derive this, we again use the approximation exp(x) ≈ 1 + x to derive

P(n−1)
t+1 − P(n)

t

P(n)
t

= exp
(
p(n−1)

t+1 − p(n)
t

)
− 1 ≈ p(n−1)

t+1 − p(n)
t . (A1.6)

Multiply both sides by z(n)
t and sum over n = 1, 2, ...,N to obtain

Rt+1 ≡

N∑
n=1

P(n−1)
t+1 − P(n)

t

P(n)
t

z(n)
t ≈

N∑
n=1

(
p(n−1)

t+1 − p(n)
t

)
z(n)

t

=

N∑
n=1

[
ān−1 + b̄′n−1 (c +Φft) − ān − b̄′nft

]
z(n)

t︸                                                ︷︷                                                ︸
≡At

+

 N∑
n=1

b̄′n−1z(n)
t

 εt+1

(by (A1.3))

= At +

 N∑
n=1

b̄′n−1z(n)
t

 εt+1 (by the definition of At right above)

= At +

 N∑
n=2

b̄′n−1z(n)
t

 εt+1 (since b̄0 = 0)

= At + d′tεt+1 (by the definition of dt in (A1.5)). (A1.7)

Since At defined here is known in date t, the source of the date t conditional variance of Rt+1 is the
last term, d′tεt+1.
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Appendix 2 Solving the Quadratic Vector Equation (3.7)

To emphasize that we are dealing with a QVE (quadratic vector equation) in (3.7), define the
NF-dimensional stacked vector b̄ as (recall: F is the number of factors)

b̄
(NF×1)

≡



b̄1
(F×1)

b̄2
(F×1)
...

b̄N
(F×1)


. (A2.1)

Then it is straightforward to show that (3.7) and the initial condition b̄1 = δ together can be written
as

M
(NF×NF)

b̄
(NF×1)

= d
(NF×1)

− γ g(b̄)
(NF×1)

, (A2.2)

where

M
(NF×NF)

≡



IF 0 0 . . . 0
−Φ′

(F×F)
IF 0 . . . 0

0 −Φ′
(F×F)

IF . . . 0

...
. . .

. . . 0
0 . . . 0 −Φ′

(F×F)
IF


, (A2.3)

d
(NF×1)

≡ 1
(N×1)

⊗ δ
(F×1)

(recall: δ is the initial condition for b̄1), (A2.4)

g(b̄)
(NF×1)

≡



0
(F×1)

S′
(F×(N−1))

B̄′
((N−1)×F)

Ω
(F×F)

b̄1
(F×1)︸                         ︷︷                         ︸

(F×1)
...

S′
(F×(N−1))

B̄′
((N−1)×F)

Ω
(F×F)

b̄N−1
(F×1)︸                          ︷︷                          ︸

(F×1)



= P
(NF×(N−1)2)

vec

 B̄′Ω B̄︸ ︷︷ ︸
((N−1)×(N−1))

︸               ︷︷               ︸
((N−1)2×1)

, P ≡


0

(F×(N−1)2)

IN−1 ⊗ S′︸    ︷︷    ︸
((N−1)F×(N−1)2)

︸               ︷︷               ︸
(NF×(N−1)2)

, (A2.5)

B̄
(F×(N−1))

≡

[
b̄1

(F×1)
b̄2

(F×1)
. . . b̄N−1

(F×1)

]
. (A2.6)
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If γ = 0, the equation (3.7) or (A2.2) has a unique solution

b̄∗ ≡M−1d. (A2.7)

Although the square matrix M, which is of size NF, can be large, computing b̄∗ is fast because there
is a well-known analytical expression for the inverse of the large matrix M.18 If γ > 0, because of the
quadratic term g(b̄), there can be multiple solutions if a solution exists. Following GV (Greenwood
and Vayanos (2014)), we seek the solution that converges to the unique solution b̄∗ as γ→ 0. To
study such a solution for given γ > 0, write the equation as

f(b̄, γ) = 0
(NF×1)

, f(b̄, γ) ≡Mb̄ − d + γg(b̄). (A2.9)

By the implicit function theorem, there exists an interval U including 0 as an interior point and a
vector-valued function of a single variable, b̄(.): U→ RNF, such that f(b̄(γ̃), γ̃) = 0 for all γ̃ ∈ U and
its derivative b̄′(.) is given by

b̄′(γ̃) = −

[
∂f(b̄(γ̃), γ̃)

∂b̄′

]−1
∂f(b̄(γ̃), γ̃)

∂γ

= −

[
M + γ̃

∂g(b̄(γ̃))
∂b̄′

]
︸                ︷︷                ︸

(NF×NF)

−1

g(b̄(γ̃))︸  ︷︷  ︸
(NF×1)

(by the definition in (A2.9) of f(b̄, γ)). (A2.10)

The solution b̄(γ) can be obtained by numerically solving the differential equation (A2.10) on
the interval [0, γ] with the initial condition b̄(0) = b̄∗. This method, however, is computationally
demanding if the dimension of the matrix to be inverted, M + γ̃

∂g(b̄(γ̃))
∂b̄′ , is large.19 20 An alternative is

to utilize the fixed-point iteration

18Here is the expression for M−1:

M−1 =



IF 0 0 . . . 0
Φ′ IF 0 . . . 0

(Φ′)2 Φ′ IF . . . 0
...

. . .
. . . 0

(Φ′)N−1 . . . (Φ′)2 Φ′ IF


. (A2.8)

19The next section’s example has N = 80 and F = 1 + N, so the size of the matrix is 6480 × 6480.

20Computation of the Jacobian ∂g(b̄(γ̃))
∂b̄′ is not CPU-intensive because we have an analytical expression of it.

Since g(b̄) = P vec(B̄′ΩB̄) is quadratic, the Jacobian ∂g(b̄)
∂b̄′ can be written as (recall: B̄

(F×(N−1))
= [b̄1, ..., b̄N−1] and

b̄′ = [b̄′1, ..., b̄
′

N−1, b̄
′

N])
∂g(b̄)
∂b̄′︸︷︷︸

(NF×NF)

= P
(NF×(N−1)2)

[
A

((N−1)2×(N−1)F)
0

((N−1)2×F)

]
︸                          ︷︷                          ︸

((N−1)2×NF)

(A2.11)
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b̄(k+1) = M−1[d − γg(b̄(k))], k = 0, 1, 2, ... (A2.13)

starting from b̄(0) = b̄∗. This method, with no need to do numerical matrix inversion, is faster by
several orders of magnitude. I have not been able to characterize a condition under which this
iteration converges, though.21 However, for numerical examples that I experimented and certainly
for the example of the next section, this iteration quickly converges to the solution to the differential
equation (A2.10).

where A here is

A
((N−1)2×(N−1)F)

≡



IN−1 ⊗ b̄′1
(1×F)

Ω
(F×F)︸            ︷︷            ︸

((N−1)×(N−1)F)
...

IN−1 ⊗ b̄′N−1
(1×F)

Ω
(F×F)︸             ︷︷             ︸

((N−1)×(N−1)F)


+ IN−1 ⊗ B̄′

((N−1)×F)
Ω

(F×F)
.︸         ︷︷         ︸

((N−1)×F)

(A2.12)

21The sufficient condition identified in Poloni (2013, Theorem 4) requires that bothΦ andΩ be nonnegative.
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