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Abstract

We demonstrate the importance of intertemporal marginal propensities to consume
(IMPCs)—the impulse response of consumption to income—in the transmission mech-
anism of shocks in macroeconomic models. By representing general equilibrium as an
intertemporal Keynesian cross, we show that IMPCs are sufficient statistics for the de-
terminacy of equilibrium outcomes and for the impulse response of output. Models
with precautionary savings, borrowing constraints, and low liquidity can capture the
shape of IMPCs in the data, while alternative models with complete markets or hand-
to-mouth agents cannot. Calibrating our model to existing evidence on IMPCs, we find
that the economy is determinate for a Taylor rule coefficient below 1, and that deficit-
financed fiscal multipliers are well above 1 under most plausible degrees of monetary
policy responsiveness—in sharp contrast with both representative agent and saver-
spender models.

1 Introduction

Recent empirical work on consumption has revolutionized the study of monetary and fiscal pol-
icy by macroeconomists. In the data, marginal propensities to consume (MPCs) out of one-time
income shocks are much larger than what standard representative agent models imply, yet most
known results on the effects on monetary and fiscal policy are based on a representative agent
construct. This has prompted a recent literature to revisit the standard answers using models that
match the magnitude and the heterogeneity of MPCs in the data.

There exists several competing models of household behavior that can all be made consistent
with the large average MPCs observed empirically. Two well-known examples are models built
around the saver-spender allegory of Campbell and Mankiw (1989), where a fraction of the pop-
ulation lives hand to mouth, and models with precautionary savings and borrowing constraints
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with liquid assets as in Deaton (1991), Carroll (1997), and Zeldes (1989), or with illiquid assets as
in Kaplan and Violante (2014). As a result, both classes of models have been widely used to study
fiscal and monetary policy in recent years.1

While these models all reflect the existing MPC evidence, in this paper we argue that they
are not all consistent with the evidence on intertemporal marginal propensities to consume (IMPCs),
which describes the impulse response of consumption to income at various horizons. We show that
under certain conditions, IMPCs are sufficient statistics for answers to general equilibrium macroe-
conomic questions. Therefore, the model delivers correct answers to these questions if and only if
its IMPCs are aligned with those in the data. While previous work has emphasized the importance
of MPCs as sufficient statistics for certain partial equilibrium questions (Auclert 2017, Auclert and
Rognlie 2018), to the best of our knowledge, this is the first result establishing the precise sense
in which MPCs matter for general equilibrium. This result has significant implications for em-
pirical work on consumption, and for theoretical work developing business cycle models with
heterogeneous agents.

We make the case for the importance of IMPCs in the context of a simple heterogeneous agent
New Keynesian model. We focus on fiscal policy, and consider changes in the time paths of gov-
ernment spending or taxes, which we write as vectors dG and dT. We postulate a homothetic
retention function and labor demand schedule, and assume that monetary policy follows a rule
that maintains a constant real interest rate. Under these natural benchmark assumptions, we show
that a general equilibrium impulse response of output dY to any fiscal shock (dG, dT) that satisfies
the government’s intertemporal budget constraint is a solution to the recursive equation

dY = −MdT + dG + MdY (1)

where M is a matrix whose entries are average IMPCs. Hence, M is all we need to know to solve
for this impulse response. Other aspects of the data, such as household preferences, the nature
of constraints they face, the distributions of income and wealth, or the comovement between con-
sumption, output and government spending, are irrelevant conditional on M.

Equation (1) is reminiscent of a staple of macroeconomics known as the Keynesian cross, which
played an important role in macroeconomics before the advent of modern microfounded models,
and is still widely used in policy circles today. The Keynesian cross is a fixed point equation that
postulates that the output effect in a period dY of a change in fiscal policy dG or taxes dT in the
same period solves the equation

dY = −MPC · dT + dG + MPC · dY (2)

where MPC is “the” marginal propensity to consume. The intuition stems from the feedback

1Iacoviello (2005), Galí, López-Salido and Vallés (2007), Bilbiie (2008) and Eggertsson and Krugman (2012) study
monetary or fiscal policy with saver-spender models. Guerrieri and Lorenzoni (2017), McKay and Reis (2016), McKay,
Nakamura and Steinsson (2016) and Kaplan, Moll and Violante (2018) study the same issues in models of precautionary
savings with or without illiquidity.
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between income and consumption. In a closed economy, assuming no investment response to the
fiscal change, the change in GDP must equal the sum of changes in consumption and government
spending dY = dC + dG, and this is also the change in aggregate income. But consumption
responds to changes in income and taxes according to the MPC, dC = MPC (−dT + dY). Hence
the fixed point equation (2), from which one can solve for the output effect of the fiscal shock using
only information on the MPC.

Equation (1) is a generalization of the Keynesian cross (1) that involves impulse responses to
output rather than static effects, and allows for an evaluation of the effect of complex government
spending plans and tax plans that can be financed with goverment borrowing, as they often are in
practice. Its sufficient statistics are a set of IMPCs rather than a static MPC. We therefore call it the
intertemporal Keynesian cross, or IKC for short. While we focus most of the paper on the analysis of
fiscal policy for concreteness, we show in section 8.2 that a similar equation involving M allows
to solve for the general equilibrium effect of many other shocks. In all of these cases, the same set
of IMPCs enter as sufficient statistics for the output impulse response.

Motivated by this result, we examine the existing IMPC evidence and confront it with pre-
dictions from a battery of dynamic consumption models. There exists some limited evidence
on the dynamics of consumption responses to increases in income. The best evidence we are
aware of—which uses a well-identified empirical strategy as well as comprehensive information
on household balance sheets, allowing researchers to back out a precise measure of consump-
tion—comes from the Norwegian lottery data analyzed in Fagereng, Holm and Natvik (2016).
Their evidence suggests that the annual MPC out of an unexpected lottery gain is around 0.5 in the
first year, dropping off sharply to about 0.16 in the second year, and decaying slowly thereafter.
As stressed by previous literature, a representative agent model cannot match the large impact
MPC of 0.5. We show that the data also rejects saver-spender models, since they imply negligible
effects on consumption after year 1. A representative agent model with bonds in the utility can
come close, but implies a pattern of decay in IMPCs that is too slow relative to the data. Models
with precautionary savings and borrowing constraints calibrated to standard aggregate macroe-
conomic targets such as the liquidity-to-GDP ratio also fall short of the overall level of IMPCs.
However, when we calibrate the aggregate liquidity level so as to minimize the distance between
model and data IMPCs, we obtain a good fit to the full path of IMPCs in the data. Since IMPCs
are all that matter for the question we posed, we use this low-liquidity model as our benchmark
calibration in the rest of the paper.2

Before turning to the evaluation of fiscal policy, we discuss how to solve the IKC (1). This is not
straightforward, because of the potential for multiple equilibria that plagues all dynamic general
equilibrium macroeconomic models with nominal rigidities. In our context, multiplicity corre-

2Hence, in the “TANK vs HANK” debate in the literature over whether saver-spender models or models with more
complex heterogeneity should be used for monetary-fiscal analysis (see Debortoli and Galí 2017, Bilbiie 2017, or Kaplan
and Violante 2018), our results favor HANK models, but only those with a calibration to low levels of liquidity. This
is close to, but not quite as extreme as the zero-liquidity limits of Ravn and Sterk (2017a), Werning (2015), or Ravn and
Sterk (2017b), which the IMPC data also rejects.
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sponds to output impulse response vectors v that satisfy the equation Mv = v. This multiplicity
has a natural interpretation as a self-fulfilling change in economic activity. By interpreting M as
the transition matrix of an infinite-dimensional Markov chain, we provide a simple condition for
determinacy based on the limit behavior of IMPCs. Hence IMPCs are sufficient statistics for equi-
librium determinacy, as well as for impulse responses to shocks. To the best of our knowledge,
our paper provides the first general determinacy condition for a model with an infinite dimen-
sional state space. We then provide the solution(s) to equation (1), with or without determinacy.
Applying our results, we find that our benchmark calibration is determinate under constant real
interest rates, in contrast to the representative agent model.

We next turn to our main application, which is the evaluation of fiscal policy shocks. We
start by providing a useful benchmark result: when the government changes its spending plan
by raising taxes at the same time (dG = dT), then the fiscal multiplier is exactly 1 (dY = dG =

dT). This provides a significant generalization of Woodford (2011)’s results on the government
expenditure multiplier for a model with heterogeneous agents where Ricardian equivalence fails.
This result implies that IMPCs matter for fiscal policy because they determine the output effect of
changes in fiscal policy that involve primary deficits—such as increases in government spending
paid for by taxes in the future, or transfers to households offset by higher future taxes. For these
changes, we find constant-r fiscal multipliers that increase rapidly in the degree to which taxes
are delayed, with multipliers that can be above 3 if the half-life of government debt is above 10
years. The key are IMPCs: in the data, agents react little to changes in income taking place more
than 5 years in the future. When government spending increases but taxes are delayed for a long
time, higher government spending increases consumption for a number of years, which in turn
increases incomes and therefore consumption, and so on. While our results on large multipliers
are consistent with those on the theoretical literature focusing on the zero lower bound (see for
example Christiano, Eichenbaum and Rebelo 2011 or Farhi and Werning 2016), our findings on
the importance of fiscal deficits for the multipliers, and the relevance of IMPCs to study this effect,
is new to the literature.3

We study a number of extensions of our framework. First, we consider endogenous monetary
policy responses, deviating from our benchmark of constant real interest rates. The most substan-
tive economic change is that our IKC equation (1) now involves consumption responses to real
interest rates in addition to consumption responses to income. Adapting our determinacy results,
we provide a new Taylor principle ensuring determinacy for heterogeneous agent economies. In
our benchmark calibration, it is enough that the coefficient of response of nominal interest rates
to inflation φπ be greater than 0.7 for the economy to be determinate—a significant constrast to
the well-known representative agent threshold of 1 (Bullard and Mitra 2002, Woodford 2003).
While our fiscal multipliers are dampened by the presence of endogenous Taylor rule responses,
our main result regarding the importance of deficit finance survives, and our multipliers remain

3In parallel and independent work, Hagedorn, Manovskii and Mitman (2017) also study fiscal multipliers in a het-
erogeneous agent model and find larger multipliers for deficit-financed fiscal policy.
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above 1 even with Taylor rule response coefficients well above 3 under a realistic degree of price
rigidity. In other extensions, we study cases where the economy’s income incidence departs from
our benchmark assumption, consider alternative shocks beyond fiscal shocks, and add investment
to the model.

Our results have significant implications for empirical work on consumption, and for theoret-
ical work developing business-cycle models with heterogeneous agents. On the empirical side, it
suggests an important role for measuring the impulse response of consumption to income rather
than MPCs alone; both for unexpected income shocks (for which some empirical evidence exists)
as well as expected transfers in the future (for which there is essentially none). Our results on
endogenous monetary policy also call for empirical work measuring dynamic consumption re-
sponses to real interest rate changes. Just as the literature has used evidence on MPCs as a model
selection device to move away from the representative agent model, we expect IMPC evidence to
help discriminate among existing models going forward. On the theoretical side, our results show
the importance of developing macroeconomic models that match the IMPC evidence while main-
taining consistency with other macroeconomic targets. While our benchmark calibration does
achieve a good fit to the IMPC, it comes at the cost of missing on the wealth to GDP ratio. While
this may not be a worry within the class of questions for which IMPCs are strict sufficient statistics,
such as fiscal multipliers under constant real interest rates that we focus on for much of the paper,
it may become more problematic as we extrapolate the model out to consider situations in which
the real interest rate adjusts, or the incidence of income is more complex than in our benchmark
model.

The rest of the paper is organized as follows. Section 2 presents our baseline model, for which
we derive the intertemporal Keynesian cross equation (1) in section 3. Section 4 confronts our
model as well as a battery of other ones to existing IMPC evidence and presents our benchmark
calibraiton. Section 5 presents model determinacy conditions and the solution to the IKC. Section
6 contains our main results on fiscal multipliers. We cover endogenous monetary policy in section
7 and other extensions in section 8. Section 9 concludes.

2 Baseline model

In this section, we introduce our baseline model for the study of fiscal policy. We keep the model as
simple and close to the Heterogeneous-Agent New Keynesian literature as possible. Our assump-
tions on income incidence and fiscal-monetary rules help us derive a very simple intertemporal
Keynesian cross representation of equilibrium; we relax these assumptions and consider more
general shocks in later sections.

Model setup. Time is discrete and runs from t = 0 to ∞. The economy is populated by a con-
tinuum measure 1 of ex-ante identical agents who face no aggregate uncertainty, but may face
idiosyncratic uncertainty. Individuals can be in various idiosyncratic ability states ei, and tran-
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sition between those states according to a Markov process with fixed transition matrix Π. We
assume that the mass of worker type i in idiosycratic state ei is always equal to π (ei), the proba-
bility of ei in the stationary distribution of Π. Ability levels are normalized to be one on average,
so that Ee [e] = ∑ei

π (ei) ei = 1.

Agents. Agents have time-0 utility over consumption and labor supply plans given by separable
preferences

E

[
∑
t≥0

βt {u (cit)− v (nit)}
]

(3)

Each period t, an agent with incoming real wealth ait−1 and realized earnings ability eit enjoys
the consumption of a generic consumption good cit and gets disutility from working nit hours.
Consumption goods have price pt and the nominal wage per unit of ability is wt. The agent faces
a loglinear retention function on pretax labor income as in Bénabou (2000), can trade in real bonds
that deliver a net real interest rate rt, and faces a borrowing constraint. Specifically, his budget
constraint in period t in units of date-t consumption goods is

cit + ait = (1 + rt) ait−1 + τt

(
wt

pt
eitnit

)1−λ

∀t, i (4)

ait ≥ a (5)

The agent maximizes (3) by choice of cit and ait, subject to (4) and the borrowing constraint (5).
By contrast, due to frictions in the labor market, the agent is restricted to supply nit hours. Hence

the agent takes total net of tax income zit ≡ τt

(
wt
pt

eitnit

)1−λ
as given. From the household’s

perspective, therefore, equation (4) simplifies to

cit + ait = (1 + rt) ait−1 + zit ∀t, i (4’)

Maximization of (3) subject to (4’) and (5) constitutes the core of the standard incomplete market
model of consumption and savings.

Labor market. Following standard practice in the New Keynesian sticky-wage literature, labor
hours nit are determined by aggregate union labor demand. The union allocates hours among
heterogeneous households as a function of aggregate employment. In this section, we assume
that this allocation is uniform: when labor demand is lt, households must supply

nit = lt (6)

Hence skill-weighted hours worked EI [eitnit] are always equal to aggregate labor demand lt.
Combined with our assumption on the retention function, this equal incidence assumption implies
that all macroeconomic changes affect households net-of-tax incomes zit in proportion, irrespec-
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tive of their skill level eit. This is a natural benchmark case to study. We explore how our results
change when we relax it in section 8.1.

Households are off their labor supply curves because the nominal wage wt is partially sticky.
Optimization by unions given previous-period wages wt−1 implies a value for current-period
wages wt. Under our monetary policy rule, the exact wage adjustment rule is irrelevant for aggre-
gate outcomes, so we defer discussion of it to section 7.

Production of final goods. Firms operate a simple, time-invariant technology

yt = lt (7)

They are perfectly competitive and set prices flexibly, so that the final goods price is given by

pt = wt (8)

and profits are 0, justifying why no dividends enter households’ budget constraints in (4). Hence
the real wage per efficient hour is constant and equal to wt

pt
= 1, and goods price inflation and

wage inflation are equal at all times, pt+1
pt

= wt+1
wt

.

Government. The government sets an exogenous plan for spending gt and tax revenue tt. As-
suming initial government debt b−1, the sequences {gt, tt} must satisfy the intertemporal budget
constraint

(1 + r−1)b−1 +
∞

∑
t=0

(
t−1

∏
s=0

1
1 + rs

)
gt =

∞

∑
t=0

(
t−1

∏
s=0

1
1 + rs

)
tt (9)

In each period t ≥ 0, the government implements this plan by issuing or retiring debt as needed.
Its outstanding debt at the end of period t is

bt = (1 + rt−1) bt−1 + gt − tt (10)

The government also adjusts the coefficient τt on the labor income retention function such that
aggregate tax revenue equals tt, ie

EI

[
eitnit − τt (eitnit)

1−λ
]
= tt (11)

Monetary policy sets the nominal interest rate it by following a simple rule. Given the path for
goods prices pt, the real interest rate at t (the price of date-t + 1 goods in units of date-t goods) is
equal to

1 + rt ≡ (1 + it)
pt

pt+1
(12)
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In this section, we consider a rule in which the real interest rate is a strictly positive constant

rt = r > 0 (Constant-r)

Such a rule has proved useful in the equilibrium analysis of both representative- and heterogeneous-
agent New Keynesian models,4 and we will show that, in our context, it facilitates a simple In-
tertemporal Keynesian Cross representation. In section 7 we replace (Constant-r) by a Taylor rule.
The key difference will be that household consumption responses to interest rates will matter
alongside consumption responses to income.

Definition 1. Given an initial nominal wage w−1, initial government debt b−1, an initial distri-
bution Ψ−1 (a, e) over assets a and idiosyncratic states e, and exogenous sequences for fiscal pol-
icy {gt, tt} that satisfy the intertemporal budget constraint (9), a general equilibrium in this econ-
omy is a path for prices {pt, wt, rt, it}, aggregates {yt, lt, ct, bt, gt, tt}, individual allocations rules
{ct (a, e) , nit}, and joint distributions over assets and productivity levels {Ψt (a, e)}, such that
households optimize, unions optimize, firms optimize, monetary and fiscal policy follow their
rules, and the goods and bond markets clear:

gt +
∫

ct (a, e) dΨt (a, e) = yt (13)∫
adΨt (a, e) = bt (14)

This completes the description of our environment. Except in very simple cases, the model cannot
be solved analytically and one has to resort to numerical simulations for solutions—the usual
practice in the literature. However, in the next section, we show that we can characterize impulse
responses from steady state in terms of simple averages of intertemporal marginal propensities to
consume.

Calibration. For our numerical simulations, we stay as close as possible to a standard calibration
for a Huggett model. We assume the economy is initially at a steady state. Households have

constant CES utility over consumption u (c) = c1−ν−1

1−ν−1 with a standard value of ν = 1
2 . We set a

steady-state value for output of y = 1 and a steady-state inflation rate of π = 0. The specific
form of labor disutility v (n) and the parameters governing union maximization are irrelevant for
steady state outcomes.

Following the standard practice in the literature, we assume that gross income follows an
AR(1) process, which we discretize using an 11 point Markov chain using the Rouwenhorst method.
We use Floden and Lindé (2001)’s estimates of the persistence of US wage process, equal to 0.9136
yearly, and set variance of innovations such that the standard deviation of log gross earnings is
equal to its US value of 0.92 as in Auclert and Rognlie (2018).5 We calibrate the curvature pa-

4See for example Woodford (2011) or McKay et al. (2016),
5This is the same value as in Kaplan et al. (2018), and is higher than the value of 0.51 implied by Floden and Lindé
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Targets IMPCs Liquidity
Parameters Description Value Value

ν Elasticity of intertemporal substitution 0.5 —
β Discount factor 0.75 0.89
r Real interest rate 2% —
π Inflation rate 0% —

b/y Government debt to GDP 11% 140%
a/y Borrowing constraint 0 —
g/y Government spending to GDP 18.9% —

λ Retention function curvature 0.181 —

Table 1: Calibrated parameters (external calibration)

rameter of the retention function to λ = 0.181 and the ratio of government spending to GDP to
g/y = 18.9% following Heathcote, Storesletten and Violante (2017). Following McKay et al. (2016),
we assume that households cannot borrow (a = 0) and target an equilibrium real interest rate of
r = 2%.

We pursue two different strategies to calibrate the remaining parameters. In our IMPC target
calibration, we calibrate the household discount factor β using the IMPC moment matching pro-
cedure described in section 4. Given β, we finally find the level of government liquidity b and the
intercept of the retention function τ such that the asset market clears and the government budget
constraint is satisfied. This delivers a liquidity to GDP ratio of b/y =11%. In our liquidity calibra-
tion, by contrast, we follow the literature and calibrate to an observed level of government debt,
which we choose to be b/y =140% of output as in McKay et al. (2016). We then obtain τ residually
from the government budget constraint, and finally calibrate β to hit our target for the steady state
interest rate r. Table 1 summarizes our two calibrations.

3 Deriving the Intertemporal Keynesian Cross

3.1 Aggregate income and consumption function.

We start with a useful simplification of aggregate household behavior. Given (6), each agent has
net of tax income zit = τt (eitlt)

1−λ. Aggregate net of tax income can then be written as

zt ≡ τtl1−λ
t EI [e1−λ

it ]︸ ︷︷ ︸
≡E1−λ

(15)

and each zit can be written in terms of the aggregate as zit =
e1−λ

it
E1−λ zt.

If we substitute this into (4’), then conditional on the individual state (ait, eit), the only vari-
ables affecting the household problem are the aggregate sequences {zt} and {rt}. Households’

(2001) to capture the “new view” of household idiosyncratic risk. Since our tax system is progressive, it effectively
dampens the amount of idiosyncratic risk by a factor 1− λ.

9



optimal policy rules ct(a, e) are determined by these sequences, and aggregate consumption cs =∫
cs (a, e) dΨs (a, e) can therefore be written as a function of them:

cs = cs({zt}, {rt}) (16)

which we call the aggregate consumption function. Substituting (15) into (11) and using EI [eitnit] =

lt = yt, in equilibrium we also have
zt = yt − tt (17)

i.e. that aggregate net income zt equals output minus tax revenue.

3.2 Exogenous-y partial equilibrium

Although the aggregate consumption function must be calculated numerically, (16) and (17) to-
gether offer a straightforward characterization of aggregate household behavior, which depends
only on real interest rates and aggregate output net of taxes.

General equilibrium as described in definition 1, by contrast, is much more complicated, since
it imposes market clearing in goods and assets each period. This motivates us to define a simpler
partial equilibrium notion, which we call exogenous-y partial equilibrium, that drops these market
clearing conditions and instead takes the path y as given.

Definition 2. Given exogenous sequences for fiscal policy {gt, tt} that satisfy the intertemporal
budget constraint (9), and a path for output supply {yt}, an exogenous-y partial equilibrium
is a path for prices {pt, wt, rt, it}, aggregates {yt, lt, ct, bt, gt, tt}, individual rules {ct (a, e)}, and
joint distributions over assets and productivity levels {Ψt (a, e)}, such that households optimize,
unions optimize, firms optimize, and monetary and fiscal policy follow their rules. We define
yPE

t ≡ ct + gt as the resulting path of output demand.

This shuts off many of the complex intertemporal feedbacks in the general equilibrium model,
which operate through market clearing. Indeed, we can immediately derive the following.

Lemma 1. There is a unique exogenous-y partial equilibrium corresponding to a given path for output
supply {yt} and fiscal policy {gt, tt}. This defines a mapping yPE

s ({yt} ; {gt, tt}), which can be written in
terms of the consumption function as

yPE
s ({yt} ; {gt, tt}) = cs({yt − tt}, {r}) + gs (18)

Partial equilibrium in definition 2 only differs from general equilibrium in definition 1 by omit-
ting goods and asset market clearing, replacing them with exogenous y. By Walras’ law, goods
market clearing in each period is sufficient for asset market clearing, and we can therefore recover
general equilibrium as a fixed point of partial equilibrium, in which output demand equals output
supply.
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Lemma 2. A general equilibrium is an exogenous-y partial equilibrium that satisfies the additional re-
quirement that goods markets clear at every point in time, that is, a path {yt} that solves the system of
equations

ys = yPE
s ({yt} ; {gt, tt}) ∀s (19)

Partial equilibrium effects of shocks. We will primarily study the effects of shocks to policy.
Since a given shock may impact policy variables in many periods, it is convenient to define a one-
dimensional policy shifter ε, and to write spending and tax revenue gt(ε) and tt(ε) as functions
of this shifter. To simplify, we can then write partial equilibrium output demand as a function of
only {yt} and ε:

yPE
s ({yt}, ε) ≡ yPE

s ({yt} ; {gt(ε), tt(ε)})

We will be particularly interested in the effects of a policy shock starting from a steady state.
Letting y denote steady-state output, and assuming that ε = 0 corresponds to steady-state policy,
we write

∂yt ≡
∂yPE

t ({y} , 0)
∂ε

dε (20)

for each t. We call {∂yt} the partial equilibrium effect on output demand of the policy shifter dε.

Lemma 3. The partial equilibrium effect of a fiscal policy shock starting from steady state is given by

∂ys = −
(

∞

∑
t=0

∂cs

∂zt
dtt

)
+ dgs (21)

The first term in (21) is the effect of the changing tax sequence on consumption, filtered through
the impact on net incomes entering into the consumption function. The second term is simply the
direct effect of increasing spending.

Since fiscal policy sequences must obey (9), the net present value of the perturbation to taxes
{dtt} must equal the net present value of the perturbation to government spending {dgt}. To-
gether with household budget constraints, which require that household incomes and consump-
tion equal in net present value, this implies the following lemma.

Lemma 4. The partial equilibrium effect {∂yt} of any shock has zero present value, that is,

∞

∑
t=0

∂yt

(1 + r)t = 0 (22)

This is an important feature of our policy shocks in partial equilibrium: they cannot lead to
a change in the present value of aggregate spending, even though they can affect its path over
time. An increase in government spending in one period will be offset, in present value terms,
by a decrease in consumption demand in other periods resulting from the taxes that finance the
spending.
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3.3 General equilibrium and the intertemporal Keynesian cross

Define yt (ε) to be a function mapping each shock ε to a general equilibrium output response. (If
there are multiple equilibria for a given ε, this can be any differentiable selection.) Write dyt ≡
dyt
dε dε. We can now relate {dyt} to the partial equilibrium {∂yt} from the previous section.

Totally differentiating (19), we obtain

dys = ∂ys +
∞

∑
t=0

ms,tdyt ∀s (23)

where

ms,t ≡
∂yPE

s ({y} , ε)

∂yt
=

∂cs({y− t}, r)
∂zt

(24)

For any given {∂ys}, a general equilibrium {dyt} is a solution to the infinite-dimensional linear
system in (23).

We can prove the following analogue of lemma 4:

Lemma 5. For any t, the present value of ms,t discounted to date t equals one:

∞

∑
s=0

ms,t

(1 + r)s−t = 1 (25)

As with lemma 23, this comes from the observation that all income earned in the economy is
spent at some point in time. Incrementing yt by one therefore also increases the date-t present
value of goods demand across all periods by one.

The intertemporal Keynesian cross. Our main result, the intertemporal Keynesian cross, is an
expression of equation (23) in vector form. Since lemmas 4 and 5 will prove to be important, it
is convenient to rescale quantities so that they have especially simple vector interpretations. We
therefore write dYt ≡ 1

(1+r)t dyt, ∂Yt ≡ 1
(1+r)t ∂yt, and Ms,t ≡ 1

(1+r)t−s ms,t. All other capital letters
will refer to present value concepts as well.

Define the vector ∂Y ≡ (∂Y0, ∂Y1, · · · ) and the infinite-dimensional matrix M ≡ (Ms,t). The
system of equations (23) delivers our main proposition.

Proposition 1 (The intertemporal Keynesian cross.). To first order, for any shock, impulses to partial
equilibrium output ∂Y and general equilibrium output dY satisfy

dY = ∂Y + MdY (26)

The matrix M has entries
Ms,t =

1
(1 + r)s−t

∂cs

∂zt
(27)

where cs is the aggregate consumption function (16), and M is column stochastic, 1′M = 1′.
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The vector ∂Y is given by
∂Y = −MdT + dG (28)

where dT and dG are the shocks to tax revenue and government spending, respectively, and has mean zero,
1′∂Y = 0.

This proposition separates the determination of general equilibrium output into two steps.
First, there is the exogenous-y partial equilibrium effect ∂Y, which is easy to obtain from (28).
Then, given this ∂Y, general equilibrium output dY solves the fixed point in equation (26), the
intertemporal Keynesian cross (IKC), whose structure is given by a matrix M that is independent
of the shock. All the complexity of general equilibrium—which arises from the need to clear
markets in every period—appears only in this second step.

M embodies a transmission mechanism from partial to general equilibrium that is common to
all shocks. When (26) has a unique solution—as it does in our main calibration, and for which
we will provide sufficient conditions on M in section 5—∂Y is sufficient for dY: shocks that have
the same partial equilibrium effect also have the same general equilibrium effect. Conceivably, an
observer interested in dY could ignore the details of a shock and retain only information on ∂Y.6

We will refer to entries in M as intertemporal marginal propensities to consume, or IMPCs.
They tell us, in present value terms, how much households will consume in period s out of a
shock to aggregate net income in period t. The intertemporal Keynesian cross (26) tells us that an
impulse to general equilibrium output dY must equal the partial equilibrium impulse ∂Y, plus the
marginal consumption MdY out of itself. The name is inspired by the presence of a similar fixed
point in the traditional Keynesian cross, which we will discuss further in the next section.

The intertemporal Keynesian cross (26) turns out to be quite general: we will show in section
8.2 that the same relationship between dY and ∂Y holds for a variety of shocks, including shocks
to household preferences, borrowing constraints, income distribution, and monetary policy. We
continue to have 1′∂Y = 0 in all cases—in partial equilibrium, these shocks shift output demand
intertemporally, but leave its present value unchanged. Crucially, the M matrix remains indepen-
dent of the shock.

By contrast, the M matrix will change as we explore more complex specifications of policy, be-
coming a more complex function of IMPCs when we consider more general fiscal rules in section
6.3, and including household responses to real interest rates when we consider more general mon-
etary rules in section 7. In all cases, M continues to be a stochastic matrix, and the intertemporal
Keynesian cross (26) holds, allowing us to treat partial equilibrium ∂Y as sufficient for general
equilibrium dY.

Finally, note that we did we not immediately solve (26) to find dY, even though it would be
natural to try writing dY = (I −M)−1∂Y. This is because the inverse (I −M)−1 , where I is
the identity matrix, often does not exist: 1′(I −M) = 0 by the stochasticity of M in theorem 1,
implying immediately that I −M is non-invertible if the horizon was finite, and possibly that

6When (26) does not have a unique solution, this reflects an underlying multiplicity of general equilibria. ∂Y is still
sufficient for the set of possible dY, but the specific dY depends on the selection rule. We discuss more in section 5.
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Figure 1: IMPCs in calibrated model

it is non-invertible in our infinite horizon case as well.7 Fortunately, even when I −M is non-
invertible, there generally still exist solutions to (26), because 1′∂Y = 0 means that ∂Y can still be
in the column space of I−M.

3.4 Properties of IMPCs

Figure 1 plots selected columns of the M matrix for our calibrated model: the IMPCs Ms,t for t =
0, 5, 10, 15, 20. For each t, the plotted column corresponds to the impulse response of consumption
to an increase in aggregate income at t, when both are in present value units.

Thanks to the incomplete markets and borrowing constraints facing households, the strongest
consumption response is contemporaneous with the receipt of income, and then diminishes in
both directions—less is spent from an impulse to income when that income is expected further in
the future, or was received in the more distant past. In short, elements of M tend to be larger the
closer they are to the main diagonal.

Two key features of the IMPCs in figure 1 turn out to be provably general to our model, not
specific to this particular calibration. First, the IMPCs are all strictly positive: at the margin, an
increase in aggregate income in one period leads to an increase in consumption in all periods.
Second, the IMPCs Ms,t become translation invariant as we take s, t → ∞: they depend only on
s− t. When t is close to 0, households do not have many periods to consume in anticipation of
the income they will eventually receive; but when t → ∞, households in the aggregate increase
their consumption both before and after t in the same pattern. In matrix terms, this means that
IMPCs Ms,t for high s, t depend in the limit only on the distance from the main diagonal. We call

7This is much simpler in the finite-horizon case, because the usual results of finite-dimensional linear algebra apply:
1′(I −M) = 0 means that M is both rank-deficient and has a nontrivial null-space of vectors v such that Mv = v,
which also gives us multiplicity. With infinite dimensions, this need not be the case (since, for instance, left and right
eigenvalues need not coincide), and indeed we explore these issues at length in section 5, making use of the stochasticity
of M to apply results on Markov chains.
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this feature of M self-similarity.

Proposition 2. The M matrix of IMPCs is positive, that is, Ms,t > 0 for all s, t ∈N, and asymptotically
self-similar, that is, for any given t0 ∈ N, the sequence of IMPCs (Mt+s,t)s≥−t0 converges uniformly in
t ∈ {t0, t0 + 1, . . .} as t→ ∞.

Both features in proposition 2 are shared by many models with heterogeneity and incomplete
markets, and will be convenient for our analytical results in section 5. Self-similarity is not present,
however, in representative-agent models with unconstrained households. Indeed, in these mod-
els, all columns of M are identical, as the consumption response to income shocks of a certain
present value is the same whether these shocks occur at t = 0 or t = 1000.

3.5 Relation to the static Keynesian cross and network interpretation

The traditional, static Keynesian cross is frequently used in discussions of policy. In contrast to the
intertemporal Keynesian cross, it is a scalar fixed point equation relating the one-period impulse
to output to itself. It can be derived by starting with the market-clearing condition dY = dC + dG,
and then substituting dC = MPC · (dY − dT), where MPC is the one-period aggregate marginal
propensity to consume out of income, and dY − dT is the rise in net income after taxes. This can
be written as

dY = (−MPC · dT + dG) + MPC · dY (29)

(29) is identical to a scalar version of (26) and (28), with the M matrix of intertemporal MPCs
replaced by a one-period MPC.8 Since this is only a scalar equation, it is easy to solve (29) for dY
and write

dY =
1

1−MPC
· (−MPC · dT + dG) (30)

In (30), the impact of a fiscal shock on output equals the direct effect on consumption and govern-
ment output demand, −MPC · dT + dG, times the “multiplier” 1

1−MPC , which can equivalently be
written as the infinite sum 1 + MPC + MPC2 + · · · . This multiplier reflects the accumulation of
feedback from output to consumption demand.

Although they have a similar structure, there are profound economic differences between the
static Keynesian cross (29) and the intertemporal Keynesian cross (26). The static Keynesian cross
is static: it ignores the impact of future taxes on demand, and it also ignores feedback from en-
dogenous changes in output that occur in later periods. For instance, higher output today might
lead to higher consumption demand and output tomorrow, leading in turn to a rise in anticipated
income that boosts consumption demand today. The intertemporal Keynesian cross captures this
feedback, while the static version does not.

Network interpretation. These feedbacks across time periods, missing in the static Keynesian
cross, can be interpreted as taking place in an intertemporal network. Formally, we can view the in-

8Versions of (29) appear in most undergraduate macro textbooks, e.g. in chapter 10 of Mankiw (2010) or chapter 23
of Taylor and Weerapana (2011) .
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tertemporal Keynesian cross (26) as an equation for flow equilibrium in a network; in the network,
nodes are time periods t, and each node has some level dYt of output demand.

The network exogenously sends a flow of ∂Yt to each node t, with the sum of these flows
across all t being zero. The network also endogenously sends a flow Ms,tdYt from each node t to
each node s, and the sum of all these flows away from t is ∑∞

s=0 Ms,tdYt = dYt. The network is in
equilibrium when the net flow in and out of each node s is zero, i.e. when

∂Ys +
∞

∑
t=0

Ms,tdYt − dYs = 0

which is just a restatement of (26).
This interpretation of general equilibrium as the flow equilibrium of an intertemporal network,

where flows are given by IMPCs, will prove convenient when deriving analytical properties of the
solution in section 5.

Special case with the static Keynesian cross: the saver-spender model. The intertemporal Key-
nesian cross gives a more comprehensive picture of macroeconomic feedbacks because it is de-
rived from a formal model, with optimizing agents that respect budget constraints. Nevertheless,
it is worthwhile to note that a version of the static Keynesian cross is correct, period-by-period,
for a popular simple model: the saver-spender model, where a share λ of households is hand-to-
mouth and a share 1 − λ is unconstrained, with the households being otherwise identical and
facing no idiosyncratic shocks. For this model, described in more detail in appendix B.1, we have
the following.

Lemma 6. If the equilibrium with limt→∞ dYt = 0 is selected, then in the saver-spender model the general
equilibrium response to a fiscal shock is

dYt = (−λ · dTt + dGt) + λ · dYt (31)

for each t.

For each t, (31) is identical to the static Keynesian cross (29), except that MPC is replaced by
the fraction λ of hand-to-mouth households. λ can be interpreted as the aggregate MPC in the
saver-spender model out of an income increase in the current period that is offset by a decrease of
the same present value in a later period.9

Hence the static Keynesian cross, despite its analytical shortcomings, is a valid depiction of
equilibrium in the saver-spender model, where IMPCs have a special structure and the complexity
of the intertemporal network disappears. As we will demonstrate in the next section, however,
the IMPCs predicted by the saver-spender model have a very poor fit to the data—a mismatch we
will show in section 6 to have large practical consequences for the analysis of fiscal policy.

9One example of such a shock to the path of incomes would be a deficit-financed tax cut, paid for by later tax
increases. Note that λ is slightly lower than the aggregate MPC out of a one-time income shock, since the 1 − λ
unconstrained households have a small but strictly positive MPC.
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Figure 2: IMPCs in the data and several models

4 Evidence on IMPCs and model validation

A large empirical literature has sought to estimate marginal propensities to consume. Broadly
speaking, authors have pursued two types of empirical strategies. One class of studies, follow
the “reported preference” approach of surveying households and asking them directly how how
they would spend unexpected one-time transfers (see Shapiro and Slemrod (2003), Jappelli and
Pistaferri (2014), Fuster, Kaplan and Zafar (2018)). Another class of studies follow the “revealed
preference” approach of estimating MPCs out transitory shocks from actual behavior, either by
fitting a model that extracts the transitory component of income (Blundell, Pistaferri and Preston
(2008)) or by using quasi-random variation in income induced by tax rebates (Johnson, Parker and
Souleles (2006)) or in lotteries (Fagereng et al. (2016)).

Our results in section 3 show the importance of IMPCs as sufficient statistics for a range of
macroeconomic questions, including the aggregate effects of fiscal policy. While there has so far
been little direct work on IMPCs, existing MPC studies deliver some useful information. Our
preferred evidence comes from the Norwegian data analyzed by Fagereng et al. (2016). The data
includes comprehensive information on consumption and uses the random winnings of lotteries
to identify the dynamic consumption responses to income shocks. The author’s main estimating
equation is:

Cit = αi + τt +
5

∑
t=0

γslotteryi,t−s + θXit + εit (32)

where Cit is consumption of individual i in year t, αi an individual fixed effect, τt a time effect, Xit

are household characteristics, and lotteryi,t is the amount household i wins in year t. Since lottery
winnings are not forecastable and are disbursed at the time they are announced, the estimated γ̂s

correspond to our concept of date-0 IMPCs, as we discuss further below.
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The black dots in figure 2 represent the point estimates for γ̂0 through γ̂5, together with 99%
confidence intervals. Consistent with a large empirical literature, the annual MPC out of a one-
time transfer is large, at about 0.52. What the literature has not stressed as much, but clearly
appears in the Norwegian data, is that the MPC in year following the transfer is also fairly large,
at around 0.17. The IMPCs then slowly decay and become statistically insignificant around year
4.

MPCs out of invididual vs aggregate income. The empirical moments from the data are in-
formative about our general equilibrium sufficient statistics. Recall from section 3 that the first
column of the M matrix is the response of aggregate consumption to an increase in aggregate
income. In particular, we can write that column in current value terms as

ms,0 = E

[
∂cis

∂zi0

zi0

E [zi0]

]
which is a sum of individual IMPCs ∂cis/∂zi0 out of an unanticipated income shock at date 0,
weighted by net incomes zi0. This is precisely what regression (32) estimates, when weighted with
time t net incomes zi0.10 Thus, γs = ms,0. Since our results show it is crucial to match the IMPCs
γ̂s, we calibrate the remaining parameter of our model, the household discount factor β, so as to
minimize the least-square distance between model and data, in other words

β = arg min
β̃

5

∑
s=0

(
ms,0

(
β̃
)
− γ̂s

)2

This procedure allows us to recover the only missing parameter β from our calibration.

Comparison to alternative models. We now discuss the fit of our model relative to other models
of consumption behavior that might be used as alternatives to evaluate fiscal policy. Our results
show that the key distinguishing features of these models is the pattern of IMPCs they generate.
We therefore organize our discussion around the fit of each model to the pattern of γs’s in the data.

The first model we consider is the liquidity calibration of our baseline model, as summarized
in the last column of table 1. The blue line in the right panel of figure 2 shows the pattern of IMPCs
for this model. As is well-known, a standard calibration of a Huggett model cannot match the high
MPCs in the data: here, the on-impact annual MPC is only 0.18. By contrast, our model matches
both the MPC on impact as well as the pattern of IMPCs for later dates, but it is inconsistent with
typical targets for aggregate liquidity, as table 1 illustrates. While our results show that matching
the pattern of IMPCs is sufficient for studying fiscal policy under a policy of constant real interest
rates, there are two downsides to our benchmark calibration. First, in the absence of IMPC data
for future income, we have to rely on the extrapolations to later dates generated by the model (see
figure 1). Second, when we consider interest rate adjustment in section 7, the relevant sufficient

10The current results for γ̂s are unweighted but will be weighted in future versions of this paper.

18



statistics will include intertemporal consumption responses to real interest rates, for which even
less empirical evidence is currently available.

Next, we turn to two standard models with no heterogeneity. The IMPCs of an infinitely-
lived representative agent are those of the permanent income hypothesis—flat and low, and are
therefore rejected by the data.

The so-called ’saver-spender models’, popularized by Campbell and Mankiw (1989) and used
for fiscal policy analysis by Galí et al. (2007) among many others, can be calibrated to fit the high
levels of MPCs observed in the data. These models (sometimes also called TANK, or Two-Agent
New Keynesian models) feature an exogenous fraction λ of agents that are hand to mouth and
therefore have a marginal propensity to consume of 1.11 We can then calibrate λ to hit a given
MPC γ̂0. As show in the orange line of figure 2, this model is inconsisent with the high empirical
γ̂1 and γ̂2.

Finally, a recent branch of the New Keynesian literature has considered models with bonds
in the utility (see Michaillat and Saez 2018). As we explain in appendix B.2, it turns out that
these models generate a pattern of IMPCs that looks much like our model’s dynamic response to
income shocks. It is possible to calibrate the curvature of the wealth in the utility function to match
a given level of initial MPCs. As we show in the appendix, such a model delivers an exponential
for MPCs, contrary to what the data suggests.

Hence, we conclude that our benchmark calibration delivers the best fit to empirical IMPCs
among this wide set of candidate models, although a bond in the utility model may come close,
and we acknowledge that the model is used for extrapolation where the data is currently miss-
ing (consumption responses to future income shocks and consumption responses to real interest
rates).12 An important empirical agenda is to provide more of these empirical moments, so that
we can afford to rely less on model extrapolations going forward.

5 IMPCs and determinacy

Before proceeding further with our model, it is useful to ask about determinacy. For monetary
models with no or little household heterogeneity, there is a large theoretical and numerical liter-
ature studying the conditions under which there is local determinacy. These conditions can be
stated in terms of the recursive state-space formulation of a problem—as, for instance, in Blan-
chard and Kahn (1980). In our model, by contrast, household-level idiosyncratic shocks imply an
infinite-dimensional state space, and these results do not readily apply.13

11In the interest of space, we defer a detailed discussion of the TANK and the BIU model to appendices B.1 and B.2,
respectively.

12Another candidate model that may be consistent with both IMPCs and standard macroeconomic targets is the
illuquid asset model of Kaplan and Violante (2014). We leave an exploration of this model to future research.

13One possible approach is to discretize the infinite-dimensional state space and apply the usual tools on the result-
ing recursive system. With a fine discretization, however, the state-space formulation is very high-dimensional, and
this approach only gives numerical answers without indicating the economic mechanisms, unlike our IMPC-based ap-
proach. It also requires that equilibrium is solved recursively in the first place—rather than by iterating over time paths,
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Instead, we offer a simple test for local determinacy—defined as the uniqueness of equilibrium
paths in the neighborhood of the steady state—based on IMPCs. The key measure is

µ ≡ lim
t→∞ ∑

s
mt+s,t = lim

t→∞ ∑
s

(
1

1 + r

)s

Mt+s,t (33)

the sum of the current-value IMPCs mt+s,t with respect to income at date t, in the limit of t → ∞.
In other words, if an aggregate income shock has been anticipated for an arbitrarily long period,
µ tells us the cumulative consumption response to that shock. For our calibration, it is the area
under the red impulse response in the left panel of figure 3.

Indeterminacy of equilibrium is equivalent to the existence of v that is bounded in current
values and is a fixed point Mv = v of M. This is because the intertemporal Keynesian cross
(26) reduces to dY = MdY in the absence of shocks, and if there is some nondegenerate solution
v = dY with no shocks, it must correspond to another equilibrium. We have:

Proposition 3 (Local determinacy). If µ > 1, general equilibrium is locally determinate around the
steady state. If µ < 1, there is local multiplicity of general equilibrium around the steady state, correspond-
ing to a one-dimensional space of solutions v to Mv = v.

Why does determinacy hinge on whether µ is greater or less than 1? Recall that M is stochastic,
so that every column sums to 1: ∑s Mt+s,t = 1. In present-value terms, the cumulative consumption
response to an income shock is always equal to the shock. µ, by contrast, measures the cumulative
current-value consumption response, which can be less or more than the income shock depending
on the timing of consumption. µ will be greater than 1 when more of the consumption response
takes place after the income is received, rather than in anticipation of it.

Multiplicity exists when there is some self-sustaining shock to output dY: when the rise in
incomes associated with dY causes an equal rise in consumption spending dC = dY. It turns out
that this cannot happen if consumption takes place predominantly after income is received for
high t: if so, income received at t will be spent more at t+ 1, t+ 2, etc., which will be spent more at
t + 2, t + 3, etc., and no self-sustaining income pattern is possible. Proposition 3 finds that µ > 1 is
the precise measure of this notion—spending after an income shock is received—that matters for
determinacy.

This is visualized for our calibration in figure 3. In the left panel, the area under the black
present-value impulse is exactly 1, while the area under the red current-value impulse is µ, in this
case slightly greater than 1. It follows from proposition 3 that equilibrium is locally determinate
for our benchmark. In the right panel, we vary the level of the liquidity b/y in the calibration
(adjusting the discount factor β to maintain the same equilibrium real interest rate r = 2%). We
find local determinacy for the model at all levels of liquidity. In principle, adding liquidity could
go in either direction—since it increases the scope for consuming with either a lead or a lag relative
to an income shock—but in practice more liquidity means more of a lag, and µ rises.

for which we have an efficient algorithm, which we describe in our online appendix.
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Figure 3: Determinacy in benchmark calibration and as we vary liquidity

Proposition 3 can be stated entirely in terms of the M matrix, and generalizes beyond the
model in section 2. The key features of the M matrix for the proposition to apply are positivity and
asymptotic self-similarity, proven for our case in proposition 2. The advantage of this approach is
that it is clear how different model elements contribute to determinacy, based solely on how they
alter the consumption impulse to a far-out shock to y.

Later in this paper, we will explore various ways in which perturbations to the model alter
determinacy via this framework. For instance, in section 6.3 we show that with a more sophisti-
cated fiscal rule, the consumption response to income is delayed and determinacy becomes even
stronger; in section 7 we show that with endogenous inflation, we can get determinacy or inde-
terminacy depending on whether the interest rate response is strong enough to shift consumption
into the future.

Solutions to the intertemporal Keynesian cross. The IKC characterizes the impulse response dY
to shocks with partial equilibrium effect ∂Y. Where there is local indeterminacy around the steady
state, corresponding to some current value bounded v such that Mv = v, there are also multiple
solutions to the IKC (26). Each of these solutions corresponds to the impulse response under a
particular (differentiable) equilibrium selection. The following theorem provides the structure of
these solutions.

Theorem 1 (Solving the Intertemporal Keynesian Cross). In response to a shock with a partial equilib-
rium output effect of ∂Y, the (local) general equilibrium output effect dY solves the IKC (26) and is given
by

dY =
∞

∑
k=0

Mk∂Y + v, (34)
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where v satisfies Mv = v.
Conversely, any current-value bounded dY of the form in (34) solves the IKC and is the general equilib-

rium output response (for some selection, if there is multiplicity).
If µ < 1, there is a multiplicity of dY corresponding to a one-dimensional subspace of v. If µ > 1, there

is a unique dY, corresponding to a unique v. If additionally limt→∞ ∑s sMt+s,t > 0, this v is 0.

Theorem 1 shows that general equilibrium output response consists of two summands, an
infinite sum ∑∞

k=0 Mk∂Y and a vector v. The first is strikingly reminiscent of the solution (29) to
the static Keynesian cross, which can be written as a multiplier (1 + mpc + mpc2 + · · · ) times the
partial equilibrium effect of a shock. Replacing mpc with M, however, brings in a much richer
array of intertemporal feedbacks.

One intuition for this sum is that it can be obtained by attempting to solve (26) with fixed-
point iteration, starting with ∂Y as an initial guess on the right, and iteratively evaluating the right
side of (26) to obtain each new guess. Each iteration adds a new layer of intertemporal responses,
giving us another term Mn∂Y in the partial sum ∑n

k=0 Mk∂Y, until in the limit we obtain the infinite
sum in (34). Higher-order terms relate to ∂Y in potentially quite complicated ways: for instance,
the t = 7 entry in M2∂Y includes the impact of ∂Y10 on output demand dY12 at t = 12, multiplied
by the impact of dY12 on dY7—and the same is true if we replace t = 10, 12 by any other two
periods. As section 3.5 suggests, we can think of the final sum as the accumulation of flows in an
intertemporal network.

The first role of the v term in (34) is to index multiplicity when µ < 1. In this case, we can think
of the space of possible equilibrium responses as consisting of ∑∞

k=0 Mk∂Y plus a one-dimensional
subspace of v satisfiying Mv = v. An equilibrium selection rule can then choose, among other
things, the relationship between v and ∂Y. Alternatively, when there is a unique solution µ > 1,
there are two possible cases. If limt→∞ ∑s sMt+s,t > 0, meaning that the consumption response to
far-out income shocks in present-value terms takes place on average after the shock (a stronger
condition than µ > 1), v = 0, and the sum ∑∞

k=0 Mk∂Y directly gives the unique equilibrium.14

When this limit condition does not hold, there is a more subtle case: there is a unique v such
that the expression (34) is bounded in current value—but this v is not necessarily 0. Instead,

∑∞
k=0 Mk∂Y may be unbounded in current values, and there is a unique also-unbounded v that

can be combined with it to obtain a finite equilibrium response.
With unique equilibrium µ > 1, in both cases above it is possible to write dY as a function of

∂Y, as the following corollary to theorem 1 reveals.

Corollary 1. If µ > 1, equilibrium is locally unique and there exists a linear mapping G such that dY =

G∂Y for all shocks. This mapping is given by

dY = G∂Y ≡
∞

∑
k=0

Mk∂Y

14Formally, the limt→∞ ∑s sMt+s,t > 0 condition turns out to be decisive because it implies that the Markov chain
whose transition matrix is given by M is transient.
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if limt→∞ ∑s sMt+s,t > 0, and

dY = G∂Y ≡ (1 + va′)
∞

∑
k=0

Mk∂Y

otherwise, where v is the unique vector (up to scale) satisfying Mv = v, and a′ is a unique element of the
dual of RN.

In short, the linear mapping G from partial equilibrium to the unique general equilibrium takes
an especially simple form when limt→∞ ∑s sMt+s,t > 0, but there is an additional term correspond-
ing to v in (34) otherwise.

The most important aspect of corollary 1 for our purposes will be simply the existence of G.

6 IMPCs and fiscal stimulus

We can now turn to our analysis of fiscal policy using IMPCs as sufficient statistics. Since our
benchmark model is locally determinate under the constant r monetary policy, Proposition 1
shows that we can analyze the effect of any perturbation to the path of spending or taxes stat-
isfying the intertemporal budget constraint 1′dG = 1′dT using the unique locally determinate
solution to

dY = −MdT + dG + MdY (35)

This only requires information on M. We proceed in two steps: first, we consider balanced-budget
spending shocks, where spending is financed by contemponaneous increases in taxes (dG = dT).
In this case, M turns out not to matter at all. We next turn to the case where the fiscal shock
involves deficits.

6.1 Balanced-budget fiscal policy

Even though we have so far stressed the importance of IMPCs for understanding the effects of
government spending, there exists a special case in which they are irrelevant, as the next proposi-
tion illustrates.

Proposition 4. Assume that the government changes its path for spending and raises taxes contempora-
neously, so that dG = dT. Then, the fiscal multiplier is 1 for every date: dY = dG.

While this result follows immediately from equation (35) and the assumption that the economy
is determinate so that the solution dY = dG is unique, it is nevertheless very striking. Economi-
cally, it reflects the cancellation of two forces. In partial equilibrium, an increase in spending that
contemporaneously raises taxes has a less than one-for-one effect on economic activity (I −M) dG
because of the fall in private agents’ consumption in response to the taxes. However, the increase
in pretax incomes raises consumption, and this turns out to exactly offset the increase in taxes at
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every date and for every agent. Hence, under our assumptions, every agent’s consumption deci-
sion is unchanged in the new equilibrium, so that aggregate consumption is unchanged as well.
The multiplier is exactly 1 at every single date, irrespective of the timing of spending.

Proposition 4 provides a very clean heterogeneous-agent counterpart to Woodford (2011)’s
representative-agent result under constant real interest rates. It can serve as a useful benchmark
as the literature on fiscal multipliers in heterogeneous-agent models develops (see for example
Ferriere and Navarro (2017) and Hagedorn et al. (2017)).15

6.2 Deficit-financed fiscal policy

For any shock that involves primary deficits, IMPCs are crucial for the fiscal multiplier, as the
following proposition shows.

Proposition 5 (IMPCs and deficit financing). The general equilibrium consumption effect of any fiscal
shock only depends on the path of primary deficits dG− dT, not on their composition in terms of spend-
ing versus taxes. The general equilibrium output effect is the sum of the direct spending effect and the
consumption effect of deficits:

dY = dG + G ·M · (dG− dT) (36)

Recall from theorem 1 that G is a matrix sum of IMPCs. Hence, proposition 5 shows exactly
why IMPCs matter for the evaluation of fiscal shocks: they determine the consumption effect of
primary deficits. It is for these shocks that getting IMPCs aligned with the data matters the most.

Figure 4 considers the output effect of a hypothetical path for government spending gt that re-
quires no taxes (tt = 0) and satisfies the government intertermporal budget constraint. Spending
initially increases, generating an increase in government debt, which is later stabilized by a reduc-
tion in spending.16 The output effect of this shock in our model is plotted in the solid blue line of
the right panel. The shock is very expansionary, with an impact multiplier above 3. Consumption
is plotted in the dashed blue line. The large effect reflects equilibrium feedback from IMPCs. Since
the higher government spending in the first few periods is not offset by taxes, it raises incomes in
these periods and leads agents to increase their consumption. Moreover, as figure 3 shows, agents
are essentially unresponsive to income shocks more than a few years in advance, and therefore
they do not initially lower consumption in response to the future decline in income. By the time

15The results of Hagedorn et al. (2017) are consistent with this benchmark. Their monetary policy specification is
extremely close to maintainting constant-r at all times. When they study contemporaneous taxation, they find a fiscal
multiplier slightly below 1. This is because all taxes are raised by a lump sum at the margin, which is regressive
and therefore raises consumption by less than in our benchmark. We study the effect of unequal incidence in section
8.1. When the government raises taxes at a later date, they find a multiplier higher than 1, consistent with the large
expansionary effects of deficits in our model.

16Specifically, this is the path generated by the following fiscal rule. Write (gss, bss) for the steady-state levels of
government spending and debt. Assume the fiscal rule for government spending is gt − gss = −ψ (bt−1 − bss) + ε

g
t ,

where ε
g
t is an innovation to spending with AR coefficient ρ. This rule stipulates a reduction in spending when debt

is above steady state level and ensures stability. The figure plots the effect of an innovation to ε
g
t when ρ = 0.7 and

ψ = 0.3.
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Figure 4: Output effect of a plan for spending or transfers

lower government spending comes on stream, higher past income has spilled over to raise con-
sumption in the current period, explaining why consumption stays positive throughout.

The dashed line also shows the effect on output and consumption of a direct change in transfers
(−t) that has the path shown in the left panel. This is sometimes known as the transfer multiplier.
Since these have the same effect on primary deficits, by proposition 5, they must also have the
same consumption effect. In other words, the transfer and the spending multiplier differ by the
direct effect of government spending.

Contrast these results with the saver-spender or ’TANK’ model. Lemma 6 established that for
this model, all that matters is current deficits. Indeed, a trivial application of the lemma yields
that the consumption response is precisely λ/(1− λ) times the current primary deficit dGt − dTt.
This explains why the output response to a transfer shock (dashed orange line) in the right panel
of figure 4 follows the exact same path as the primary deficits themselves in the left panel, and is
scaled up slightly since λ/(1− λ) is just above 1 in our calibration. Following the same logic, the
output response to a spending shock (solid orange line) is 1+ λ/(1− λ) times the primary deficit.

It is worth stressing that neither the on-impact fiscal multiplier in a saver-spender model, nor
the time path of the output responses are close to the one of our baseline model. This illustrates
that matching regular MPCs, as our saver-spender model does, is not sufficient to ensure that GE
amplification is in line with the data.

The difference between our baseline model and the saver-spender model becomes even more
pronounced as we vary the speed of government debt reduction in response to a deficit-financed
spending shock. The top left panel in figure 5 shows a benchmark spending shock that is initially
debt-financed and the debt is paid down at various speeds (top right panel). We parametrize
this speed as ψ (see footnote 16). The consumption responses in the two economies are strikingly
different. While the speed of debt repayment is irrelevant for the on-impact multiplier according
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Figure 5: Fiscal policy under various speeds of debt reduction ψ

to the saver-spender model, our baseline model suggests that fiscal policy is a lot more powerful
on impact when debt is reduced more slowly. In addition, our baseline model finds a positive
impact on consumption throughout as agents smooth out the spending of income gains over the
first few years—in stark contrast with the very sharp reversal in consumption predicted by the
saver-spender economy.

6.3 Tax rate cuts vs tax revenue cuts

The results so far treat tax revenues dTt as a direct policy instrument, with the understanding
that there is always a path of average retention rates τt that can implement any given path of
tax revenues dTt. Yet, the mapping between τt and dTt is highly nonlinear and deserves further
attention. For instance, even (or especially) in the absence of labor supply changes, it is an inter-
esting question whether tax rate cuts, modeled as an increase in the average retention rate τt, can
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be self-financing, and more generally how tax revenues are affected by tax rate changes. [to be
completed]

7 Endogenous monetary policy

So far we have focused on the simple yet powerful benchmark case where monetary policy follows
a constant real interest rate rule. We now explore the consequences of a Taylor rule for nominal
interest rates. This is especially interesting in our setting as it can shed light on precisely how
endogenous policy rules can shape general equilibrium amplification, determinacy and the size
of the fiscal multiplier.

We assume in this section that the central bank follows a Taylor rule,

it = i + φππt + φyŷt (37)

where ŷt ≡ log(yt/y). The real rate is then pinned down by the Fisher equation,

rt = it − πt+1 (38)

Inflation follows a standard Phillips curve

πt = κŷt + βπt+1 (39)

which we microfound using staggered wage setting by unions, in the spirit of Erceg, Henderson
and Levin (2000) (see appendix). Since the real rate is no longer constant, it is important to specify
how the government deals with changes in interest expenses. We assume that, in each period, the
government adjusts its aggregate tax revenue tt so as to ensure that its budget constraint holds,

tt = (1 + rt)bt−1 − bt + gt (40)

It takes as given an exogenous schedule {gt, bt} of government expenses and debt levels, as well
as real rates {rt}. We define general and exogenous-y equilibria as in definitions 1 and 2, with the
exception that the exogenous government policy is now stated as a schedule {gt, bt} and no longer
involves tt, and real rates are determined according to (37)–(39). This still defines a mapping from
output supply {yt} to exogenous-y partial equilibrium demand {yPE

t } as in (18), only that tt is
determined by (40) and real interest rates are determined by (37)–(39). Thus,

yPE
s ({yt}; {gt, bt}) = cs({yt − tt}, {rt}) + gs

As before, a general equilibrium satisfies ys = yPE
s ({yt}; {gt, bt}).
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Figure 6: Intertemporal interest rate responses and Taylor rule thresholds for determinacy.

Intertemporal interest rate responses and the IKC. An important aspect of understanding the
general equilibrium response to shocks in this economy is the response of consumption to interest
rate changes at various horizons. Similar to our definition of IMPCs ms,t in (24), we define the
intertemporal interest rate responses as

mR
s,t ≡

dcs

drt
= y−1 ∂cs

∂rt
− by−1 ∂cs

∂zt

For given s, t, mR
s,t captures the response of date s aggregate consumption to a small change in

the real interest rate at date t, adjusted for the income change induced by the government’s tax
response. Ideally, we would bring direct empirical evidence to bear on mR

s,t. Since we are not
aware of any such evidence, we are using our model to compute the model-implied interest rate
responses. Figure 6 shows mR

s,t as a function of s for a far-out shock (panel (a)). As before, we
summarize the responsiveness of consumption to far-out interest shocks as the integral of the
current-value response,

µR ≡ lim
t→∞ ∑

s
mR

s,t (41)

Below, we summarize the interest responses in a matrix MR, whose entries, similar to M, are
defined in present values,

MR
s,t ≡

1
(1 + r)s−t mR

s,t (42)

We assume MR to be self-similar, in line with our simulations and much like M (proposition 2).
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The IKC with a Taylor rule. We can linearize the equation for the general equilibrium output
response, ys = yPE

s ({yt}; {gt, bt}), around a steady state to get the Taylor-rule version of the IKC.

Proposition 6 (IKC with Taylor rule). Suppose monetary policy follows the Taylor rule (37) and inflation
is given by the Phillips curve (39). To first order, impulses to partial equilibrium demand ∂Y and general
equilibrium output dY satisfy

dY = ∂Y +
(

M + MRΦ
)

dY.

Here, M is as before in (27); MR is as in (42); Φ has entries

Φs,t ≡
∂rs

∂ŷt
=


0 s > t(
φy + κφπ

)
s = t(

φπ − β−1) βt−sκ s < t

.

Note that 1′MR = 0.

Proposition 6 generalizes the constant-r IKC in proposition 1 to the case where the real rate
responds to output, that is, Φ 6= 0. This introduces a new term in the IKC, MRΦdY: The vector of
interest rates adjusts according to ΦdY, inducing a consumption response MRΦdY.

Determinacy with Taylor rules. It is known since Woodford (2000) that Taylor rules can ensure
local determinacy of a textbook 3-equation New-Keynesian model if and only if interest rates are
sufficiently responsive to inflation and output, that is, if φπ and φy satisfy the Taylor principle,

φπ +
1− β

κ
φy > 1 (43)

There is no comparable result for models with idiosyncratic risk and incomplete markets, such as
the one in section (2).

We present such a result in the following proposition.

Proposition 7. (Modified Taylor Principle) Suppose monetary policy follows the Taylor rule (37) and in-
flation is given by the Phillips curve (39). Suppose M, MR, ∂Y are as in proposition 6 with M + MRΦ
positive, MR self-similar, and µR > 0. Then,

(a) if φy, φπ are such that φπ + 1−β
κ φy > 1 + 1−β

κ
1−µ
µR the model is locally determinate;

(b) if φy, φπ are such that φπ + 1−β
κ φy < 1 + 1−β

κ
1−µ
µR the model is locally indeterminate.

In particular, when the Taylor rule is only based on inflation, φy = 0, the threshold responsiveness φ∗π for
determinacy is equal to 1− 1−β

κ
1−µ
µR . The model is locally determinate under a fixed nominal interest rate,

φπ = φy = 0, if 1−µ
µR > κ

1−β .
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Figure 7: Consumption effect of the shock in figure 5 under a Taylor rule response

Our result in proposition 7 succinctly summarizes how strong a Taylor rule is required to be
as a function of IMPCs and intertemporal interest rate responses. Specifically, it stresses the role
of µ and µR. We explain the intuition behind both in the simple case where φy = 0.

The position of µ relative to 1 is a measure of how much demand is shifted into the future.
In section 6, we saw that under a constant real interest rate, 1 is precisely the threshold µ has to
exceed for determinacy. Theorem 7 adds to this result that where µ lies relative to 1 determines
whether the Taylor rule has to respond to inflation φπ more or less than one-for-one. If µ is large
compared to 1 and prices are not too flexible, that is, κ is small, it may even be that the economy
is determinate under a fixed nominal interest rate.

To illustrate why µR is important, imagine an economy with µ < 1. How responsive does the
Taylor rule have to be to shift enough demand out into the future and generate determinacy? This
is exactly where µR matters: if the economy’s responsiveness to real interest rates µR were large
(say infinite), even a small increase in φπ relative to 1 will be enough to ensure determinacy. Thus,
the threshold φ∗π declines in µR when µ < 1, and vice versa if µ > 1.

We graphically illustrate this relationship on the right panel of figure 6.

Relationship with the regular Taylor principle. Proposition 7 is not readily applicable to a
representative-agent economy as M and MR are not self-similar. Still, there is a sense in which
the regular Taylor principle (43) can be regarded as a limit case. First, note that both of the infinite
sums in the definitions for µ and µR diverge to infinity for large t. It turns out that the “right” way
to resolve this ∞/∞ problem is to modify both sums by introducing a dampening term e−εs for
some small ε > 0, and then to consider the limit of the ratio as T → ∞. This procedure yields a
limit of 0 and thus reconciles our modified Taylor principle in proposition 7 with the regular one
in (43). The details behind this procedure can be found in the appendix.

30



−1 −0.5 0 0.5 1

0.99

1

1.01

1.02

Determinacy

Indeterminacy

Cyclicality of income risk γ

µ

Benchmark calibration

Figure 8: Determinacy as a function of cyclicality of income risk

Fiscal stimulus with Taylor rule: determinacy vs. multiplier. We are ready to investigate the
way in which a Taylor rule affects the output effects of government spending in our model. Fig-
ure 7 repeats the exercise of figure 5 and plots the consumption responses for various speeds ψ of
debt repayment. The left and right panels in figure 7 do so for two different assumptions on φπ.
In the left panel, φπ is set to be equal to 1.5, a standard value. In the right panel, φπ is set to 3, to
simulate an aggressive Taylor rule.

The difference is noticeable. While the more responsive Taylor rule puts the model safely into
the determiancy region, away from any self-fulfilling fluctuations, it also significantly dampens
the effects of fiscal stimulus and reduces the on-impact consumption response by around half. This
illustrates a policy trade-off between achieving determinacy on the one hand and not dampening
fiscal multipliers.

8 Extensions

8.1 Cyclicality of income risk

In this section we extend our model to allow for departures from our benchmark assumption
of equal income incidence. This can be achieved in two ways: by assuming an income retention
function of a different form, or by assuming that the labor demand function depends on individual
type. Here we follow the latter route and replace (6) with a more general rationing function (see
Werning (2015) and Auclert and Rognlie (2018))

nit = Γ (eit, lt) (44)
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Figure 9: Other shocks

We use the parameterization proposed by Auclert and Rognlie (2018), which makes the standard
deviation of log earnings take a constant elasticity γ with respect to aggregate employment l, and
revisit our results depending on the value of γ = ∂2 log Γ

∂ log e∂ log l . We find two main reasons why γ, the
cyclicality of income risk parameter, matters.

The cyclicality of income risk changes the determinacy properties of the model. This is illus-
trated in figure 8, which repeats the exercise in figure 3 by changing γ from its benchmark value of
0. More countercyclical income risk makes the model more indeterminate because it leads income
shocks to be spent in earlier periods, making µ more negative and therefore pushing the model
towards indeterminacy, as per proposition 3.

8.2 Other shocks

In this section, we show that a version of the intertemporal Keynesian cross (26) obtains for many
shocks other than fiscal policy shocks. We now allow for the possibility of preference shocks,
shocks to the income distribution (inequality shocks), deleveraging shocks and monetary policy
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shocks. As in Section 2, we assume that monetary policy implements a path of real interest rates
{rt}, which only for monetary policy shocks is allowed to be time-varying. The only difference
of these shocks to fiscal policy shocks lies in their partial equilibrium response ∂Y. In the case of
fiscal policy, ∂Y is equal to ∂G−MdT. In this section, ∂Y is determined as follows.

Proposition 8. For each of the following shocks, starting from the steady state, we define ∂yt to be the first
order response of partial equilibrium consumption to the following changes:

a) For preference shocks, to discount factors {βt},

b) For inequality shocks, to a one-time increase in the standard deviation of date 0 log productivities
log ei0, subject to the normalization Eei0 = 1,

c) For deleveraging shocks, to borrowing constraints {at},

d) For monetary policy, to real interest rates {rt}.

In all cases, ∑(1 + r)−t∂yt = 0, that is, ∂yt has zero net present value, and the IKC (26) holds.

For these other shocks, the same IKC still applies, linking zero-NPV partial equilibrium shocks
to general equilibrium responses. We illustrate the workings of the GE amplification captured by
the IKC in Figure 9. It shows partial and general equilibrium responses for these four shocks.

8.3 Investment

In this section, we add investment to our model. We show that a variant of the IKC still holds and
examine the implications of investment for determinacy and fiscal multipliers. [to be completed]

9 Conclusion

In this paper, we established IMPCs as sufficient statistics for a broad class of general equilibrium
questions. We showed that a simple linear recursive equation encapsulating a dynamic income-
consumption feedback—the intertemporal Keynesian cross—characterizes the impulse response
of output to macroeconomic shocks. Under homogeneous income incidence and constant real
interest rates, the adjustment matrix in this equation consists of an income-weighted average of
IMPCs. Calibrating our model to existing evidence, we found that deficit financed fiscal stimu-
lus had large multipliers for plausible degrees of monetary responsiveness, and that an inflation
Taylor rule coefficient well below 1 was sufficient to ensure equilibrium determinacy.

Existing evidence on IMPCs speaks in favor of models with precautionary savings and borrow-
ing constraints, but with a calibration that cannot match the wealth to GDP ratio—a standard and
important macroeconomic target. This calls for more empirical evidence on the impulse response
of consumption at various horizons, and for the development of new models that can match these
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impulse responses while being consistent with these alternative targets. Just like empirical evi-
dence on MPCs has moved the literature away from standard representative agent models, em-
pirical evidence on IMPCs can advance the development of macroeconomic models that provide
a more accurate depiction of household behavior, ultimately making us more confident about our
predictions regarding the aggregate effects of macroeconomic shocks.
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Appendix [to be completed]

A Union wage setting

A.1 Details of the labor market

We assume that the worker provides nijt hours of work to each of a continuum of unions indexed
by j ∈ [0, 1], so that his total labor effort is

nit ≡
∫ 1

0
ni

jtdj

The agent gets paid a nominal market wage of wjt per efficient unit of work in union j. Hence his
total nominal gross earnings are

wteitnit ≡
∫ 1

0
wjteitnijtdj

Each union j aggregates efficient units of work into a union-specific task ljt, such that

ljt = ∑
ei

π (eit) eitnijt (45)

Aggregate employment lt, in turn, is an aggregate of union-specific tasks that are imperfect sub-
stitutes for one another,

lt ≡
(∫ 1

0
l

ε−1
ε

jt dj
) ε

ε−1

Each union sets its own wage wjt per unit of task provided. We assume that nominal wages wjt

are partially rigid, and only reset occasionally in a Calvo fashion: each period, any given union j
keeps its wage constant with probability θ. At every point in time, the wage index

wt =

(∫ 1

0
w1−ε

jt dj
) 1

1−ε

serves as a reference for final goods firms’s demand for tasks. Conditional on employment lt, this
demand is

ljt =

(
wjt

wt

)−ε

lt

In turn, union j, when producing ljt tasks, pays all of its workers the same wage wjt and demands
that those with skill eit work nijt hours according to a particular rule Γ, so that

nijt = Γ
(
eit, ljt

)
(46)

The Γ function must be consistent with aggregation (45) for any ljt. A simple example is Γ (e, l) = l.
In this case, each union member works nijt = ljt hours irrespective of their skill or their consump-
tion level.
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A wage-resetting union maximizes an average of the utilities (3) of each of its workers, with
each worker receiving weight λi. In appendix A, we write down the wage setting problem of the
union conditional on aggregate employment lt and a real wage w

pt
. We show that in a steady state

in which employment is constant at l∗, prices are constant at p∗ and all resetting unions set wages
at w∗, the consumption distribution Ψ (c) statisfies

w∗

p∗
=

ε

ε− 1

Ee,Ψ(c)

[
λ (e, c) Γl (e, l∗) l∗

dvi
dn (Γ(e,l∗))

e

]
E

[∫
λ (e, c) γl (e, l∗) l∗

ε− Γ(e,l∗)
Γl (e,l∗)l∗
ε−1

du
dc (c)

] (47)

Intuitively, union wage-setting ensures that the real wage w∗
p∗ is at a markup over some average

across union members of the marginal rate of susbtitution between consumption and hours.
The wage setting rule (47) requires knowledge of the consumption distribution in the popu-

lation c∗i. Away from steady-state, we assume that unions reset wages under a behavioral ap-
proximation that this distribution remains constant. The underlying assumption is that it is too
complicated for the union to keep track of each member’s asset position over time when that
distribution is changing. Practically, this implies that the union ignores income effects on labor
supply when resetting wages away from steady-state. Below we show that this problem leads to a
simple New Keynesian Phillips curve for aggregate wage growth, πw

t ≡ log
(

Wt
Wt−1

)
, given to first

order by

πw
t = λt

(
1
ψ

l̂t − (wt − pt)

)
+ βtπ

w
t+1 (48)

where lt ≡ log (lt/l∗), ψ is a constant, and κt, βt are deterministic functions of time, with βt = β

when T = ∞.

A.2 Derivation of the general case

Consider the problem of a union j. The union supplies ljt units of efficient work by aggregating
labor from each of its members according to (45), by allocating work across its living members
acording to the rule in (46), that is ei

tn
i
t = γ

(
ljt, ei

t
)
.

Consider first the general case. Given a path for agregates {lt, Pt, Wt}, wages at every union{
Wjt
}

, and an assumed distribution for the consumption of every agent
{

ci
t
}

, the problem that the
union k solves when it gets a change to reset its wage Wkt is

max
Wkt

∑
τ≥0

(βθ)τ
∫

λi
(

ui
(

ci
t+τ; θ

)
− vi

(∫
ni

jt+τdj; θ

))

where λi is the weight assigned to member i in social utility.
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The first-order condition for this problem is

∑
τ≥0

(βθ)τ
∫

λi
dui

dc

(
ci

t+τ

)
Pt+τ

(
γ
(

lkt+τ, ei
t+τ

)
− εγl

(
lkt+τ, ei

t+τ

)
lkt+τ

)
di

+ ∑
τ≥0

(βθ)τ
∫

λiε

dvi

dn

(∫
ni

jt+τdj
)

ei
t+τWkt

γl

(
lkt+τ, ei

t+τ

)
lkt+τdi = 0

which we can rewrite as

∑
τ≥0

(βθ)τ
∫

λi dui

dc

(
ci

t+τ

)
γl

(
lkt+τ, ei

t+τ

)
lkt+τ(ε− γ

(
lkt+τ, ei

t+τ

)
γl
(
lkt+τ, ei

t+τ

)
lkt+τ

)
Wkt

Pt+τ
− ε

dvi

dn

(∫
ni

jt+τdj
)

dui

dc

(
ci

t+τ

)
ei

t+τ

 di = 0

Hence all resetting unions choose the same wage Wkt = Wt, satisfying the implicit equation

Wt =
ε

ε− 1

∑τ≥0 (βθ)τ ∫ λiγl
(
lkt+τ, ei

t+τ

)
lkt+τ

dvi
dn

(∫
ni

jt+τdj
)

ei
t+τ

di

∑τ≥0 (βθ)τ ∫ λiγl
(
lkt+τ, ei

t+τ

)
lkt+τ

 ε−
γ(lkt+τ ,ei

t+τ)
γl(lkt+τ ,ei

t+τ)lkt+τ

ε−1

 dui
dc (ci

t+τ)
Pt+k

di

(49)

In the special case where γ is linear in l, so that γl l = γ, (49) simplifies to

Wt =
ε

ε− 1

∑τ≥0 (βθ)τ ∫ λiγ
(
lkt+τ, ei

t+τ

) dvi
dn

(∫
ni

jt+τdj
)

ei
t+τ

di

∑τ≥0 (βθ)τ ∫ λiγ
(
lkt+τ, ei

t+τ

) dui
dc (ci

t+τ)
Pt+k

di

In a steady-state in which the price level is P∗, the nominal reset wage is equal to the constant
W = W∗, labor is the constant l∗, and the consumption distribution is c∗i, (49) yields

ε
∫

λiγl

(
l∗, ei

)
l∗

dvi

dn

(
1
ei γ
(
l∗, ei))

ei di =
W∗

P∗

∫
λi
(

εγl

(
l∗, ei

)
l∗ − γ

(
l∗, ei

)) dui

dc

(
c∗i
)

di (50)

which is equation (47). In general equilibrium, equation (50) implicitly defines the level of steady-
state employment l∗, where the consumption distribution is consistent with a real earnings process
given by W∗

P∗ γ
(
l∗, ei). We linearize around such a steady state.

From (49), we can write the reset wage relative to the current wage Wt as

Wt

Wt
=

ε ∑τ≥0 (βθ)τ ∫ λiγl
(
lkt+τ, ei

t+τ

)
lkt+τ

dvi
dn

(∫
ni

jt+τdj
)

ei
t+τWt

di

∑τ≥0 (βθ)τ ∫ λi
(
εγl
(
lkt+τ, ei

t+τ

)
lkt+τ − γ

(
lkt+τ, ei

t+τ

)) dui
dc (ci

t+τ)
Pt+k

di
=

Gt

Ht
(51)
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where Gt, Ht satisfy the recursions

Gt = ε
∫

λiγl

(
lkt, ei

t

)
lkt

dvi

dn

(∫
ni

jtdj
)

ei
tWt

di + βθ
Wt+1

Wt
Gt+1 (52)

Ht =
∫

λi
(

εγl

(
lkt, ei

t

)
lkt − γ

(
lkt, ei

t

)) dui

dc

(
ci

t
)

Pt
di + βθHt+1 (53)

The wage index Wt at time t satisfies the recursion

W1−ε
t = θW1−ε

t−1 + (1− θ) (W∗t )
1−ε (54)

Take logs on both sides of (54) and (51) and rearrange to get

πw
t ≡ wt − wt−1 =

1− θ

θ
(w∗t − wt) =

1− θ

θ
(gt − ht) (55)

Consider the steady state where lt = l∗, Pt = P∗, Wt = Wjt = W∗ for all j and the distribution
of consumption is at its steady state c∗i. From (46), all workers with productivity ei

t work equally
at each firm,

ni
jt =

γ
(
l∗, ei

t
)

ei
t

∀j

Then (52)–(53) deliver

G∗t = Φtε
∫

λiγl

(
l∗, ei

)
l∗

dvi

dn

(
γ(l∗,ei)

ei

)
ei

tW∗

H∗t = Φt

∫
λi
(

εγl

(
l∗, ei

)
l∗ − γ

(
l∗, ei

)) dui

dc

(
c∗i
)

P∗
di

where Φt = ∑T−t
τ=0 (βθ)τ. Using (50), we obtain

G∗t = CΦt

H∗t = CΦt

with C = ε
∫

λiγl
(
l∗, ei) l∗

dvi
dn

(
1
ei γ(l∗,ei)

)
eiW∗ di =

∫
λi (εγl

(
l∗, ei) l∗ − γ

(
l∗, ei)) dui

dc (c∗i)
P∗ di.

Approximating (52)–(53) around G∗t , H∗t , and defining ĝt ≡ log
(

Gt
G∗t

)
and ĝt ≡ log

(
Ht
H∗t

)
, we

obtain

ĝt =
1

Φt
at +

(
1− 1

Φt

)
(wt+1 − wt + ĝt+1) (56)

ĥt =
1

Φt
bt +

(
1− 1

Φt

)
ĥt+1 (57)
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Where we have defined

at ≡
∫

ωGi

{(
γll
(
l∗, ei) l∗

γl (l∗, ei)
+ 1

)(
−ε (wkt − wt) + l̂t

)
+

1
ψi (ei)

γl
(
l∗, ei) l∗

γ (l∗, ei)
l̂t − wt

}
di

In this expression, ψi is the Frisch elasticity of labor supply of individual i in state ei, and individual
weights are the following transformation of social weights:

ωGi =
λiγl

(
l∗, ei) l∗

dvi
dn

(
γ(l∗ ,ei)

ei

)
ei∫

λiγl (l∗, ei) l∗
dvi
dn

(
1
ei γ(l∗,ei)

)
ei di

Similarly,

bt =
∫

ωHi

({
ε

ε− 1

(
γll
(
l∗, ei) l∗

γl (l∗, ei)
+ 1

)
− 1

ε− 1

(
γl
(
l∗, ei) l∗

γ (l∗, ei)

)}(
−ε (wkt − wt) + l̂t

)
− 1

σ (ei)
ĉi

t − pt

)
di

with

ωHi =
λi (εγl

(
l∗, ei) l∗ − γ

(
l∗, ei)) dui

dc

(
c∗i
)∫

λi (εγl (l∗, ei) l∗ − γ (l∗, ei)) dui

dc (c∗i) di

Our behavioral assumption for the union consists in assuming that
∫

ωHi 1
σi(ei)

ĉi
tdi = 0, that is, the

consumption distribution remains at its steady-state. Using this assumption to simplify bt, we can
solve for the difference

at − bt =

(∫
ωGi 1

ψi (ei)

γl
(
l∗, ei) l∗

γ (l∗, ei)
di

)
l̂t − (wt − pt)

+

(∫ {
ωGi 1

ε− 1

(
−γll

(
l∗, ei) l∗

γl (l∗, ei)

)}
di

)(
l̂t − ε (wt − wt)

)
at − bt =

1
ψ

lt − (wt − pt)− εν (wt − wt) (58)

where

1
ψ
≡

∫
ωGi 1

ψi (ei)

γl
(
l∗, ei) l∗

γ (l∗, ei)
di + ν

ν ≡
∫

ωGi 1
ε− 1

(
−γll

(
l∗, ei) l∗

γl (l∗, ei)

)
di

We finally obtain the wage Phillips Curve as follows. Start with equation (55)

πw
t = wt − wt−1 =

1− θ

θ
(wt − wt) =

1− θ

θ
(gt − ht) =

1− θ

θ

(
ĝt − ĥt

)
(59)

41



where the last line follows G∗t = H∗t . Next, combine (59), (56), (57) and (58) into

wt − wt = ĝt − ĥt

=
1

Φt
(at − bt) +

(
1− 1

Φt

)(
wt+1 − wt + ĝt+1 − ĥt+1

)
=

1
Φt

(
1
ψ

lt − (wt − pt)− εν (wt − wt)

)
+

(
1− 1

Φt

)(
wt+1 − wt + ĝt+1 − ĥt+1

)
solve out for wt − wt

wt − wt =

(
1 +

εν

Φt

)−1{ 1
Φt

(
1
ψ

lt − (wt − pt)

)
+

(
1− 1

Φt

)(
wt+1 − wt + ĝt+1 − ĥt+1

)}
Wage inflation πw

t is then

wt − wt−1 =
1− θ

θ

(
1 +

εν

Φt

)−1{ 1
Φt

(
1
ψ

lt − (wt − pt)

)
+

(
1− 1

Φt

)((
1
θ
− 1
)
(wt+1 − wt) +

1− θ

θ

(
ĝt+1 − ĥt+1

))}
=

(
1 +

εν

Φt

)−1{ 1
Φt

1− θ

θ

(
1
ψ

lt − (wt − pt)

)}
+

(
1− 1

Φt

)
1
θ
(wt+1 − wt)

This gives us our final expression for the wage Phillips curve

πw
t = λt

(
1
ψ

l̂t − (wt − pt)

)
+ βtπ

w
t+1 (60)

where

λt ≡
(

1 +
εν

Φt

)−1 ( 1
Φt

1− θ

θ

)
βt ≡

(
1− 1

Φt

)
1
θ

Φt ≡
T−t

∑
τ=0

(βθ)τ

As T → ∞, Φt → 1
1−βθ and therefore βt → β, so that (60) becomes

πw
t =

1− βθ

1 + εν (1− βθ)

1− θ

θ

(
1
ψ

l̂t − (wt − pt)

)
+ βπw

t+1

In general equilibrium, wt = pt, πw
t = πt and l̂t = ŷt , so we recover (39) with κ = 1−βθ

1+εν(1−βθ)
1−θ

θ
1
ψ .
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B Alternative economies

B.1 Saver-spender (TANK) economy

• Discrete time t = 0, . . . , ∞

• Two kinds of agents i ∈ {c, u}

– fraction µ of permanently hand-to-mouth agents (c)

– fraction 1− µ of infinitely-lived unconstrained agents (u)

• At time t, agent type i ∈ {c, u}

– works nc
t hours at a nominal market wage wt,

– pays real taxes tc
t ,

– can buy consumption goods with price pt.

• Unconstrained agents can save in nominal bonds with return rt. Constrained agents cannot
save or borrow.

Constrained agents. Constrained agents just consume their income in each period

cc
t =

wt

pt
nc

t − tc
t (61)

Unconstrained agents. Each unconstrained agent solves the maximization problem

max ∑ βtu (cu
t )

cu
t + au

t = (1 + rt−1) au
t−1 +

wt

pt
nu

t − tu
t

where u has constant elasticity of substitution σ, u (c) = c1− 1
σ

1− 1
σ

.

Technology. All agents supply as many hours ni
t as firms demand given the real wage wt

pt
. These

firms operate the linear technology

yt = nt = µnc
t + (1− µ) nu

t .

They are perfectly competitive and set prices flexibly, so that pt = wt and profits are zero.

Wage determination. To focus on aggregate demand considerations, wages are perfectly rigid
at a constant level, which we normalize to 1 for convenience:

wt = 1
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Hence firm optimization also implies that the nominal price level is constant at pt = 1. The Γ
function rations in the following way:

nu
t = Cy × nγ̂y

t (62)

µnc
t + (1− µ) nu

t = nt = yt

Fiscal policy. In each period, the government has an outstanding amount of debt bt. It pays for
spending gt, sets taxes tt, and issues new debt bt, so as to satisfy its nominal budget constraint

bt + tt = (1 + rt−1) bt−1 + gt (63)

The government has initially issued b−1 = b bonds. Taxes tu
t , tc

t on each agent are set such that

tu
t = Ctax × tγ̂tax

t (64)

µtc
t + (1− µ) tu

t = tt

Monetary policy. Monetary policy sets a path for the nominal interest rate it. Combined with
pt = 1, this implies that the real interest rate at t and the nominal interest rate are equal

1 + rt ≡ (1 + it)
pt

pt+1
= 1 + it

We further assume a constant-r rule, so that

it = r = β−1 = 1

which is exogenous.

Equilibrium. Given a path for government policy {bt, gt, tt, it} satisfying (63), an equilibrium
is a path for quantities {yt, nc

t , nu
t , cc

t , cu
t }, such that households optimize, firms optimize, and the

goods and bond markets clear:

gt + µcc
t + (1− µ) cu

t = yt (65)

(1− µ) au
t = bt (66)

Solving for government spending multipliers. Given a feasible path for policy {bt, gt, tt, rt},
equilibrium is determined as follows. Firm price-setting implies pt = 1 at every t. Combined with
the central bank policy, this determines the path for rt = it. Constrained households’ consumption
given the real wage wt

pt
= 1 is

cc
t = nc

t − tc
t
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Unconstrained households’ optimal intertemporal choice implies the familiar permanent-income
solution

cu
t = cu

0 = (1− β)

{
∞

∑
s=0

βs (nu
s − tu

s ) + β−1au
−1

}
∀t (67)

We are interested in the effects of perturbations to the path of government spending dgt. The
government budget constraint implies that these must be paid by taxes at some point, ie

∞

∑
t=0

βtdgt =
∞

∑
t=0

βtdtt

The model features a steady state level of output y. Suppose that government policy returns to
steady state past date T. Then we select the standard equilibrium17 by imposing that output also
returns to steady state by T, yT = y.

This implies in particular that dcu
T = 0, but then from (67) this must imply that

dcu
t = 0 ∀t ≤ T

as well. The present value of net of tax income for the unconstrained agent must be unchanged,
else he would change her behavior past the point at which fiscal policy changes, which is incom-
patible with equilibrium selection.

Now, given (63), we have
d
(

bt − β−1bt−1

)
= dgt − dtt

But given (66) and dcu
t = 0, this is also

d
(

bt − β−1bt−1

)
= (1− µ) d

(
au

t − β−1au
t−1

)
= (1− µ) d (nu

t − tu
t )

While the rationing rules (62) and (64) imply

d (nu
t − tu

t ) = γydyt − γtaxdtt

with γy = γ̂y
nu

y , γtax = γ̂tax
tu

t . Combining these expressions we obtain the TANK government
spending multiplier purely as a function of current gt and current tt:

dyt =
dgt

(1− µ) γy
+

(1− µ) γtax − 1
(1− µ) γy

dtt (68)

This formula is likely to extend to alternative environments. For example, in a model with flexible
labor supply, if the unconstrained also own the firms with countercyclical profits then this will

17It is easy to show directly that this model has multiple equilibria at constant-r. Alternatively, our determinacy
condition in ARS explains why.
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tend to generate a γy < 1.

Interpretation of multiplier formula (68).

a) Consider first the case of contemporaneous financing dgt = dtt and equal incidence γtax =

γy = 1. Then

dyt =
1− µ

1− µ
dgt = dgt

This is our benchmark government spending multiplier of 1.

b) Maintain equal incidence but assume taxes are delayed. Then

dyt =
1

1− µ
dgt −

µ

1− µ
dtt (69)

The effects of government spending are amplified by 1
1−µ when they take place due to the

income-consumption feedback of the constrained agents. Taxation has contemporaneous
impact µ

1−µ since the constrained agents react to it, which then gets amplified.

c) With unequal incidence but γtax = γy = γ, the formula is

dyt =
dgt

(1− µ) γ
+

(1− µ) γ− 1
(1− µ) γ

dtt

ie it remains the same as in (69) provided we relabel the effective fraction of constrained
agents as 1− µ̃ = (1− µ) γ

d) Even in the most general case of (68) we see that the effects of government spending and tax-
ation are entirely static. In particular there is no effect from government spending “spilling
over to closeby periods”. This is a key difference with our HANK model that stems from the
structure of the M matrix.

Calibrating the model. A natural calibration for a TANK model sets the fraction of constrained
agents µ to hit a given population average MPC,

mpc = µ× 1 + (1− µ)× (1− β)

in other words µ = 1− β−1 (1−mpc). With β = 0.96 to replicate our steady state real interest rate
of 4%, we can therefore ’mimic’ our HANK model that has mpc = 0.225 by setting µ = 0.194.
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B.2 Bond-in-utility (BIU) economy

We now show that the representative agent-BIU model is better able to match a HANK model.
Consider one representative agent who values bonds in the utility. His problem is

max ∑ βt {u (ct) + v (at)}
s.t. ct + at = (1 + rt−1) at−1 +

wt

pt
nt − tt (70)

Production is linear,
yt = nt

Prices are flexible, so wt
pt

= 1 , and wages are rigid so employment is demand-determined. The
government budget constraint is still given by

bt + tt = (1 + rt) bt−1 + gt (71)

In equilibrium,

ct + gt = yt = nt

at = bt

The agent’s first order condition is

u′ (ct) = β (1 + rt) u′ (ct+1) + v′ (at) (72)

Partial equilibrium. Given a−1, and exogenous income zt = yt− tt, the perfect foresight solution
to the agent’s problem is given by (70)–(72). In steady state (72) implies

u′ (z + ra) (1− β (1 + r)) = v′ (a) (73)

For income zt → z, the agent’s asset choice will converge back to a∞ = a−1. We can linearize the
dynamics in (72) around the steady state

u′′ (c) dct = β (1 + r) u′′ (c) dct+1 + v′′ (a) dat

dct + dat = (1 + r) dat−1 + dzt

and combine those to get the second-order difference equation

(1 + r) dat−1 −
(

1 +
v′′ (a)
u′′ (c)

+ β (1 + r)2
)

dat + β (1 + r) dat+1 = −dzt + β (1 + r) dzt+1
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Consider the roots of

P (X) = 1 + r−
(

1 +
v′′ (a)
u′′ (c)

+ β (1 + r)2
)

X + β (1 + r) X2

We have P (0) = 1 + r > 0, and

P (1) = r (1− β (1 + r))− v′′ (a)
u′′ (c)

= r
v′ (a)
u′ (c)

− v′′ (a)
u′′ (c)

where we have used (73). Since v′′(a)
u′′(c) = γ

θ
c
b

v′(a)
u′(c) where γ, θ are the local curvatures in v and u,

assuming the stability condition c > θ
γ rb we see that P (1) < 0, and therefore P has two roots

0 < λ1 < 1 < λ2. The local policy function for assets is given by

dat = λ1dat−1 +
∞

∑
s=0

(βλ1)
s+1
{

1
β (1 + r)

dzt+s − dzt+s+1

}
from which we find the local consumption policy function

dct = (1 + r− λ1) dat−1 + dzt +
∞

∑
s=0

(βλ1)
s+1
{

dzt+s+1 −
1

β (1 + r)
dzt+s

}
Hence, the consumption function in response to impulses dzt = 1{t=T} has teh following shape:

• For immediate shocks T = 0, the date-0 MPC is

m ≡ 1− λ1

1 + r

consumption then declines at rate λ1, ie18

dct = mλt
1

• For future shocks, immediate MPC is
(

1
λ2

)T
m. Solving for assets,

dat =


λ1dat−1 −m (βλ1)

T−t t < T

λ1dat−1 + 1−m t = T

λ1dat−1 t > T

and consumption follows as residual. Hence assets fall in anticipation, bounce back upon

18One way to check this is to use the fact that the PV of MPCs must be 1, which relates m and λ1 through

m
∞

∑
t=0

(
λ1

1 + r

)t
=

m
1− λ1

1+r

= 1
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receipt, and then decline at rate λ1.

General equilibrium BIU-NK model. Consider first the steady state with output y, bonds b and
spending g. Then (71) reads t = rb + g, and z + ra = y− t = y− g. This implies that the steady
state real rate r must solve

u′ (y− g) (1− β (1 + r)) = v′ (b)

Next consider transition dynamics. Given a path for gt and bt compatible with (71), equilibrium
in the BIU-NK model is a sequence {yt} solving

u′ (yt − gt) = β (1 + r) u′ (yt+1 − gt+1) + v′ (bt) (74)

when linearized this delivers

dyt − dgt = β (1 + r) (dyt+1 − dgt+1) +
v′′ (b)
u′′ (c)

dbt

dyt − dgt =
v′′ (b)
u′′ (c)

∞

∑
k=0

[β (1 + r)]k dbt+k

For example with our mean-reversion-in-debt rule in (??) we obtain

dyt = dgt +
v′′ (b)
u′′ (c)

1
β (1 + r)− ρ

dbt (75)

This is very different from the TANK fiscal multiplier (68) and much closer to what we saw in
HANK (or in the OLG model), namely that the level of debt matters for the fiscal multiplier rather
than the flow of taxes at a point in time.

Calibration. Assume v′ (b) = ϕb−γ, u′ (c) = c−θ . Then we have

v′′ (b)
u′′ (c)

=
γ

θ

c
b

v′ (b)
u′ (c)

=
γ

θ

c
b
(1− β (1 + r))

and
P (1) = (1− β (1 + r))

(
r− γ

θ

c
b

)
The stablity condition is c > θ

γ rb, which is easily satistifed. We fix θ, β and R as in our model
calibration. Then, given a target m we find γ that delivers the desired λ1 = (1 + r) (1−m). This
delivers a BIU calibration that matches the impact MPC of our HANK.
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C Main proofs

C.1 Section 3 proofs

C.1.1 Proof of lemma 4

According to our partial equibrium definition ??, each household takes zit and maximizes (3) sub-
ject to

cit + ait = (1 + rt) ait−1 + zit ∀t, i (4’)

Let qt ≡ ∏t
s=0

1
1+rs

. Along any realized path, households satisfy

(1 + r0) ai,−1 +

(
T
∑
t=0

qtzit

)
=

(
T
∑
t=0

qtcit

)
+ qT aiT

Taking expectations at date 0 for a given household, we have,

(1 + r0) ai,−1 +

(
T
∑
t=0

qtE0[zit]

)
=

(
T
∑
t=0

E0[cit]

)
+ qT E0[aiT ]

Next, taking the population mean EI of both sides gives, using iterated expectations EI [E0[·]] =
EI [·], and noting that asset market clearing implies EI [ai,−1] = b−1 as well as E [ai,T] = bT (the
level of government debt outstanding), we have

(1 + r0) b−1 +

(
T
∑
t=0

qtEI [zit]

)
=

(
T
∑
t=0

qtEI [cit]

)
+ qT bT (76)

But, from the definition of labor incomes and constant-y,

EI [zit] = tt + (1− τt)EI [eitnit]

= tt + (1− τt) y

= y− revt

= y− gt + bt − (1 + rt) bt−1

Now, telescoping the sum

T
∑
t=0

qt (bt − (1 + rt) bt−1) = − (1 + r0) b−1 + qT bT

and therefore (76) is simply
T
∑
t=0

qt (ct + gt − y) = 0
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Hence, in our definition of an EYE ∂yt = dcPE
t + ∂gt, any shock must satisfy

T
∑
t=0

qtd (ct + gt) +
T
∑
t=0

dqt × (ct + gt − y) = 0

Hence
T
∑
t=0

qt∂yt +
T
∑
t=0

dqt × 0 = 0

where the first term follows from our definition of ∂yt and the second term from goods market
clearing at every date before the shock.
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