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This paper

Q: How much borrowing is sustainable, if borrowers cannot commit?

General equilibrium model of competitive risk-sharing

I Defaulters suffer endowment loss
(Eaton Gersovitz, ...)

I Multilateral lack of commitment

I Interest rates & debt limits are endogenous
(Alvarez Jermann, Kehoe Levine, Kocherlakota, ...)

I Defaulters excluded from borrowing, but can save
(Bulow Rogoff, Hellwig Lorenzoni)
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Results & contributions

1 Max debt limits = PV of default cost

I Coro 1: Bulow Rogoff in g.e. w/ multilateral lack of commitment

I Coro 2: Limiting case of debt as Ponzi schemes (Hellwig Lorenzoni)

2 “Institutional mapping”: Payoff-equivalence between model with
“implicit insitutional” and model with “explicit institutions”

I Public debt backed by taxes
I Consumer debt backed by pledgeable income (Gottardi Kubler)
I Consumer debt collateralized by assets (Geanakoplos et al.)
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Outline

1 Environment

2 Main result

3 Mapping to models with explicit institutions
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Environment
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Environment

Underlying stochastic process: event tree of all possible states st

Finite set I of types. Stochastic endowment {y i (st) > 0} of
perishable good

U(c) := E0∑t≥0β tu(c(st)), Inada conditions

Trade one-period state-contingent debt. Cannot commit to repay.

Subject to finite non-negative debt limits Di (st)
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Repay value
∀st , given inherited a & limits Di ,

V i (Di ,a|st) := sup{U(c i |st) : (c i ,ai ) ∈ B i (Di ,a|st)}

B i (Di ,a|st) := {(c i ,ai )| ai (st) = a,

c i (st ′) + ∑
st′+1�st′

q(st ′+1)ai (st ′+1) ≤ y i (st ′) +ai (st ′),

ai (st ′+1) ≥ −Di (st ′+1) ∀st ′ � st}

For B i 6= /0, assume WLOG debt limits are consistent:

Di (st)≤ y i (st) + ∑
st+1�st

q(st+1)Di (st+1)
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Default value

Assume defaulters
I cannot borrow, but can save
I lose fraction τ ≥ 0 of endowment

V i
d (0,0|st) := sup{U(c i |st) : (c i ,ai ) ∈ B i

d (0,0|st)}

B i
d (0,0|st) := {(c i ,ai )| ai (st) = 0,

c i (st ′) + ∑
st′+1�st′

q(st ′+1)ai (st ′+1) ≤ (1− τ
i (st ′))y i (st ′)︸ ︷︷ ︸
=:y i

d (st′ )

+ai (st ′),

ai (st ′+1) ≥ 0 ∀st ′ � st}
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Boundedness

To guarantee finite continuation value, assume

U((1− τ
i )y i |st) > −∞,

U(∑
i
y i |st) < ∞, ∀st

True if either
I u is bounded, or

I (1− τ i )y i uniformly bounded away from 0
& y i uniformly bounded from above
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Non-negligible loss

Assume aggregate endowment loss is non-negligible (with respect to
aggregate endowments): ∃ε > 0 s.t.

∑i∈I τ i (st)y i (st)

∑i∈I y i (st)
≥ ε, ∀st

E.g. 1: τ i ≥ ε, ∀i
E.g. 2:

I Committed types: τ i = 1, ∀i ∈ Ic
I Non-committed types: τ i = 0, ∀i ∈ Inc

I Committed types’ endowments are non-negligible: ∑i∈Ic y i

∑i∈I y i > ε
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Definitions: Self-enforcing debt limits (Alvarez Jermann)

Maximum sustainable debt captured by “not-too-tight debt limits”

Di is self-enforcing (or sustainable) if ∀st

V i (Di ,−Di (st)|st)≥ V i
d (0,0|st)

Di is not-too-tight (or maximally sustainable) if ‘=’ ∀st

I These debt limits prevent default, but allow as much borrowing as
possible

I These debt limits arise endogenously in competitive market
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Definition

For initial market-clearing {ai (s0)}i∈I , a competitive equilibrium with
self-enforcing debt (q,(c i ,ai ,Di )i∈I) satisfies

1 individual optimization (taking prices & debt limits as given)

2 debt market clears ∑i∈I ai (st) = 0, ∀st

3 debt limits Di are not-too-tight.
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Result I:

D = PV(τy)
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Notations
Present value & wealth:

PV(x |st) :=
1

p(st) ∑
st+τ�st

p(st+τ )x(st+τ )

W i (st) := PV(y i |st)

I Date-0 price of consumption good:

p(s0) := 1
p(st+1) := q(st+1)p(st)

I Deterministic special case:

PVt(x) := ∑
t+τ≥t

xt+τ

Πτ≥0(1+ rt+τ )

1+ rt :=
1
qt
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Theorem 1
Assume non-negligible τ.
Equilibrium debt limits must = present value of endowment loss:

Di (st) = PV(τ
iy i |st), ∀st , i
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Example

(y1t )t≥0 = (yH ,yL,yH ,yL, . . .)

(y2t )t≥0 = (yL,yH ,yL,yH , . . .)

u = log; identical loss τ

Stationary equilibrium:

V (Di ,−Di ) = V i
d (0,0), ∀i

focH : q = β
u′(cL)

u′(cH)

focL : q ≥ β
u′(cH)

u′(cL)

What is Di?
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Example (cont.)

If 0< τ < τ∗, then unique stationary equilibrium:

Di = PV(τy i ) =

{
τ

yH+qyL
1−q2 =: dH

τ
yL+qyH
1−q2 =: dL

focH : q = β
u′(cL)

u′(cH)
=

u′(yL +dH +qdH)

u′(yH −dH −qdH)

focL : q > β
u′(cH)

u′(cL)

If τ ≥ τ∗, then first best: q = β , cL = cH , Di never binds
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Example (cont.)

If τ = 0. Let 1
qaut

:= u′(yH)
βu′(yL)

I If 1
qaut
≥ 1, then unique stationary equilibrium is no trade

I Else, multiple stationary equilibria. One with no trade. One with
bubble:

q = 1

Di = d that solves 1 = β
u′(yL +2d)

u′(yH −2d)

I Bubbly equilibrium is “stable”



Figure: Example with no bubble (1/qaut ≥ 1)

Figure: Example with bubble (1/qaut < 1)
19/39
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Steps of proof

To show Di = PV(τ iy i ), ∀i

1 Show Di ≥ PV(τ iy i )

I Corollary: W i = PV(y i ) finite

I Corollary: “overturn” Hellwig Lorenzoni

2 Show Di ≤ PV(τ iy i )

I Generalize Bulow Rogoff to general equilibrium environment
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Step 1: Lower bound on debt limits

Proposition 1

Not-too-tight Di (st)≥ PV(τ iy i |st), ∀i ,st

Note: hold for any τ ≥ 0

Equivalent to V i (Di ,−PV(τ iy i |st)|st)≥ V i
d (0,0|st)

Straightforward if default leads to autarky (Kehoe Levine, Alvarez
Jermann). But not here, as defaulter can still save



22/39

Intro Environment D=PV Isomorphism

Sketch of proof

1 For each finite D, show ∃D ≥ 0

D(st) = τ(st)y(st) + ∑
st+1�st

q(st+1)min{D(st+1),D(st+1)}

2 If D not-too-tight, then D ≥ D, i.e.,

V (D,−D(st)|st)≥ Vd (0,0|st)

3 Thus D(st)≥ D(st) = τ(st)y(st) + ∑
st+1�st

q(st+1)D(st+1)︸ ︷︷ ︸
→PV(τy |st)
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Finite wealth

Corollary 2
Assume non-negligible τ. Equilibrium interest rates must be high:

∑
i∈I

W i (s0) < ∞

Implication: bubbles cannot exist (Santos Woodford 1997)
Contrast to Hellwig Lorenzoni (2009), where τ ≡ 0 and W = ∞
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Proof.
From lemma:

∑
i∈I

Di (s0)≥∑
i∈I

PV(τ
iy i |s0)

Since the aggregate output loss is non-negligible

∑
i∈I

Di (s0)︸ ︷︷ ︸
finite

≥ ε ∑
i∈I

PV(y i |s0)︸ ︷︷ ︸
W i (s0)
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Step 2: Upper bound on debt limits

Proposition 2
Assume non-negligible τ. Then

Di (st)≤ PV(τ
iy i |st), ∀i ,st
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Natural debt limits

Lemma 3

Assume non-negligible τ. Equilibrium debt limits are bounded by natural
debt limits:

Di (st)≤W i (st) ∀st , i
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Sketch of proof
Consistency Di (st)≤ y i (st) + ∑st+1�st Di (st+1) implies

Di (st)≤W i (st) +M i (st)

Where M i (st) := lim
τ→∞

∑
sτ∈Sτ (st)

p(sτ )

p(st)
Di (sτ )≥ 0

NTS M i = 0
I Finite PV of consumption & Inada condition ⇒ market TVC
I Consolidating budget constraints:

PV (c i |st) +

=0 (TVC)︷ ︸︸ ︷
lim

τ→∞
∑

sτ∈Sτ (st )

p(sτ )

p(st)
[ai (sτ ) +Di (sτ )]

= PV(y i |st) +M i (st) +ai (st)

I Aggregate over i & use market clearing, get ∑i∈I M i = 0
⇒ M i = 0



28/39

Intro Environment D=PV Isomorphism

Generalization of Bulow Rogoff

Lemma 4
Fix arbitrary i & self-enforcing Di . If

1 Interest rate so high that wealth finite: W i (s0) < ∞

2 Di bounded by natural debt limit: Di (st)≤W i (st), ∀st

then
Di (st)≤ PV(τ

iy i |st), ∀st

Special case: no trade theorem τ i ≡ 0⇒ Di ≡ 0

We showed: non-negligible τ ⇒ 1 & 2 endogenously ⇒ D ≤ PV
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Take-aways

Forces that pin down debt limits in competitive equilibrium:
Non-negligible loss ⇒ high interest rates, finite aggregate wealth

Threat of default + high interest rates ⇒
self-enforcing debt limits ≤ PV of loss

Competition ⇒ not-too-tight debt limits ≥ PV of loss

Thus D = PV of loss

I Similar to competitive pricing of Lucas tree at PV of dividends
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Equivalence results:
Model with backed public debt
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Environment

Agents cannot issue private debt: Di ≡ 0
But can buy public debt, issued by a fiscal authority with tax τ

Private budget set: B̂ i (a|sτ ) := {(c i , âi )| âi (sτ ) = a,

c i (st) + ∑
st+1�st

q(st+1)âi (st+1) ≤ (1− τ
i (st))y i (st) + âi (st),

âi (st+1) ≥ 0 ∀st � sτ}

I Note: B̂ i (a|st) = B i
d (0,a|st)
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Environment (cont.)

Gov budget constraint:

d(st) = ∑
i∈I

τ
i (st)y i (st)︸ ︷︷ ︸

tax

+ ∑
st+1�st

q(st+1)d(st+1)︸ ︷︷ ︸
roll over

, ∀st

Equilibrium: public debt market clears:

∑
i∈I

ai (st) = d(st), ∀st

Assume τ non-negligible
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Finite wealth

Lemma 5 (Finite wealth)

∑
i∈I

W i (s0) < ∞

Proposition 3 (Debt = PV taxes)

d(st) = PV(∑
i∈I

τ
iy i |st), ∀st
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Payoff & price equivalence

Proposition 4
(q,d ,(c i , âi )i∈I) competitive equilibrium with public debt backed by tax τ

⇐⇒
(q,(c i ,ai ,Di )i∈I) competitive equilibrium with self-enforcing private debt
and endowment loss τ, where

Di = PV(τ
iy i )

ai = âi −Di

Mapping of private liquidity (private individuals’ debt issuance) to
public liquidity (public debt issuance) (Holmstrom Tirole)
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Equivalence results:
Constrained Arrow Debreu model
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AD with limited pledgeability (Gottardi Kubler)

Each consumer can sell a fraction τ i of endowments in advance
(i.e., fraction τ i of income pledgeable)

A-D equilibrium w. limited pledgeability: (p,(c i )i∈I) s.t.

I Wealth is finite: PV(y i |s0) < ∞, ∀i

I Date-0 budget constraint:

PV(c i |s0)≤ ai (s0) + PV(y i |s0)

I Limited pledgeability:

PV(c i |st)≥ PV((1− τ
i )y i |st)︸ ︷︷ ︸

non-pledgeable endowment

,∀st

I Market clears: ∑i∈I c i (st) = ∑i∈I y i (st), ∀st
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Payoff & price equivalence

Proposition 5
(p,(c i )i∈I) is AD equilibrium w. limited pledgeability
⇐⇒
(q,(c i ,ai ,Di )i∈I) is competitive equilibrium w. self-enforcing debt, where

Di (st) = PV(τ
iy i |st)

ai (st) = PV(c i − (1− τ
i )y i |st), ∀st
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Relationship to Collateral equilibrium model

GK showed: consumption allocations of constrained A-D model coincide
with those in collateral equilibrium model (Geanakoplos 1997, Geanakoplos
Zame 2002, 2009)

Agents sequentially trade state-contingent securities

& trade shares of a collateralizable Lucas tree (but cannot short-sell)

Defaulters lose all collateral, but no other punishment
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Conclusion

General equilibrium with limited commitment and endowment loss

Show: Maximal sustainable debt = PV of default cost

Show: Environment with “implicit insitutional” can be mapped to
environments with “explicit institutions”

I Public debt backed by taxes
I Arrow-Debreu with limited pledgeability
I Debt collateralized by assets
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