
Self-enforcing Debt Limits and Costly Default

in General Equilibrium

V. Filipe Martins-da-Rocha Toan Phan Yiannis Vailakis∗

December 5, 2017
(Preliminary and incomplete. Click here for the latest version.)

Abstract

We establish a novel determination of self-enforcing debt limits at the

present value of default cost in a general competitive equilibrium. Agents can

trade state-contingent debt but cannot commit to repay. If an agent defaults,

she loses a fraction of her current and future endowments. Moreover, she is

excluded from borrowing but is still allowed to save, as in Bulow and Rogoff

(1989). Competition implies that debt limits are not-too-tight, as in Alvarez

and Jermann (2000). Under a mild condition that the endowment loss from

default is bounded away from zero, we show that the equilibrium interest rates

must be sufficiently high that the present value of aggregate endowments is

finite. We show that equilibrium debt limits are exactly equal to the present

value of endowment loss due to default. The determination of competitive debt

limits based on endowment loss is isomorphic to the determination of public

debt sustainable by tax revenues. We also show that competitive equilibria with
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self-enforcingdebt and costly default are equivalent to Arrow-Debreu equilibria

with limitedpledgeability, as defined by Gottardi and Kubler (2015).

1 Introduction

This paper addresses a classic question in macroeconomics: how much debt can

be sustained if borrowers cannot commit to repay? We develop a general equilibrium

model of risk sharing under multilateral lack of commitment. Agents would like to

borrow and lend to hedge against heterogeneous shocks to their endowments. If a

borrower defaults, the assumption is that she is excluded from borrowing but is still

allowed to save, as in Bulow and Rogoff (1989) and Hellwig and Lorenzoni (2009).

Competition implies that the endogenous debt limits must be not too tight, i.e., they

must be set at the largest possible levels such that repayment is individually rational,

as in Alvarez and Jermann (2000). A key departure is that, in addition to credit ex-

clusion, defaulting agents lose a fraction of their current and future endowments. This

assumption is relevant in the context of sovereign default, as it has been documented

that countries tend to suffer economic contractions during default episodes.1

Within this framework, we establish strong characteristics of the joint behavior of

the equilibrium interest rates (or intertemporal prices) and endogenous debt limits.

Under a mild condition on primitives, asserting that the total endowment loss across

agents is non-negligible (but the loss can be arbitrarily small and can flexibly vary

across agents and time), we provide a non-trivial insight about the forces that pin

down the implied interest rates and debt limits in a competitive equilibrium.

First, the interest rates must be sufficiently high such that the present value of

endowments across all agents in the economy is finite. As a consequent, there cannot

exist bubbly equilibria where debt is indefinitely rolled over. Second, it is endogenous

in equilibrium that the debt limits of any agent must not exceed the present value of

her endowments (the natural debt limit). Based on these two results, we establish the

1See, e.g., Trebesch et al. (2012), Tomz and Wright (2013), and Aguiar et al. (2014) for surveys
of recent empirical research in the sovereign debt literature.



third, which states that the debt limits in any competitive equilibrium must exactly

be equal to the present value of endowment loss. This is not a mere coincidence,

as the determination of not-too-tight debt limits is akin to the pricing of assets in a

competitive equilibrium. The intuition is as follows. On the one hand, high implied

interest rates rule out the possibility that borrowers can indefinitely roll over their debt

as a Ponzi scheme. Therefore, equilibrium debt limits cannot exceed the present value

of output loss, as in Bulow and Rogoff (1989). On the other hand, in the presence

of direct costs, debtors would always choose to honour any debt not exceeding the

present value of pledgeable resources. Together, those forces imply that equilibrium

debt limits should exactly reflect the present value of output loss.

The argument above resembles the no-arbitrage argument that determines the

prices of long-lived assets, such as a Lucas tree, to the present value of the streams of

dividends, in any non-bubbly equilibrium under full commitment. In our environment

with limited commitment, the not-too-tight debt limits reflect the opportunity cost

of honouring the contractual arrangements of contingent debt, which is akin to the

value of a claim to debtors’ resources that would be lost due to default.

The results also provide an insight to an isomorphism between private debt and

public debt. We map the current model to an environment where agents cannot

issue debt; however, they can instead purchase public debt that is issued by a fiscal

authority. We show that as long as the authority can impose a non-negligible tax rate

on private agent endowments, the equilibrium interest rates are sufficiently high such

that bubbly equilibria, where the authority can indefinitely roll over debt, cannot

arise. Moreover, in any competitive equilibrium, the amount of public debt bought

by private agents must be exactly equal to the present value of tax revenues, i.e.,

public debt must be fully backed by taxation. This result stands in a stark contrast

to that in Hellwig and Lorenzoni (2009), where the authors show that in the absence

of any tax base, any positive amount of public debt in equilibrium must be indefinitely

rolled over as a bubble. Our result thus points to the fragility of bubbly equilibria,

in a similar sense that the presence of a Lucas tree with non-vanishing dividends can

rule out the possibility of rational bubbles (see Santos and Woodford, 1997 and also
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Tirole, 1985).

Our general equilibrium model also nests the partial equilibrium model of Bulow

and Rogoff (1989) (henceforth BR) as a special case, and our results imply as a

corollary their celebrated debt impossibility theorem. They show that, if (i) the

interest rates are such that present value of endowments of an agent (or country) is

finite, and (ii) the agent’s borrowing cannot exceed the natural debt limit, then it

is impossible to sustain positive borrowing when the only punishment for default is

exclusion from future credit. A key difference is that while BR impose assumptions

(i) and (ii) on endogenous variables (equilibrium prices and quantities), these two

properties arise naturally in our environment.

From a technical standpoint, our proofs exploit a new characterization of not-too-

tight debt limits that can be of independent interest. The interesting feature of our

characterization result, which has no analogue in the absence of output costs, is its

implication about the level of interest rates. As stressed above, we do not impose a

priori any restriction on interest rates. We instead show that no matter how small

is the output loss, interest rates must be higher than agents’ growth rates if debt is

self-enforcing. This, in turn, allows us to show that any process of self-enforcing debt

limits is the sum of the present value of output losses and a “bubble” component.

Taking into account market clearing conditions, at equilibrium, the self-enforcing debt

limits coincide with the present value of output losses (i.e., equilibrium debt limits

are bubble free).

Related literature. Our paper is closely related to the general equilibrium models of

risk sharing with limited commitment and endogenous borrowing constraints. Kehoe

and Levine (1993), Kocherlakota (1996), Alvarez and Jermann (2000, 2001), and

Kehoe and Perri (2004) develop models where agents are excluded from financial

markets after default, while Hellwig and Lorenzoni (2009) and Martins-da-Rocha and

Vailakis (2016, 2017a) develop models where defaulters are only excluded from future

credit, as in BR.2 To the best of our knowledge, our paper is the first to introduce

2See also Kletzer and Wright (2000) for a game theoretic analysis of the threat of credit exclusion.
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recourse or endowment loss from default into this general equilibrium environment.

From a substantive point of view, while most existing papers impose assumptions

on endogenous variables, namely the equilibrium interest rates are high and/or the

debt limits are bounded by wealth, the introduction of the default loss allows us to

generate these properties endogenously.

Our paper is also related to the rational bubbles literature (Diamond, 1965, Tirole,

1985, Miao and Wang, 2011, Farhi and Tirole, 2012, Martin and Ventura, 2012, Hirano

and Yanagawa, 2016) and papers on the shortage of assets (Caballero et al., 2008,

J. Caballero and Farhi, 2017). A common theme of these papers is that a shortage

of savings instruments or a shortage of collateral depresses the interest rates, raising

the present value of aggregate output or endowments, leading to the possibility of

rational bubbles. Our paper shows that the introduction of arbitrarily small but non-

negligible endowment loss from default guarantees finite wealth and rules out the

possibility of bubbles. Thus, our paper complements Santos and Woodford (1997) in

highlighting the fragility of the conditions for the existence of bubbles.

Finally, our paper is also related to Woodford (1990) and Holmström and Tirole

(1998, 2011) in highlighting the relationship between private liquidity and public

liquidity in environments with financial frictions that lead to scarce collateral.

2 Environment

2.1 Uncertainty

Time and uncertainty are both discrete. We use an event tree Σ to describe time,

uncertainty and the revelation of information over an infinite horizon. There is a

unique initial date-0 event s0 ∈ Σ and for each date t ∈ {0, 1, 2, . . .} there is a finite set

St ⊆ Σ of date-t events st. Each st has a unique predecessor σ(st) in St−1 and a finite

number of successors st+1 in St+1 for which σ(st+1) = st. We use the notation st+1 � st

to specify that st+1 is a successor of st. Event st+τ is said to follow event st, also

denoted st+τ � st, if σ(τ)(st+τ ) = st. The set St+τ (st) := {st+τ ∈ St+τ : st+τ � st}
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denotes the collection of all date-(t+τ) events following st. Abusing notation, we let

St(st) := {st}. The subtree of all events starting from st is then

Σ(st) :=
⋃
τ≥0

St+τ (st).

We use the notation sτ � st when sτ � st or sτ = st. In particular, we have

Σ(st) = {sτ ∈ Σ : sτ � st}.

2.2 Endowments and Preferences

There is a single perishable consumption good, and the economy consists of a

finite set I of household types, each type consists of a unit measure of identical

agents. Agents are infinitely lived. They cannot commit to future actions.

The preferences of agents over (non-negative) consumption processes c = (c(st))st∈Σ

are represented by the lifetime expected and discounted utility functional

U(c) :=
∑
t≥0

βt
∑
st∈St

π(st)u(c(st))

where β ∈ (0, 1) is the discount factor, π(st) is the unconditional probability of st and

u : R+ → [−∞,∞) is a Bernoulli function assumed to be strictly increasing, concave,

continuous on R+, differentiable on (0,∞), bounded and satisfying Inada’s condition

at the origin.3 Given an event st, we denote by U(c|st) the lifetime continuation

utility conditional to st defined by

U(c|st) := u(c(st)) +
∑
τ≥1

βτ
∑

st+τ�st
π(st+τ |st)u(c(st+τ ))

3The function u is said to satisfy the Inada’s condition at the origin if limε→0[u(ε)−u(0)]/ε =∞.
We assume that agents’ preferences are homogeneous. This is only for the sake of simplicity. All
arguments can be adapted to handle the heterogeneous case where the preferences differ among
agents. The boundedness of u is only used to establish a necessary condition of the equilibrium
debt limits. It can be relaxed if we impose some mild restrictions on the endowments and default
punishment. We refer to Remark 1 for the detailed discussion.
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where π(st+τ |st) := π(st+τ )/π(st) is the conditional probability of st+τ given st.

Agents receive endowments in each period that are subject to random shocks.

We denote by yi = (yi(st))st∈Σ the process of positive endowments yi(st) > 0 of the

representative agent of type i.4 A collection (ci)i∈I of consumption processes is called

a consumption allocation. It is said to be resource feasible if
∑

i∈I c
i =

∑
i∈I y

i. We

also fix an allocation (ai(s0))i∈I of initial financial claims ai(s0) ∈ R that satisfies the

usual market clearing condition:
∑

i∈I a
i(s0) = 0. The initial financial claim ai(s0)

can be interpreted the consequence of (un-modeled) past transactions.

2.3 Markets

At any event st, agents can issue and trade a complete set of one-period contingent

bonds which promise to pay one unit of the consumption good contingent on the

realization of any successor event st+1 � st. Let q(st+1) > 0 denote the price at

event st of the st+1-contingent bond. Agent i’s holding of this bond is ai(st+1).

The amount of state-contingent debt agent i can issue is observable and subject to

state-contingent (non-negative and finite) debt limits Di = (Di(st))st∈Σ. Given the

initial financial claim ai(s0), we denote by Bi(Di, ai(s0)) the budget set of an agent

who never defaults. It consists of all pairs (ci, ai) of consumption and bond holdings

satisfying the following constraints: for any event st,

ci(st) +
∑

st+1�st
q(st+1)ai(st+1) ≤ yi(st) + ai(st) (2.1)

and

ai(st+1) ≥ −Di(st+1), for all st+1 � st. (2.2)

Fix an event sτ and some initial claim a ∈ R. We denote by V i(Di, a|sτ ) the value

function defined by

V i(Di, a|sτ ) := sup{U(ci|sτ ) : (ci, ai) ∈ Bi(Di, a|sτ )}
4For brevity, instead of saying “the representative agent of type i”, we simply say “agent i” in

the remaining of the paper.
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where Bi(Di, a|sτ ) is the set of all plans (ci, ai) satisfying ai(sτ ) = a together with

restrictions (2.1) and (2.2) at every successor node st � sτ .

Without any loss of generality, we restrict attention to debt limits (Di(st))st�s0

that are consistent, meaning that at every event st, the maximal debt can be repaid

out of the current resources and the largest possible debt contingent on future events,

i.e.,

Di(st) ≤ yi(st) +
∑

st+1�st
q(st+1)D(st+1), for all st � s0. (2.3)

The above condition is necessary for the budget set Bi(Di,−Di(st)|st) to be non-

empty.5

2.4 Default Costs

An agent might not honor her debt obligations and decide to default if it is optimal

for her. The decision to default depends on the consequences of default. As in Bulow

and Rogoff (1989), we assume that defaulters start with neither assets nor liabilities,

are excluded from future credit, but retain the ability to purchase bonds. In addition,

they suffer a (possibly zero) fractional loss in income upon default.6 Specifically, debt

repudiation leads to a contraction τ i(st) ∈ [0, 1] of agent i’s endowment, where τ may

vary across agents and events. Formally, agent i’s default option at event st is the

largest continuation utility when starting with zero financial claims, cannot borrow

and her income reduces by a fraction τ i(sτ ) at every sτ � st:

V i
d (0, 0|st) := sup{U(ci|st) : (ci, ai) ∈ Bi

d(0, 0|st)}, (2.4)

5It is straightforward to check that any process of self-enforcing debt limits (defined in Sec-
tion 2.5) and any process of natural debt limits (defined in Section 2.6) satisfies the consistency
property (2.3).

6Disruption of international trade or of the domestic financial system can lead to output drops
if either trade or banking credit is essential for production. Among others, Mendoza and Yue
(2012), Gennaioli et al. (2014), and Phan (2017) model explicitly how sovereign default may lead
to an efficiency loss in production. We follow the tradition in the sovereign debt literature (see for
instance Cohen and Sachs (1986), Cole and Kehoe (2000), Aguiar and Gopinath (2006), Arellano
(2008), Abraham and Carceles-Poveda (2010), and Bai and Zhang (2010, 2012)) and model the
negative implications on output by the loss of an exogenous fraction of income.
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where Bi
d(0, 0|st) denotes the budget set corresponding to Bi(0, 0|st) when the en-

dowment yi(sτ ) is replaced by (1− τ i(sτ ))yi(sτ ) at any event sτ � st.

Remark 1. We have assumed that the Bernoulli function u is bounded. This assump-

tion can be dropped if the primitives of the economy satisfy the following properties:

(a) the default option V i
d (0, 0|st) is finite for all agent i and event st;

(b) If a resource feasible consumption allocation (ci)i∈I satisfies the participation

constraints U(ci|st) ≥ V i
d (0, 0|st) for all agent i and event st, then the continuation

utility U(ci|st) is finite for all agent i and event st.7

The above conditions are obviously true when the Bernoulli function is bounded.

However, they are also satisfied if for all agent i and every event st we have

−∞ < U((1− τ i)yi|st) and U(ȳ|st) <∞,

where ȳ :=
∑

i∈I y
i is the aggregate endowment. The above inequalities are valid

if the endowments are uniformly bounded from above and away from zero and the

contraction coefficients (τ i)i∈I are uniformly bounded away from 1.

2.5 Self-enforcing Debt Limits

We now incorporate the fact that agents have the option to default. Since bor-

rowers issue contingent bonds, lenders have no incentives to provide credit contingent

to some event if they anticipate that a debtor will default.8 The maximum amount

of debt Di(st) at any event st � s0 should reflect this property. If agent i’s ini-

tial financial claim at event st corresponds to the maximum debt −Di(st), then she

prefers to repay her debt if, and only if, V i(Di,−Di(st)|st) ≥ V i
d (0, 0|st). When a

process of bounds satisfies the above inequality at every node st � s0, it is called

7Observe that any consumption allocation derived from a competitive equilibrium (defined in
Section 4) necessarily satisfies the participation constraints.

8Since the default punishment is independent of the default level, there is no partial default.
Agents either repay or default totally.
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self-enforcing.9 Competition among lenders naturally leads to consider the largest

self-enforcing bound Di(st) defined by the equation

V i(Di,−Di(st)|st) = V i
d (0, 0|st). (2.5)

We follow Alvarez and Jermann (2000) and refer to such debt limits as not-too-tight.

Remark 2. If we fix an agent i and assume that τ i(st) = 1 for all every event st,

then the agent has no incentive to ever default. Equivalently, in this case, the agent

can effectively commit to her financial promises. This is because the value of the

default option is V i
d (0, 0|st) = U(0|st), and consequently any process of consistent

debt limits is self-enforcing. Therefore, the specification of output costs encompasses

a mixed environment where some agents can perfectly commit to financial contracts

while others have limited commitment.10 In case where τ i(st) = 1 for all event st and

agent i, the model collapses to a standard risk-sharing model with full commitment.

2.6 Natural Debt Limits

Given state-contingent bond prices q = (q(st))st�s0 , we denote by p(st) the as-

sociated date-0 price of consumption at st defined recursively by p(s0) = 1 and

p(st+1) = q(st+1)p(st) for all st+1 � st. We use PV(x|st) to denote the present

value at event st of a process x restricted to the subtree Σ(st) and defined by

PV(x|st) :=
1

p(st)

∑
st+τ∈Σ(st)

p(st+τ )x(st+τ ).

When the present value PV(yi|s0) is finite, we say that agent i has finite wealth11

9Indeed, since the function a 7→ V i(Di, a|st) is increasing, for any bond holding ai(st) satisfying
the restriction ai(st) ≥ −Di(st), agent i prefers honouring her obligation than defaulting on ai(st).

10In particular, our model nests both the model in Bulow and Rogoff (1989) (unilateral lack of
commitment) and the one in Hellwig and Lorenzoni (2009) (multilateral lack of commitment).

11Some authors use the terminology “interest rates are higher (respectively lower or equal) than
agent i’s growth rates” when the agent’s wealth is finite (respectively infinite). The choice of this
terminology is driven by the following particular case. Assume that interest rates and bounds
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and define

W i(st) := PV(yi|st).

The process (W i(st))st∈Σ is called the process of natural debt limits. In a Arrow–

Debreu economy starting at event st, the limit W i(st) is the largest amount agent i

can consume at event st if she can commit to deliver all of her future resources and

consume zero forever. We say that a process of debt limits (Di(st))st�s0 is naturally

bounded when it is tighter than the natural debt limits, i.e., Di(st) ≤ W i(st) for all

event st.

3 Partial Equilibrium

This section presents a characterization of self-enforcing debt limits that can be

obtained as a corollary of the original results in Bulow and Rogoff (1989).12

They consider a partial equilibrium set up.13 The following result asserts that

equilibrium debt can only be sustained by the present value of endowment loss. In

the absence of endowment loss, debt cannot be sustained by the threat of credit

exclusion alone.

Lemma 1 (Bulow and Rogoff). Consider an arbitrary agent i constrained by a process

(Di(st))st�s0 of self-enforcing debt limits. Assume that

(i) prices are such that the agent’s wealth is finite, i.e., W i(s0) <∞, and

on growth rates are time and state invariant, i.e., q(st+1) = π(st+1|st)(1 + r)−1 and yi(st+1) =
(1+gi(st+1))yi(st) for all st+1 � st, where the stochastic growth rate is such that migi ≤ gi(st+1) ≤
M igi for some parameter gi with 0 < mi ≤ M i < ∞. Then, the agent i’s wealth is finite if, and
only if, r > gi, and infinite if, and only if, r ≤ gi.

12We refer to Martins-da-Rocha and Vailakis (2016) for the detailed connection. Here we only
remark that the model in Bulow and Rogoff (1989) is slightly different than ours since they consider
a sovereign who trades at the initial node a complete set of state-contingent contracts that specify
the net transfers to foreign investors in all future periods and events. Contracts are restricted to be
compatible with repayment incentives and allow investors to break even in present value terms (this
environment is in the spirit of Kehoe and Levine (1993) but with a different default option).

13A small open economy issues debt taking as given an exogenous, time-invariant world interest
rate.
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(ii) Di is naturally bounded, i.e., Di(st) ≤ W i(st) at every event st.

Then debt limits cannot exceed the present value of endowment loss:

Di(st) ≤ PV(τ iyi|st), for all st � s0.

In particular, if τ i = 0, then Di = 0, i.e., if there is no endowment loss, then debt is

not sustainable.

In a general equilibrium set up, conditions (i) and (ii) impose ad-hoc restrictions

on endogenous variables (prices and debt limits). A natural question that arises is

whether those restrictions hold true at a competitive equilibrium. A contribution

of this paper is to identify assumptions on primitives such that, at a competitive

equilibrium, the aggregate wealth of the economy is finite and the debt limits are

naturally bounded.

4 General Equilibrium

Instead of imposing conditions on endogenous variables (as prices and debt limits),

we now address the issue of debt sustainability in the context of a general equilibrium

setup.

Definition 1. For given initial asset positions ai(s0) such that
∑

i∈I a
i(s0) = 0,

a competitive equilibrium with self-enforcing debt (q, (ci, ai, Di)i∈I) consists of state-

contingent bond prices q, a resource feasible consumption allocation (ci)i∈I , a market

clearing allocation of bond holdings (ai)i∈I and an allocation of consistent and finite

debt limits (Di)i∈I such that:

(a) for each agent i ∈ I, taking prices and the debt limits as given, the plan (ci, ai)

is optimal among budget feasible plans in Bi(Di, ai(s0)|s0);

(b) for each agent i ∈ I, the sequence of debt limits Di are not-too-tight, i.e., equa-

tion (2.5) is satisfied at all events.
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Our first result establishes a lower bound on equilibrium debt limits:

Lemma 2. Not-too-tight debt limits are at least as large as the present value of

endowment loss: Di(st) ≥ PV(τ iyi|st) for each event st and each agent i.

This result provides an intuitive lower bound on equilibrium debt limits, which

must be not-too-tight, and serves as an important result for the analysis in the

remaining of the paper. A natural approach to prove this result is to show that

Di(st) ≥ τ i(st)yi(st) + D̃i(st) where D̃i(st) :=
∑

st+1�st q(s
t+1)Di(st+1) is the present

value of next period’s debt limits, and then use a standard iteration argument.

Because in equilibrium, debt limits are not-too-tight, this is equivalent to proving

that agent i does not have an incentive to default when her net asset position is

τ i(st)yi(st) + D̃i(st), i.e.,

V i(Di,−τ i(st)yi(st)− D̃i(st)|st) ≥ V i
d (0, 0|st). (4.1)

By definition, the default value function V i
d satisfies:

V i
d (0, 0|st) ≥ u((1− τ i(st))yi(st)) + β

∑
st+1�st

π(st+1|st)V i
d (0, 0|st+1). (4.2)

If we had an equality in (4.2), then inequality (4.1) would be straightforward. Indeed,

consuming (1− τ i(st))yi(st) and borrowing up to each debt limit Di(st+1) at event st

leads to the right hand side continuation utility in (4.2), and satisfies the solvency

constraint at event st in the budget set defining the left hand side of (4.1). However, in

our environment where an agent can save upon default, (4.2) need not be satisfied with

an equality.14 Dealing with this problem is non-trivial and constitutes the technical

contribution in the proof presented in Appendix A.1.

14In the simpler environment where saving is not possible after default (as it is the case in Alvarez
and Jermann (2000)) we always have an equality in (4.2).
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4.1 Wealth must be finite

From now on we impose the following minimal assumption on the structure of

endowment loss:

Assumption 1. The aggregate endowment loss from default is non-negligible (with

respect to aggregate endowments), in the sense that there exists ε > 0 such that:∑
i∈I

τ i(st)yi(st) ≥ ε
∑
i∈I

yi(st), for all st � s0. (4.3)

The above property is satisfied, for example, if the fraction of endowment loss

is uniformly positive for all agents, i.e., for all agent i ∈ I, there exists ε > 0 such

that τ i(st) ≥ ε at any event st ∈ Σ. Moreover, the property is still satisfied even

if only a subset of agents face endowment loss. For example, assume a subset of

agents Ic ⊆ I (the “committed types”) face the maximum endowment loss: τ i = 1

for all i ∈ Ic; the remaining agents (the “uncommitted types”) do not face any

endowment loss: τ i = 0 for all i ∈ I \ Ic. Condition (4.3) still holds as long as the

total endowment of the committed types is non-negligible, i.e., there exists ε > 0 such

that
∑

i∈Ic y
i(st) ≥ ε

∑
i∈I y

i(st).

The combination of Lemma 2 and Assumption 1 yields an important result about

equilibrium interest rates. The result states that no matter how small the output costs

are, as long as they are non-negligible, the present value of the stream of endowments

– discounted at the equilibrium interest rates – must be finite. More informally,

this result implies that the interest rates in any competitive equilibrium with non-

negligible endowment loss must be at least as high as the growth rate of the economy.

Theorem 1. Assume non-negligible endowment loss. In any competitive equilibrium

with self-enforcing debt, the wealth of any agent is finite, i.e., W i(s0) <∞ for all i ∈
I. As a consequence, the aggregate wealth of the economy is finite, i.e.,

∑
i∈IW

i(s0) <

∞.
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Proof. Since the aggregate endowment loss is non-negligible (Assumption 1), we have∑
i∈I

PV(τ iyi|s0) ≥ ε
∑
i∈I

PV(yi|s0) = ε
∑
i∈I

W i(s0).

On the other hand, Lemma 2 implies that∑
i∈I

Di(s0) ≥
∑
i∈I

PV(τ iyi|s0).

Combining the two inequalities above yields the following inequality:∑
i∈I

Di(s0) ≥ ε
∑
i∈I

W i(s0).

Since the debt limits Di are finite by definition, the inequality implies that the ag-

gregate wealth of the economy
∑

i∈IW
i(s0) is finite. As a corollary, each individual’s

wealth W i(s0) is finite.

This result stands in stark contrast with the result of Hellwig and Lorenzoni

(2009), which states that in the absence of endowment loss, any equilibrium with

positive debt requires low interest rates, so that each agent’s wealth is infinite. In

other words, the result state that if we introduce even just very small but non-

negligible endowment loss, we can effectively rule out bubbly equilibria. This fragility

of bubbly equilibria is related to Santos and Woodford (1997) and Tirole (1985), who

find that the existence conditions for bubbles are relatively fragile.

4.2 Equilibrium debt limits must be naturally bounded

Finite aggregate wealth implies the necessity of a market transversality condition

(see equation (4.4) below). This condition in turn allows us to show that the present

value of debt limits satisfies an asymptotic property (see 4.7 below). We then deduce

from the consistency property (2.3) that debt limits are bounded from above by
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the natural debt limits, plus a non-negative process that satisfies exact roll-over.15

Taking into account market clearing conditions, we can show that the exact roll-over

component must be zero, i.e., debt cannot contain a bubbly component in equilibrium.

We then deduce that the equilibrium self-enforcing debt limits are tighter than the

natural debt limits. This is established formally in the following theorem.

Theorem 2. Assume non-negligible endowment loss. In any competitive equilibrium

with self-enforcing debt, debt limits are naturally bounded, i.e., Di(st) ≤ W i(st) for

all event st and agent i ∈ I.

Proof. Let (q, (ci, ai, Di)i∈I) be a competitive equilibrium. Fix a date-event st and

consider another period τ > t. The proof proceeds in three steps.

First, since consumption markets clear, we obtain from Theorem 1 that the present

value of optimal consumption is finite for all agents. In addition, due to the Inada’s

condition, the optimal consumption is strictly positive. Lemma A.1 in Martins-da-

Rocha and Vailakis (2017a) then implies that the following market transversality

condition holds true:16

lim
τ→∞

∑
sτ∈Sτ (st)

p(sτ )[ai(sτ ) +Di(sτ )] = 0. (4.4)

Second, consolidating agent i’s (binding) flow budget constraints along the sub-

tree Σ(st) up to period τ − 1 produces

∑
sr∈Στ−1(st)

p(sr)ci(sr) +
∑

sτ∈Sτ (st)

p(sτ )[ai(sτ ) +Di(sτ )]

= ai(st) +
∑

sr∈Στ−1(st)

p(sr)yi(sr) +
∑

sτ∈Sτ (st)

p(sτ )Di(sτ ). (4.5)

15A process satisfying exact roll-over can be interpreted as a bubble. We refer to Hellwig and
Lorenzoni (2009) for details.

16The market transversality condition differs from the individual transversality condition. Indeed,
due to the lack of commitment, agent i’s debt limits may bind, in which case we do not necessarily
have that p(st) = βtπ(st)u′(ci(st))/u′(ci(s0)).
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By letting τ converge to infinity, transversality condition (4.4) and consolidated bud-

get equation (4.5) imply:

PV(ci|st) = ai(st) +W i(st) +M i(st), (4.6)

where:

M i(st) :=
1

p(st)
lim
τ→∞

∑
sτ∈Sτ (st)

p(sτ )Di(sτ ) exists in R+. (4.7)

Observe that the process M i satisfies the following Martingale or exact-roll-over prop-

erty

∀st ∈ Σ, M i(st) =
∑

st+1�st
q(st+1)M i(st+1). (4.8)

Summing over i in equation (4.6) and exploiting market clearing implies that

∀st ∈ Σ,
∑
i∈I

M i(st) = 0.

Since each M i is non-negative we get that M i = 0 for all i ∈ I.

Finally, since the debt limits are consistent (i.e., they obey condition (2.3)), for

all arbitrary date-event st and every period τ > t, we have

p(st)Di(st) ≤
τ∑
r=t

∑
st∈Sr(st)

p(sr)yi(sr) +
∑

sτ∈Sτ (st)

p(sτ )Di(sτ ).

Passing to the limit when τ tends to infinite, we get that

Di(st) ≤ W i(st) +M i(st). (4.9)

Because M i = 0, inequality (4.9) then implies that Di ≤ W i for all agents.

Remark 3. If Assumption 1 is dropped, then Theorem 1 and Theorem 2 may fail. For

instance, if there is no output drop upon default, Hellwig and Lorenzoni (2009) provide
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an example where, at a competitive equilibrium, each agent’s wealth is infinite. Even

if some agents can fully commit to honor their debt obligations, pledging all of their

income as collateral, the equilibrium debt limits of those agents may not be naturally

bounded. We refer to Appendix B.2 for an example.

4.3 Exact characterization of equilibrium debt limits

Theorems 1 and 2 together with Lemma 1 allow us to have an exact character-

ization of the debt limits in equilibrium, without having to impose assumptions on

endogenous variables (the interest rates or debt limits). Specifically, because Theo-

rem 1 states that each agent’s wealth is finite and Theorem 2 states that each agent’s

debt limit is naturally bounded, both conditions (i) and (ii) in Lemma 1 are auto-

matically satisfied. This allows us to establish the following result:

Theorem 3. Assume non-negligible endowment loss. In any competitive equilibrium

with self-enforcing debt, the debt limit must be exactly equal to the present value of

endowment loss:

Di(st) = PV(τ iyi|st), for all st � s0. (4.10)

Proof. Theorems 1 and 2 imply that conditions (i) and (ii) of Lemma 1 are satisfied.

As a consequence, Lemma 1 implies that we have an upper bound on the debt limits:

Di(st) ≤ PV(τ iyi|st), for all st and every i.

On the other hand, from Lemma 2, we have a lower bound on the debt limits:

Di(st) ≥ PV(τ iyi|st), for all st and every i.

As the bounds coincide, it must be that equilibrium debt limits are exactly equal to

the present value of endowment loss, i.e., equation (4.10) holds.

This theorem formalizes a non-trivial insight. There are three forces that pin down

the debt limits in any competitive equilibrium. First, the presence of non-negligible
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endowment loss implies that interest rates are sufficiently high that aggregate wealth

(and thus the present value of endowment loss) is finite. Second, the threat of default

and high interest rates imply that self-enforcing debt limits cannot exceed the present

value of endowment loss. Third, competition among lenders implies that debt limits

must be not too tight, which, in equilibrium, must be at least as large as the present

value of endowment loss. Together, they imply that equilibrium debt limits must

exactly coincide with the present value of endowment loss.

This theorem formalizes a non-trivial insight. There are four forces that pin down

the debt limits in any competitive equilibrium. First, competition among lenders

imply that debt limits must be not too tight, which, in equilibrium, must be at least

as large as the present value of endowment loss (Lemma 2). Second, the assumption

of non-negligible endowment loss implies that interest rates are sufficiently high that

aggregate wealth is finite (Theorem 1). Third, high interest rates and market clearing

imply that debt limits are naturally bounded (Theorem 2). Fourth, the possibility

to save after default imply that self-enforcing debt limits cannot exceed the present

value of endowment loss (Lemma 1). Together, they imply that equilibrium debt

limits must exactly coincide with the present value of endowment loss.

The theorem also generalizes (and strengthen) Bulow and Rogoff result to the

general equilibrium framework (without having to impose ad-hoc assumptions on

endogenous quantities and prices). It implies that as long as the endowment loss is

non-negligible, BR claim in Lemma 1 that Di ≤ PV(τ iyi) holds with equality. A

special case is the celebrated no-debt result:

Corollary 1. Assume non-negligible endowment loss. If an agent i faces no cost of

default (τ i = 0) then she cannot borrow in equilibrium (Di = 0).

5 Simple example

To clearly illustrate the main results of the paper, we turn to a special case of our

general environment.

Consider a deterministic economy with two agents I := {i1, i2}. The agents’
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income alternate between a high and a low value yh > yl > 0. Agent i1 starts with

high income. We assume for simplicity that the output loss fraction τ ∈ [0, 1] is neither

type nor time specific. We restrict attention to symmetric stationary competitive

equilibria as defined below.

Definition 2. A competitive equilibrium with self-enforcing debt (q, (ci, ai, Di)i∈I) is

said to be symmetric stationary when there exists (ch, dh) ∈ R+ × R+ such that

∀i ∈ I, (cit, a
i
t) = (ch,−dh) when yit = yh.

If a competitive equilibrium with self-enforcing debt is symmetric stationary, then

we necessarily have that

(cit, a
i
t) = (ȳ − ch︸ ︷︷ ︸

=:cl

, dh) when yit = yl

where we recall that ȳ := yh + yl. Moreover, interest rates are constant and satisfy

qt = β
u′(cl)

u′(ch)
=: q.

Lemma 3. If a competitive equilibrium with self-enforcing debt is symmetric station-

ary, then there exists (Dh, Dl) ∈ R2
+ such that

Di
t =

Dh if yit = yh,

Dl if yit = yl,

for each i and all t ≥ 0.

Proof. If τ > 0, we can apply our results to conclude that each agent’s wealth must

be finite. This implies that the interest rate must be positive (i.e., q < 1) and debt
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limits satisfy

Di
t = τ PVt(y

i) =


τ
yh + qyl
1− q2

=: Dh if yit = yh,

τ
yl + qyh
1− q2

=: Dl if yit = yl.

If τ = 0, we can apply Hellwig and Lorenzoni (2009) to conclude that not-too-tight

debt limits must allow for exact roll-over, i.e.,

∀t ≥ 0, Di
t = qDi

t+1.

If q < 1, then each agent’s wealth must be finite and we can show that must have

Di
t = 0 for each i and all t ≥ 0. If q = 1, then we get that Di

t = Di
t+1 for each

t ≥ 0.

Proposition 1. Under the following condition

τ ≥ τ ? := (1− β)
(yh − yl)/2
yh + βyl

(5.1)

a competitive equilibrium with self-enforcing debt is symmetric stationary if, and only

if, it is efficient. In particular, we have

q = β and ch = cl =
yh + yl

2
.

Proof. We first prove that first best can be the outcome of a competitive equilibrium

with self-enforcing debt. Assume that q = β and ch = cl. The only difficult step

is to show that debt constraints are satisfied (or, equivalently, there are no default

incentives).17 If an agent’s income is high, she holds a long position on the bond

and the debt constraint is obviously satisfied. If an agent’s income is low, her bond

holding is −dh. Since we assumed that ch = cl, we then get that

yh − (1 + β)dh = yl + (1 + β)dh

17Indeed, Euler equations and the transversality condition are trivially satisfied.
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or, equivalently,

dh =
(yh − yl)/2

1 + β
.

Equation (5.1) then implies that dh ≤ Dh.

We now show that first best is the only possible outcome of a symmetric station-

ary competitive equilibrium with self-enforcing debt. First observe that first order

conditions imply

q = β
u′(cl)

u′(ch)
and q ≥ β

u′(ch)

u′(cl)
.

The above conditions imply that cl ≤ ch. To prove that cl = ch, we assume, by way

of contradiction, that cl < ch. Recall that budget feasibility implies

dh =
yh − ch
1 + q

=
cl − yl
1 + q

.

Since cl < ch, we deduce that

dh <
(yh − yl)/2

1 + q
. (5.2)

Moreover, condition (5.1) implies that

Dh = τ
yh + qyl
1− q2

≥ yh + qyl
yh + βyl

× 1− β
1− q

× (yh − yl)/2
1 + q

.

Since cl < ch, we deduce that q > β which implies that

Dh >
(yh − yl)/2

1 + q
.

Combining the above inequality with (5.2), we get that dh < Dh. We have thus

proved that none of the debt constraints is binding and we deduce from the Euler

equations the following contradiction: ch = cl.

When τ = 0, no-trade is always a symmetric stationary competitive equilibrium

with self-enforcing debt. We identify two cases: either it is the only symmetric

22



stationary competitive equilibrium, or there exists an additional symmetric stationary

competitive equilibrium with zero interest rates where debt limits form a bubble.

Proposition 2. Assume that τ = 0.

(a) If βu′(yl)/u
′(yh) > 1, then there is a unique symmetric stationary competitive

equilibrium with self-enforcing debt that involves trade. It is characterized by

q = 1 and Di
t = dh, for all i and t

where dh ∈ (0, (yh − yl)/2) is the only solution to the following equation

u′(yh − 2dh) = βu′(yl + 2dh). (5.3)

(b) If βu′(yl)/u
′(yh) ≤ 1, then no-trade is the only symmetric stationary competitive

equilibrium with self-enforcing debt.

Proof. Consider a symmetric stationary competitive equilibrium with self-enforcing

debt that involves trade. Hellwig and Lorenzoni (2009) proved that debt limits must

satisfy exact roll-over. In particular, we must have

Dh = q2Dh.

Since there is trade, we must have Dh > 0. This implies that q = 1 and we deduce

that

1 = β
u′(cl)

u′(ch)
= β

u′(yl + 2dh)

u′(yh − 2dh)
.

If u′(yh) ≥ βu′(yl), then the above equation does not have a solution and we get

a contradiction. If u′(yh) < βu′(yl), then the above equation has a unique solution

in the interval (0, (yh − yl)/2). Moreover, we must have dh = Dh otherwise the

consumption allocation would be efficient and we would have q = β.

Reciprocally, assume that there exists dh ∈ (0, (yh−yl)/2) solving Equation (5.3).
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We claim that the bubbly equilibrium defined by

Di
t := dh, for all i and t

is a competitive equilibrium with self-enforcing debt. By construction debt limits

allow for exact roll-over and therefore are not-too-tight. Budget constraints are satis-

fied with equality and Euler equations are also satisfied. The transversality condition

is satisfied since debt limits bind infinitely many times for each agent.

Proposition 3. Assume that

0 < τ < τ ?. (5.4)

Then any symmetric stationary competitive equilibrium with self-enforcing debt dis-

plays positive interest rates (q < 1) and is characterized by the following equations

u′(yh − (1 + q)dh)q = βu′(yl + (1 + q)dh) and dh = τ
yh + qyl
1− q2

. (5.5)

Proof. Consider a symmetric stationary competitive equilibrium with self-enforcing

debt. Since τ > 0, the wealth of each agent must be finite. This implies that q < 1

and

Dh = τ
yh + qyl
1− q2

.

The first order condition associated to the optimal decision of the high income agent

is

q = β
u′(cl)

u′(ch)
= β

u′(yl + (1 + q)dh)

u′(yh − (1 + q)dh)
.

To get (5.5), we only have to show that the debt constraint contingent to high income

binds. Assume by way of contradiction that dh < Dh. This implies that none of the

debt constraints is binding and we get an efficient allocation. We then deduce that

q = β and

τ
yh + βyl
1− β2

= Dh > dh =
(yh − yl)/2

1 + β
= dh.

The above inequality leads to the following contradiction τ > τ ?.
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Reciprocally, let q < 1 and dh satisfying the conditions of (5.5). Consider the

family (q, (ci, ai, Di)i∈I) defined by

(cit, a
i
t, D

i
t) :=


(ch,−dh, Dh) when yit = yh,

(ȳ − ch︸ ︷︷ ︸
=:cl

, dh, Dl) when yit = yl,

where debt limits are defined by

Dh := τ
yh + qyl
1− q2

and Dl := τ
yl + qyh
1− q2

.

Debt limits are not-too-tight by construction. Consumption and bond markets clear

by construction. Debt constraints are satisfied since dit = −Di
t when yit = yh (this

corresponds to the second property in (5.5)) and dit = dh > 0 ≥ −Di
t when yit = yl.

The flow budget constraints are satisfied by construction. The transversality condition

is satisfied since debt limits bind infinitely many times. We only have to check that the

Euler equations are satisfied. The first condition of (5.5) implies that the first order

condition corresponding the high income agent is satisfied. The one corresponding

the low income agent is satisfied if we prove that

yl + (1 + q)dh = cl ≤ ch = yh − (1 + q)dh.

Actualy, we claim that we must have cl < ch. Assume, by way of contradiction, that

cl ≥ ch, or equivalently,

yl + (1 + q)dh ≥ yh − (1 + q)dh.

The above inequality implies that

τ
yh + qyl

1− q
≥ yh − yl

2
. (5.6)
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We also deduce from (5.5) that

q = β
u′(cl)

u′(ch)
≤ β.

Combining the above inequality with (5.6), we get that

τ
yh + βyl

1− β
≥ yh − yl

2

which implies the contradiction: τ ≥ τ ?.

5.1 Existence of equilibria

For any given τ ∈ (0, τ ?), the issue of existence of a symmetric Markovian equilib-

rium with self-enforcing debt reduces to the following problem: can we find qτ ∈ (0, 1)

solving the equation

u′
(
yh − τ

yh + qτyl
1− qτ

)
qτ = βu′

(
yl + τ

yh + qτyl
1− qτ

)
? (5.7)

To analyze the existence, uniqueness and asymptotic properties of the solution of the

above equation, we introduce the following notations.

Let ξ : [0, 1)→ R be defined by

ξ(q) :=
yh + qyl

1− q
.

Observe that ξ(q)/(1 + q) is the present value of income conditional to high income.

The function ξ is twice continuously differentiable and strictly increasing. Moreover,

we have ξ([0, 1)) = [yh,∞). In particular, there exists q̄τ ∈ (0, 1) such that

ξ(q̄τ ) =
yh
τ
.
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Let η : [0, yh)→ R be defined by

η(x) := β
u′(yl + x)

u′(yh − x)
.

The number η(x) is the marginal rate of substitution of consumption contingent

to high for consumption to contingent to low income when the agent saves the

amount x/(1 + q) ≥ 0. The function η is twice continuously differentiable. Since

u is strictly increasing and strictly concave, the function η is strictly decreasing and

η([0, yh)) = [βu′(yl)/u
′(yh), 0).

We denote by D the set of all pairs (τ, q) ∈ (0, τ ?)× [0, 1) such that q < q̄τ , i.e.,

D := {(τ, q) ∈ (0, τ ?)× [0, 1) : τξ(q) < yh}.

We can let ψ : D → R be defined by

ψ(τ, q) := η(τξ(q)).

This is the marginal rate of substitution of consumption contingent to high for con-

sumption to contingent to low income when the agent’s saving correspond to the debt

limit contingent to high income. The function ψ is twice continuously differentiable.

Fix τ ∈ (0, τ ?) and observe that ψ(τ, ·) is strictly decreasing with

ψ(τ, 0) = β
u′(yl + τyh)

u′(yh − τyh)
and lim

q→q̄τ
ψ(τ, q) = 0.

Applying the Intermediate Value Theorem, we deduce that there exists a unique

qτ ∈ (0, q̄τ ) such that

ψ(τ, qτ ) = qτ .

Observe moreover that we must have

∀τ ∈ (0, τ ?), qτ < β
u′(yl + τyh)

u′(yh − τyh)
. (5.8)
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We let dh,τ := τξ(qτ )/(1+qτ ) be the equilibrium debt level contingent to high income.

For any q ∈ [0, 1), we let τ̄q := yh/ξ(q). The function ψ(·, q) : (0, τ̄q) → R is

strictly decreasing. We then deduce that the function q̃ : (0, τ ?)→ R defined by

q̃(τ) := qτ

is strictly increasing. Since q̃(τ) ∈ (0, q̄τ ) ⊆ (0, 1), we deduce that there exists

q0 ∈ (0, 1] such that

lim
τ→0

qτ = sup
τ∈(0,τ?)

qτ =: q0.

5.2 Limiting case as output loss vanishes

An interesting question arises: how do equilibrium prices and quantities converge

as the default cost τ converges to zero? Specifically, do we converge to the equilibrium

with no trade or the bubbly equilibrium where debt is being issued as a Ponzi scheme?

Proposition 4. The asymptotic behavior of the symmetric Markovian equilibrium

when τ vanishes is described by:

(a) If βu′(yl)/u
′(yh) ≤ 1, then q0 = βu′(yl)/u

′(yh) and the symmetric Markovian

equilibrium associated to qτ converges to the no-trade equilibrium (which is the

unique symmetric Markovian equilibrium when τ = 0).

(b) If βu′(yl)/u
′(yh) > 1, then q0 = 1 and the symmetric Markovian equilibrium

associated to qτ converges to the unique bubbly symmetric Markovian equilibrium

when τ = 0. In particular, we have

lim
τ→0

τξ(qτ ) = 2dh > 0

where dh is the solution of the equation

u′(yh − 2dh) = βu′(yl + 2dh).
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Proof. We split the proof in two parts.

(a) Assume that βu′(yl)/u
′(yh) < 1. Passing to the limit in (5.8), we get that

q0 = lim
τ→0

qτ ≤ lim
τ→0

β
u′(yl + τyh)

u′(yh − τyh)
= β

u′(yl)

u′(yh)
< 1.

This implies that

lim
τ→0

ξ(qτ ) = ξ(q0) <∞

and we deduce that

lim
τ→0

dh,τ = lim
τ→0

τξ(qτ )

1 + qτ
= 0.

We then get that the symmetric Markovian equilibrium associated to qτ converges

to the no-trade equilibrium. Moreover, since qτ = η(τξ(qτ )), passing to the limit

when τ vanishes, we get that

q0 = η(0) = βu′(yl)/u
′(yh).

(b) Assume that βu′(yl)/u
′(yh) ≥ 1. Since η is strictly decreasing with η([0, yh)) =

(0, βu′(yl)/u
′(yl)], we can consider the inverse function

η−1 :

(
0, β

u′(yl)

u′(yh)

]
−→ [0, yh)

which is also continuous and strictly decreasing. Observe that for any τ ∈ (0, τ ?),

we have

qτ = η(τξ(qτ )).

Since τ 7→ qτ is increasing and η−1 is strictly decreasing, we deduce that τ 7→ τξ(τ)

is decreasing and therefore converges to some value ` ∈ [0, yh), i.e.,

lim
τ→0

τξ(τ) = lim
τ→0

η−1(qτ ) = inf
τ∈(0,τ?)

τξ(τ) = `.

29



If we pose dh := `/(1 + q0), we have that

lim
τ→0

dh,τ = lim
τ→0

τξ(qτ )

1 + qτ
=

`

1 + q0

= dh.

Moreover, since qτ = η(τξ(τ)), passing to the limit when τ vanishes, we get that

q0 = η(`) = η((1 + q0)dh) = β
u′(yl + (1 + q0)dh)

u′(yh − (1 + q0)dh)
.

We claim that q0 = 1. Assume, by way of contradiction, that q0 < 1. We then

get that ξ(q0) <∞ which implies that

(1 + q0)dh = lim
τ→∞

τξ(qτ ) = ξ(q0) lim
τ→0

τ = 0.

We then get the contradiction

1 ≤ β
u′(yl)

u′(yh)
= q0 < 1.

We have thus proved that q0 = 1 and dh satisfies

1 = β
u′(yl + 2dh)

u′(yh − 2dh)
.

If βu′(yl)/u
′(yh) = 1, then we must have dh = 0. If βu′(yl)/u

′(yh) > 1, then we

must have dh > 0.

6 Isomorphisms

The result that the competitive debt limits must equate the present value of

default costs implies several interesting equivalence results. We will establish payoff-

equivalence mappings between the current environment with self-enforcing debt and
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other environments with alternative institutional arrangements.

6.1 Backed Public Debt

First, we establish a mapping between the current environment and an environ-

ment with government debt backed by income tax revenues. This mapping is akin to

the mapping between an environment with private liquidity (namely debt issued by

private agents) and public liquidity (debt issued by a government).

Consider the same model, but assume individual agents can no longer issue debt,

i.e., Di(st) = 0 for all event st. Instead, only a government can issue debt. The

government debt is backed by tax rate τ(st) on labor income. We assume τ is not type-

specific in this section for simplicity.18 Under this specification, the non-negligible

Assumption 1 simplifies to τ(st) ≥ ε for all st, and we impose it throughout the

section (though it is not essential for our result).

Let B̂i(θi(s0)) denote the budget set of an agent in this economy with initial en-

dowment θi(s0) ≥ 0. It consists of all pairs (ci, θi) of consumption ci = (ci(st))st�s0

and public debt holdings θi = (θi(st))st�s0 satisfying the (after-tax) budget con-

straints: for all event st,

ci(st) +
∑

st+1�st
q(st+1)θi(st+1) ≤ (1− τ(st))yi(st) + θi(st), (6.1)

and

θi(st+1) ≥ 0 for all successor st+1 � st. (6.2)

Observe that B̂i(ai(s0)) coincides with Bi
d(0, a

i(s0)|s0).

Definition 3. For a given allocation (θi(s0))i∈I of initial asset positions, a competitive

equilibrium with backed public debt (q, d, (ci, θi)i∈I) consists of state-contingent bond

prices q, a resource feasible consumption allocation (ci)i∈I , an allocation of non-

negative government bond holdings (θi)i∈I and government net liability positions d

18This assumption is not essential. The proofs below can be easily modified for tax rates τ i that
vary across types.
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such that:

(i) for each agent i ∈ I, taking prices as given, the plan (ci, θi) is optimal among

budget feasible plans in B̂i(θi(s0)|s0);

(ii) the government debt market clears∑
i∈I

θi(st) = d(st), for all st; (6.3)

(iii) the government’s budget constraint with tax τ is satisfied:19

d(st) = τ(st)ȳ(st) +
∑

st+1�st
q(st+1)d(st+1), for all st. (6.4)

When tax is non-negligible, we can show that the interest rates in a backed public

debt equilibrium are necessarily sufficiently high to prevent bubbles:

Lemma 4. Assume that tax is non-negligible, i.e., there exists ε > 0 such that τ(st) ≥
ε for all event st. In any competitive equilibrium with backed public debt, the agents’

wealth is finite: ∑
i∈I

W i(s0) <∞.

Proof. From the government’s budget constraint, we have that for any T ≥ 1,

d(s0) =
∑

st∈ΣT−1

p(st)τ(st)ȳ(st) +
∑
sT∈ST

p(sT )d(sT ).

Since d is non-negative, we deduce that the partial sums∑
st∈ΣT−1

p(st)τ(st)ȳ(st)

19Recall that ȳ denotes the aggregate endowment
∑
i∈I y

i.
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are bounded from above by d(s0). This implies that the series converge and we get

that

PV(τ ȳ|s0) ≤ d(s0). (6.5)

Since tax is non-negligible, we deduce that

εPV(ȳ|s0) ≤ PV(τ ȳ|s0) ≤ d(s0)

and we get the desired result.

The following result is the public debt counterpart of Theorem 3:

Proposition 5. Assume that tax is non-negligible. In any competitive equilibrium

with public debt, the government debt must be exactly equal to the present value of tax

revenues:

d(st) = PV(τ ȳ|st), for all event st.

Proof. The proof is similar to the proof of Theorem 2. Let (q, d, (ci, θi)i∈I) be a

competitive equilibrium with backed public debt. Fix an event st and consider T > t.

Consolidating the government’s budget constraint along the sub-tree Σ(st) up to

period T − 1, we have

d(st) =
∑

sr∈ST−1

p(sr)τ(sr)ȳ(sr) +
∑

sT∈ST (st)

p(sT )d(sT ). (6.6)

Since we proved that PV(τ ȳ|st) is finite, we deduce from the above equation that

M(st) := lim
T→∞

∑
sT∈ST (st)

p(sT )d(sT ) exists in R.

Passing equation (6.6) to the limit, we also get that

d(st) = PV(τ ȳ|st) +M(st), for all st � s0. (6.7)

Observe that the process M is non-negative and satisfies exact roll-over in the sense
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that

M(st) =
∑

st+1�st
q(st+1)M(st+1), for all st. (6.8)

We would like to show that M = 0. Given the exact roll-over property, it is sufficient

to show that M(s0) = 0.

Fix t ≥ 1. Consolidating agent i’s (binding) flow budget constraints up to period

t− 1 produces

∑
sr∈Σt−1

p(sr)ci(sr) +
∑
st∈St

p(st)θi(st) = θi(s0) +
∑

sr∈Σt−1

p(sr)(1 − τ(sr))yi(sr). (6.9)

Since consumption markets clear, we obtain from Lemma 4 that the present value of

optimal consumption is finite for all agents. In addition, due to the Inada’s condition,

the optimal consumption is strictly positive. Lemma A.1 in Martins-da-Rocha and

Vailakis (2017a) then implies that the following market transversality condition holds

true:

lim
t→∞

∑
st∈St

p(st)θi(st) = 0. (6.10)

Passing to the limit in equation (6.9) (as t tends to infinite) gives

PV(ci|s0) = θi(s0) + PV((1− τ)yi|s0). (6.11)

Summing equation (6.11) over i and exploiting market clearing imply that∑
i∈I

M i(s0) = 0

and we get the desired result.

Finally, we establish the following proposition, which is similar to Theorem 2 in

Hellwig and Lorenzoni (2009) and establishes an isomorphism between a competitive

equilibrium with public debt and a competitive equilibrium with self-enforcing debt.
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Proposition 6. Let τ = (τ(st))st�s0 be a non-negligible tax process.The family (q, d, (ci, θi)i∈I)

constitutes a competitive equilibrium with public debt backed by tax τ if, and only if,

(q, (ci, ai, Di)i∈I) constitutes a competitive equilibrium with self-enforcing debt and

endowment loss τ , where

Di = PV(τyi) and ai = θi −Di. (6.12)

Proof. We will make use of the following straightforward property:

(ci, ai) ∈ Bi(Di, ai(s0)|s0)⇐⇒ (ci, θi) ∈ B̂i(θi(s0)). (6.13)

Step 1. Let (q, d, (ci, θi)i∈I) be a competitive equilibrium with public debt backed

by tax τ . Since tax is non-negligible, we can apply Lemma 4 to deduce that agents’

wealth is finite. We can then pose Di := PV(τyi) and ai := θi−Di for each agent i. By

construction debt limits are not-too-tight when τ represents the endowment loss frac-

tion (this follows from a translation invariance property of the budget sets). Moreover,

it follows from (6.13) that (ci, ai) is optimal in Bi(Di, ai(s0)|s0). The consumption

markets obviously clear. We also have from Proposition 5 that

d(st) = PV(τ ȳ|st), for all st.

This implies that the bond markets also clear. We have thus proved that the family

(q, (ci, ai, Di)i∈I) constitutes a competitive equilibrium with self-enforcing debt.

Step 2. Let (q, (ci, ai, Di)i∈I) be a competitive equilibrium with self-enforcing debt

where τ is the endowment loss fraction. We pose

θi := ai +Di, for each agent i ∈ I.

Observe that θi is a non-negative process. We can apply Theorem 1 to deduce that

the agents’ wealth is finite. We can then pose

d(st) := PV(τ ȳ|st), for all st.
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By construction, the government’s budget constraint is satisfied. Moreover, it follows

from Theorem 3 that Di = PV(τyi) for each agent i. We can then deduce that the

markets for government bonds clear. Consumption markets obviously clear. The last

property we have to check is the optimality of (ci, θi) in the budget set B̂i(θi(s0)).

This follows from (6.13).

6.2 Collateral constraints with complete markets

This section shows that our competitive model with costly default is equivalent to

an Arrow–Debreu equilibrium with limited pledgeability as defined by Gottardi and

Kubler (2015).

Consider an economy with the same primitives: endowments and preferences.

Assume now that only the fraction τ i(st) of agent i’s endowment yi(st) can be sold

in advance to finance consumption or savings. The part ei(st) := (1 − τ i(st))yi(st)
constitutes the non-pledgeable endowments. We follow Gottardi and Kubler (2015)

and introduce the following abstract equilibrium notion.

Definition 4. For given initial transfers ai(s0) such that
∑

i∈I a
i(s0) = 0, an Arrow–

Debreu equilibrium with limited pledgeability (p, (ci)i∈I) consists of time-0 prices p =

(p(st))st�s0 and a resource feasible consumption allocation (ci)i∈I such that:20

(a) each agent’s wealth is finite∑
st�s0

p(st)yi(st) = PV(yi|s0) <∞, for all agent i (6.14)

(b) the budget restriction is satisfied at the initial event:

PV(ci|s0) ≤ ai(s0) + PV(yi|s0) (6.15)

20Since p(st) is the date-0 price of consumption at st, we normalize p such that p(s0) = 1.
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(c) the limited pledgeability constraints are satisfied at all st � s0:

PV(ci|st) ≥ PV(ei|st). (6.16)

The definition is the same as that of an Arrow–Debreu competitive equilibrium,

where agents are able to trade at the initial date t = 0 in a complete set of contingent

commodity markets, except for the additional constraints (6.16). These constraints

express precisely the condition that ei(st) = (1 − τ i(st))yi(st) is unalienable. This

component of the endowment can only be used to finance consumption in the event st

in which it is received or in any successor event.

Gottardi and Kubler (2015) proved that the above equilibrium notion captures

the allocations attained as competitive equilibria in models where agents trade se-

quentially in financial markets and short positions must be backed by collateral as in

Geanakoplos and Zame (2002) and Kubler and Schmedders (2003). We show below

that it also captures the allocation attained in an environment with self-enforcing

debt and costly default.

Theorem 4. The family (p, (ci)i∈I) is an Arrow–Debreu equilibrium with limited

pleadgeability, if and only if, (q, (ci, ai, Di)i∈I) constitutes a competitive equilibrium

with self-enforcing debt such that each agent’s wealth is finite and where bond hold-

ings and debt limits are defined by

ai(st) := PV(ci − yi|st) and Di(st) := PV(yi − ei|st) = PV(τ iyi|st),

for all event st � s0

Proof. We split the proof in two parts.

Step 1. Let (p, (ci)i∈I) be an Arrow–Debreu equilibrium with limited pleadge-

ability. By definition, the wealth W i(s0) = PV(yi|s0) is finite. Since consumption

markets clear, we deduce that the present value PV(ci|s0) of each agent i’s consump-
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tion is finite. We can then define for any event st

θi(st) := PV(ci − ei|st).

The limited pleadgeability constraint (6.16) implies that θi(st) ≥ 0 for all event st.

Moreover, by construction, we have

ci(st) +
∑

st+1�st
q(st+1)θi(st+1) = (1− τ i(st))yi(st) + θi(st)

where the bond prices are defined by q(st+1) := p(st+1)/p(st) for any st+1 � st. We

have thus proved that (ci, θi) ∈ B̂i(θi(s0)). Observe moreover that the Arrow–Debreu

budget constraint (6.15) must be satisfied with equality. This implies that

θi(s0) = PV(ci − ei|st) = ai(s0) + PV(yi − ei|s0) = ai(s0) + PV(λiyi|s0). (6.17)

Denote by d the process defined by

d(st) :=
∑
i∈I

PV((1− λi)yi|st)

which can be interpreted as the government debt when each agent i’s labor tax is λi.

Observe that by construction, the government’s budget constraint is satisfied. Since

consumption markets clear, we have that∑
i∈I

θi(st) =
∑
i∈I

PV(yi − ei|st) = d(st)

and the government debt markets clear. We claim that (ci, θi) is optimal in B̂i(θi(s0)).

Indeed, let (c̃i, θ̃i) be an arbitrary choice in B̂i(θi(s0)).
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Appendices

A Omitted Proofs

A.1 Proof of Lemma 2

Let D be a process of not-too-tight bounds. We first show that there exists a

non-negative process D satisfying

D(st) = τ(st)y(st) +
∑

st+1�st
q(st+1) min{D(st+1), D(st+1)}, for all st ∈ Σ. (A.1)

Indeed, let Φ be the mapping B ∈ RΣ 7−→ ΦB ∈ RΣ defined by

(ΦB)(st) := τ(st)y(st) +
∑

st+1�st
q(st+1) min{D(st+1), B(st+1)}, for all st ∈ Σ.

Denote by [0, D̄] the set of all processes B ∈ RΣ satisfying 0 ≤ B ≤ D̄ where

D̄(st) := τ(st)y(st) +
∑

st+1�st
q(st+1)D(st+1), for all st ∈ Σ.

The mapping Φ is continuous (for the product topology) and we have Φ[0, D̄] ⊆ [0, D̄].

Since [0, D̄] is convex and compact (for the product topology), it follows that Φ admits

a fixed point D in [0, D̄].

Claim 1. The process D is tighter than the process D, i.e., D ≤ D.

Proof of Claim 1. Fix a node st. It is sufficient to show that V (D,−D(st)|st) ≥
Vd(0, 0|st).21 Denote by (c̃, ã) the optimal consumption and bond holdings associated

to the default option at st, i.e., (c̃, ã) ∈ d(0, 0|st).22 We let D̂ be the process defined

21Recall that Vd(0, 0|st) = V (D,−D(st)|st) and V (D, ·|st) is strictly increasing.
22Equivalently, (c̃, ã) satisfies U(c̃|st) := Vd(0, 0|st) and belongs to Bd(0, 0|st).
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by D̂(st) := min{D(st), D(st)} for all st. Observe that

y(st)−D(st) = (1− τ(st))y(st)−
∑

st+1�st
q(st+1)D̂(st+1)

= c̃(st) +
∑

st+1�st
q(st+1)[ã(st+1)− D̂(st+1)]

= c̃(st) +
∑

st+1�st
q(st+1)a(st+1)

where a(st+1) := ã(st+1) − D̂(st+1). Since D̂ ≤ D we have a(st+1) ≥ −D(st+1). At

any successor event st+1 � st, we have

y(st+1) + a(st+1) = y(st+1) + ã(st+1)− D̂(st+1)

≥ y(st+1) + ã(st+1)−D(st+1)

≥ (1− τ(st+1))y(st+1) + ã(st+1)−
∑

st+2�st+1

q(st+2)D̂(st+2)

≥ c̃(st+2) +
∑

st+2�st+1

q(st+2)[ã(st+2)− D̂(st+2)]

≥ c̃(st+2) +
∑

st+2�st+1

q(st+2)a(st+2)

where a(st+2) := ã(st+2) − D̂(st+2).23 Observe that a(st+2) ≥ −D(st+2) (since D̂ ≤
D).

Defining a(sτ ) := ã(sτ )− D̂(sτ ) for any successor sτ � st and iterating the above

argument, we can show that (c̃, a) belongs to the budget set B(D,−D(st)|st). It

follows that

V (D,−D(st)|st) ≥ U(c̃|st) = Vd(0, 0|st)

implying the desired result: D(st) ≤ D(st).

23To get the second weak inequality we make use of equation (A.1).
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It follows from Claim 1 that D satisfies

D(st) = τ(st)y(st) +
∑

st+1�st
q(st+1)D(st+1), for all st ∈ Σ. (A.2)

Applying equation (A.2) recursively we get

p(st)D(st) = p(st)τ(st)y(st) +
∑

st+1∈St+1(st)

p(st+1)τ(st+1)y(st+1) + . . .

. . .+
∑

sT∈ST (st)

p(sT )τ(sT )y(sT ) +
∑

sT+1∈ST+1(st)

p(sT+1)D(sT+1)

for any T > t. Since D is non-negative, it follows that

p(st)D(st) ≥
T−t∑
r=0

∑
st+r∈St+r(st)

p(st+r)τ(st+r)y(st+r).

Passing to the limit when T goes to infinite we get that PV(τy|st) is finite for any

event st (in particular for s0). Recalling that D ≥ D, we also get that D(st) ≥
PV(τy|st). �

B Examples

Following Hellwig and Lorenzoni (2009) we consider a model with two agents who

wish to smooth their endowment risks but cannot commit to their promises. The

endowment yi of each agent i ∈ I := {a, b} is stochastic. Uncertainty is captured

by a Markov process with state space Z = {za, zb}. The state zi corresponds to the

situation where agent i’s endowment is ȳ ∈ (1/2, 1) and agent j’s endowment, with j 6=
i, is y := 1− ȳ < ȳ. The transition probabilities are symmetric where α ∈ (0, 1) is the

probability of switching states, i.e., Prob(zi|zj) = α for i 6= j. The Bernoulli function

u : [0,∞)→ R is strictly concave, strictly increasing, continuously differentiable and

bounded; and the discount factor β belongs to (0, 1). The parameters (u, β, α, ȳ) are
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chosen such that there exists c̄ > 0 satisfying

c̄ < ȳ and 1− β(1− α) = βα
u′(1− c̄)
u′(c̄)

. (B.1)

The corresponding event tree Σ can be defined as follows. The initial event is

s0 := za and a date-t event is a history of state realizations st = (s0, s1, . . . , st) with

sr ∈ Z for each 1 ≤ r ≤ t. The transition probabilities are defined by π(st+1|st) = α

if st+1 6= st and π(st+1|st) = 1 − α if st+1 = st. Agent i’s endowment process yi

is defined by yi(st+1) := ȳ if st+1 = zi and yi(st+1) := y if st+1 6= zi. Since the

initial state is za, agent a begins with the high endowment ȳ while agent b’s initial

endowment is y.

In the absence of output costs, Hellwig and Lorenzoni (2009) show that the

above economy has a competitive equilibrium with positive levels of debt. The state-

contingent bond prices q are as follows

q(st+1) :=

 qc := βα
u′(1− c̄)
u′(c̄)

if st+1 6= st

qnc := β(1− α) if st+1 = st.

Agent i’s consumption process is defined by ci(st+1) := c̄ if st+1 = zi and ci(st+1) :=

1− c̄ if st+1 6= zi. His bond holdings are ai(st+1) := −ω if st+1 = zi and ai(st+1) := ω

if st+1 6= zi, where ω is defined by the equation (1 − qnc + qc)ω = ȳ − c̄. The initial

bond holding allocation (ai(s0))i∈I is defined by aa(s0) := −ω and ab(s0) := ω.

The not-too-tight debt limits (Di
0)i∈I are given by Di

0(st) := ω. Observe that the

state-contingent bond prices are such that qc + qnc = 1, that is, the non-contingent

interest rate is zero. In particular, the wealth of each agent is infinite. Finally, observe

that Di
0 allows for exact roll-over in the sense that Di

0(st) =
∑

st+1�st q(s
t+1)Di

0(st+1).

This is sufficient to get that the process of debt limits Di
0 is not-too-tight.
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B.1 Non-negligible Output Drop

We propose to modify the default punishment in the above example assuming

that, in addition to credit exclusion, a fraction λ of income is lost upon default. When

the output contraction parameter is small enough, we show that the economy has a

symmetric Markov equilibrium where the consumption allocations c̄λ and cλ := 1− c̄λ
are defined as follows.24

Lemma 5. There exists λ̄ > 0 small enough such that for every λ ∈ (0, λ̄), there

exists c̄λ ∈ (1/2, c̄) satisfying

[1− qnc + qc(c̄λ)]λw(c̄λ) = ȳ − c̄λ (B.2)

where for any x ∈ (1/2, c̄)

qc(x) := βα
u′(1− x)

u′(x)
and w(x) :=

(1− qnc)ȳ + qc(x)y

(1− qnc)2 − (qc(x))2 .

Moreover, we have

lim
λ→0

c̄λ = c̄, (B.3)

where c̄ is equilibrium consumption contingent to high income in the economy with

credit exclusion and no output costs, i.e., c̄ solves Equation (B.1).

Fix a λ ∈ (0, λ̄) and denote by Eλ the economy where agents’ initial asset holdings

are defined by aaλ(s
0) := −λw(c̄λ) and abλ(s

0) := λw(c̄λ). All the other primitives

remain the same as in the economy E .25 We now describe a symmetric Markov

equilibrium of the economy Eλ.
Let qλ be the price process defined by

24See Martins-da-Rocha and Vailakis (2017b) for the detailed proof of this claim.
25This choice of initial holdings simplifies both the existence of a symmetric Markov equilibrium

and the asymptotic analysis. In particular, we show below that aiλ(s0) −→ ai(s0) when λ→ 0.
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qλ(s
t+1) :=

qc(c̄λ) if st+1 6= st

qnc if st+1 = st.
(B.4)

We claim that each agent has a finite wealth. Indeed, since endowments are uniformly

bounded from above, it is sufficient to show that qc(c̄λ)+qnc < 1. This is true because

the map x 7→ qc(x) is increasing, c̄λ < c̄ and qc(c̄) + qnc = 1 (recall that qc(c̄) = qc).

Observe that computing the present value of future endowments yi at any event st

using the prices qλ gives

PV(qλ, y
i|st) =


w(c̄λ) if st = zi

w(c̄λ)−
ȳ − y

1− qnc + qc(c̄λ)
if st 6= zi.

Consider the following consumption profiles and asset holdings.

ciλ(s
t+1) :=

c̄λ if st+1 = zi

1− c̄ if st+1 6= zi
and aiλ(s

t+1) :=

−λw(c̄λ) if st+1 = zi

λw(c̄λ) if st+1 6= zi
(B.5)

The following result is proven Martins-da-Rocha and Vailakis (2017b).

Proposition 7. For every λ > 0 small enough, the collection (qλ, (c
i
λ, a

i
λ, D

i
λ)i∈I)

of state contingent prices, consumption profiles, asset holdings and not-too-tight debt

limits defined by

Di
λ(s

t) := λPV(qλ; y
i|st) = PV(qλ;λy

i|st), for all st ∈ Σ (B.6)

is a competitive equilibrium of the economy Eλ.
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B.2 Dropping Assumption 1

Our aim is to show that there exists a competitive equilibrium for which the

conclusion of Theorem 2 is not valid, if assumption 1 does not hold.

We consider below an economy with stochastic endowments that has a stationary

Markovian equilibrium with zero risk-less rates.

Example 1. We modify the example in Hellwig and Lorenzoni (2009) with two

agents (r1 and r2) by adding a third agent (agent p). Agents r1 and r2 do not suffer

endowment loss upon default (τr1 = τr2 = 0) while agent p can fully commit to her

financial contracts (τ p = 1). The primitives (β, u(·), π) are chosen such that there

exists a pair (c, c) satisfying

0 < c < c, c+ c = 1 and 1− β(1− π) = βπ
u′(c)

u′(c)
.

We let (qc, qnc) be defined by

qc := βπ
u′(c)

u′(c)
and qnc := β(1− π). (B.7)

Observe that qc + qnc = 1. We fix some arbitrary number δ > 0 such that qcδ < c

and let (y, y) be the pair defined by

y := c− qcδ and y := c+ qcδ.

Observe that

0 < y < c < c < y and y + y = 1.

In each period, one of the agents r1 and r2 receives the high endowment y with

the other receiving the low endowment y. Those agents switch endowment with

probability π from one period to the next. Formally, uncertainty is captured by the

Markov process st with state space {z1, z2} and symmetric transition probabilities

π := Prob(st+1 = z1|st = z2) = Prob(st+1 = z2|st = z1).
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The event st corresponds to the sequence (s0, s1, . . . , st) and the endowments yrk(st),

for k ∈ {1, 2}, only depend on the current realization of st, with

yrk(st) :=

y, if st = zk

y, otherwise.

Agent’s p endowment is defined by yp(s0) := y and for each event st � s0,

yp(st) :=

yp(st−1), if st = st−1

γyp(st−1), otherwise,

where γ ∈ (0, 1) is chosen such that

u′(γyp(st))

u′(yp(st))
=
u′(c)

u′(c)
, for all st. (B.8)

Remark 4. Fix α ∈ (0, 1). If we let u be such that u(c) := c1−α/(1−α) in the interval

[0, y] and extend this function on [y,∞) such that the assumptions on u are satisfied,

then the equality (B.8) is true for γ = c/c.

To focus on a stationary equilibrium, we assume that the economy begins in

state s0 = s0 = z1 (agent r1 has the highest endowment) and the initial asset positions

are

ap(s0) := −δ, ar1(s0) := 0 and ar2(s0) := δ.

Observe that this economy does not satisfy Assumption 1. Although agent p can

commit to honour her financial contacts, her endowment is negligible with respect

to the aggregate endowment of the economy. Indeed, for any infinite path (st)t≥0

displaying infinitely many switches, we have

lim
t→∞

yp(st) = 0

while the aggregate endowment of agents r1 and r2 is always equal to 1.
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Proposition 8. The economy of Example 1 admits a competitive equilibrium with

self-enforcing debt in which agent p’s debt limits are not naturally bounded. Specifi-

cally, we have that Dp(st) = W p(st) + δ at any event st.

Proof. We first describe the equilibrium prices, debt limits and allocations.

Let the price process (q(st))st�s0 be as follows:

q(st) :=

qc, if st 6= st−1

qnc, otherwise.

Since by assumption qc + qnc = 1, the risk-less interest rate is zero. Observe that∑
st+1�st

q(st+1)yp(st+1) ≤ (qcγ + qnc)yp(st).

Since γ ∈ (0, 1) and qc + qnc = 1, this implies that agent p’s wealth W p(st) is

finite at any contingency st. Indeed, if we let χ := (qcγ + qnc), we can show that

W p(st) ≤ yp(st)
∑

t≥0 χ
t = yp(st)/(1− χ).

Consider the following debt limits:

Dr1(st) = Dr2(st) := 0 and Dp(st) := W p(st) + δ.

The debt limits of agents r1 and r2 are not-too-tight by definition. The fact that

Dp is not-too-tight follows from a standard translation invariance of the flow budget

constraints.

Let (cp, ap) be defined as follows: cp(st) := yp(st) and ap(st) := −δ for all event st.

At the initial period, the agent p repays the inherited debt δ by issuing the non-

contingent debt δ. At the subsequent periods, instead of repaying, she rolls over this

debt at infinite.
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We also let (crk , ark) be defined as follows:

crk(st) :=

c, if st = zk

c, otherwise
and ark(st+1) :=

δ, if st+1 6= zk

0, otherwise.

Agents r1 and r2 save to transfer resources against the low income shock. They do

not issue debt since they are credit-constrained.

We next show that equilibrium allocations are indeed optimal.

Observe that (cp, ap) is optimal since it is budget feasible (with equality) and

satisfies the Euler equations together with the individual transversality condition:

lim
t→∞

∑
st∈St

βtπ(st)u′(cp(st))[ap(st) +Dp(st)] = u′(cp(s0)) lim
t→∞

∑
st∈St

p(st)W (st) = 0.

The plan (crk , ark) is also optimal since it is budget feasible (with equality), it

satisfies the Euler equations and the individual transversality condition.26

Finally, all markets clear by construction.
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