Optimal Income Taxation: Mirrlees Meets Ramsey

Jonathan Heathcote FRB Minneapolis and CEPR

Hitoshi Tsujiyama Goethe University Frankfurt

CIGS Conference, May 30-31, 2016

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

How should we tax income?

- What structure of income taxation offers best trade-off between benefits of public insurance and costs of distortionary taxes?
- Proposals for a flat tax system with universal transfers
 - Friedman (1962)
 - Mirrlees (1971)
- Others have argued for U-shaped marginal tax schedule
 - Saez (2001)

This Paper

We compare 3 tax and transfer systems:

- 1. Affine tax system: $T(y) = \tau_0 + \tau_1 y$
 - constant marginal rates with lump-sum transfers
- 2. HSV tax system: $T(y) = y \lambda y^{1-\tau}$
 - function introduced by Feldstein (1969), Persson (1983), and Benabou (2000)

(日) (日) (日) (日) (日) (日) (日)

- increasing marginal rates without transfers
- τ indexes progressivity: $1 \tau = \frac{1 T'(y)}{1 T(y)/y}$
- 3. Optimal tax system
 - fully non-linear

Main Findings

- Marginal tax rates should be increasing in income, NOT flat or U-shaped
- Best tax and transfer system in the HSV class typically better than the best affine tax system
 - More valuable to have marginal tax rates increase with income than to have lump-sum transfers
- Welfare gains from tax reform sensitive to planner's taste for redistribution

(ロ) (同) (三) (三) (三) (三) (○) (○)

May be tiny

Mirrlees Approach to Tax Design: Mirrlees (1971), Diamond (1988), Saez (2001)

- Agents differ wrt unobservable log productivity α
- Planner only observes earnings $x = \exp(\alpha) \times h$
- Think of planner choosing (c, x) for each α type
- Include incentive constraints, s.t. each type prefers the earnings level intended for their type
- Allocations are constrained efficient
- Trace out tax decentralization $T(x(\alpha)) = x(\alpha) c(\alpha)$

Novel Elements of Our Analysis

1. We explore a range of Social Welfare Functions

- Utilitarian SWF as a benchmark
 ⇒ Strong desire for redistribution
- Alternative SWF that rationalizes amount of redistribution embedded in observed tax system

2. Our model has a distinct role for private insurance

 Standard decentralization of efficient allocations delivers all insurance through tax system ⇒ Very progressive taxes

(ロ) (同) (三) (三) (三) (三) (○) (○)

Environment 1

- Standard static Mirrlees plus partial private insurance (quantitatively important)
- Heterogeneous individual labor productivity with two stochastic components

 $\log w = \alpha + \varepsilon$

- ε is privately-insurable, α is not
 - Agents belong to large families
 - α common across all members of a family \Rightarrow cannot be pooled within family
 - ε purely idiosyncratic & orthogonal to $\alpha \Rightarrow$ can be pooled within family
- Planner sees neither component of productivity

Environment 2

Common preferences

$$u(c,h) = \log(c) - \frac{h^{1+\sigma}}{1+\sigma}$$

Production linear in aggregate effective hours

$$\int \int \exp(\alpha + \varepsilon) h(\alpha, \varepsilon) dF_{\alpha} dF_{\varepsilon} = \int \int c(\alpha, \varepsilon) dF_{\alpha} dF_{\varepsilon} + G$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Planner's Problems

- Seeks to maximize SWF denoted $W(\alpha)$
- Only sees total family income $y(\alpha) = \int \exp(\alpha + \varepsilon)h(\alpha, \varepsilon)dF_{\varepsilon}$
- First Stage
 - Planner offers menu of contracts $\{c(\tilde{\alpha}), y(\tilde{\alpha})\}$
 - Family heads draw idiosyncratic α and report $\widetilde{\alpha}$
- Second Stage
 - Family members draw idiosyncratic ε
 - Family head tells each member how much to work
 - Total earnings must deliver $y(\tilde{\alpha})$ to the planner
 - Must divide consumption $c(\widetilde{\alpha})$ between family members

(ロ) (同) (三) (三) (三) (三) (○) (○)

Nature of the Solution

- Planner cannot condition individual allocations on *ε*, given free within-family transfers
 - equally cheap for any family member to deliver income to the planner, and equally valuable to receive consumption

(ロ) (同) (三) (三) (三) (三) (○) (○)

- Thus, planner cannot take over private insurance
 - \Rightarrow Distinct roles for public and private insurance
- Note: Extent of private risk-sharing is exogenous with respect the tax system

Planner's Problem: Second Best

 $\max_{c(\alpha), y(\alpha)} \int W(\alpha) U(\alpha, \alpha) dF_{\alpha}$ s.t. $\int y(\alpha) dF_{\alpha} \ge \int c(\alpha) dF_{\alpha} + G$ $U(\alpha, \alpha) \ge U(\alpha, \widetilde{\alpha}) \quad \forall \alpha, \forall \widetilde{\alpha}$

where $U(\alpha, \widetilde{\alpha}) \equiv$

$$\begin{cases} \max_{\{c(\alpha,\tilde{\alpha},\varepsilon),h(\alpha,\tilde{\alpha},\varepsilon)\}} \int \left\{ \log(c(\alpha,\tilde{\alpha},\varepsilon)) - \frac{h(\alpha,\tilde{\alpha},\varepsilon)^{1+\sigma}}{1+\sigma} \right\} dF_{\varepsilon} \\ \text{s.t.} \quad \int c(\alpha,\tilde{\alpha},\varepsilon) dF_{\varepsilon} = c(\tilde{\alpha}) \\ \int \exp(\alpha+\varepsilon)h(\alpha,\tilde{\alpha},\varepsilon) dF_{\varepsilon} = y(\tilde{\alpha}) \\ U(\alpha,\tilde{\alpha}) = \log(c(\tilde{\alpha})) - \frac{\Omega}{1+\sigma} \left(\frac{y(\tilde{\alpha})}{\exp(\alpha)}\right)^{1+\sigma} \\ \text{where } \Omega = \left(\int \exp(\varepsilon)^{\frac{1+\sigma}{\sigma}} dF_{\varepsilon}(\varepsilon) \right)^{-\sigma} \end{cases}$$

Planner's Problem: Ramsey

$$\max_{\tau} \quad \int W(\alpha) \left\{ \int u(c(\alpha,\varepsilon), h(\alpha,\varepsilon)) dF_{\varepsilon} \right\} dF_{\alpha}$$
s.t.
$$\int \int c(\alpha,\varepsilon) dF_{\alpha} dF_{\varepsilon} + G = \int \int \exp(\alpha+\varepsilon) h(\alpha,\varepsilon) dF_{\alpha} dF_{\varepsilon}$$

where $c(\alpha, \varepsilon)$ and $h(\alpha, \varepsilon)$ are the solutions to

$$\int \max_{\{c(\alpha,\varepsilon),h(\alpha,\varepsilon)\}} \int \left\{ \log c(\alpha,\varepsilon) - \frac{h(\alpha,\varepsilon)^{1+\sigma}}{1+\sigma} \right\} dF_{\varepsilon}$$

s.t.
$$\int c(\alpha,\varepsilon) dF_{\varepsilon} = y(\alpha) - T(y(\alpha);\tau)$$
$$y(\alpha) = \int \exp(\alpha + \varepsilon) h(\alpha,\varepsilon) dF_{\varepsilon}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Social Preferences

- Assume SWF takes the form $W(\alpha; \theta) = \exp(-\theta\alpha)$
 - θ controls taste for redistribution
 - $W(\alpha; \theta)$ function could be micro-founded as a probabilistic voting model

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Nests standard SWFs used in the literature:
 - $\theta = 0$: Utilitarian [our benchmark]
 - $\theta = -1$: Laissez-Faire Planner
 - $\theta \to \infty$: Rawlsian

Empirically Motivated SWF

- Progressivity built into current tax system informative about politico-economic demand for redistribution
- Assume planner (political system) choosing tax system in HSV class: $T(y) = y \lambda y^{1-\tau}$
- Assume planner has SWF in class $W(\alpha; \theta) = \exp(-\theta\alpha)$
- What value for θ gives observed τ as solution to Ramsey problem?
 - Let $\tau^*(\theta)$ denote welfare-maximizing choice for τ given θ
 - Empirically Motivated SWF $W(\alpha; \theta^*)$ s.t. $\tau^*(\theta^*) = \tau^{US}$
 - related to inverse optimum problem
- Ramsey planner with $\theta = \theta^*$ choosing a tax and transfer scheme in the HSV class would choose exactly τ^{US}

Baseline HSV Tax System: $T(y; \lambda, \tau) = y - \lambda y^{1-\tau}$

- Estimated on PSID data for 2000-2006
- Households with head / spouse hours ≥ 260 per year
- Estimated value for $\tau = 0.161, R^2 = 0.96$

Calibration: Wage Distribution

- Heavy Pareto-like right tail of labor earnings distribution (Saez, 2001)
- Assume Pareto tail reflects uninsurable wage dispersion
- F_{α} : Exponentially Modified Gaussian $EMG(\mu_{\alpha}, \sigma_{\alpha}^2, \lambda_{\alpha})$

•
$$F_{\varepsilon}$$
: Normal $N(\frac{-\sigma_{\varepsilon}^2}{2}, \sigma_{\varepsilon}^2)$

- $\log(w) = \alpha + \varepsilon$ is itself EMG $\Rightarrow w$ is Pareto log-normal
- log(wh) is also EMG, given our utility function, private insurance model, and HSV tax system
- Normal variance coefficient in the EMG distribution for log earnings: $\sigma_y^2 = \left(\frac{1+\sigma}{\sigma+\tau}\right)^2 \sigma_{\varepsilon}^2 + \sigma_{\alpha}^2$.

Distribution for Labor Income

Calibration

- Frisch elasticity = $0.5 \Rightarrow \sigma = 2$
- Progressivity parameter $\tau = 0.161$ (HSV 2014)
- Govt spending *G* s.t. *G*/*Y* = 0.188 (US, 2005)
- Variance of normal component of SCF earnings + external evidence on importance of insurable shocks $\Rightarrow \sigma_{\varepsilon}^2 = \sigma_{\alpha}^2 = 0.1407$
 - Variance of insurable shocks consistent with HSV 2014
 - Total variance of log wages (0.488) and variance of log consumption (0.246) consistent with empirical counter parts

Bottom of Wage Distribution

- Difficult to measure distribution of offered wages at the bottom, given selection into participation
- Low and Pistaferri (2015) estimate distribution of latent offered wages within a structural model in which workers face disability risk and choose participation

Percentile Ratios	Model	LP
P5/P1	1.48	1.48
P10/P5	1.24	1.20
P25/P10	1.44	1.40

(日) (日) (日) (日) (日) (日) (日)

Numerical Implementation

- Maintain continuous distribution for ε
- Assume a discrete distribution for α
- Baseline: 10,000 evenly-spaced grid points
- α_{\min} : \$2 per hour (5% of the average = \$41.56)
- α_{max} : \$3,075 per hour (\$6.17m assuming 2,000 hours = 99.99th percentile of SCF earnings distn.)
- Set μ_{α} and σ_{α}^2 to match $E[e^{\alpha}] = 1$ and target for $var(\alpha)$ given $\lambda_{\alpha} = 2.2$

Wage Distribution

Quantitative Analysis

- U.S. tax system approximated by HSV with $\tau = 0.161$
- Focus on three optimal systems:
 - 1. HSV tax function: $T(y) = y \lambda y^{1-\tau}$
 - 2. Affine tax function: $T(y) = \tau_0 + \tau_1 y$
 - 3. Mirrless tax function (second best allocation)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Quantitative Analysis: Benchmark

Tax System	Tax Parameters			Outco	mes	
			welfare	Y	T'(y)	TR/Y
HSV ^{US}	$\lambda: 0.839$	au: 0.161	_	_	0.319	0.018
HSV	$\lambda: 0.817$	$\tau: 0.330$	2.08	-7.22	0.466	0.063
Affine	$\tau_0:-0.259$	$\tau_1: 0.492$	1.77	-8.00	0.492	0.279
Mirrlees			2.48	-7.99	0.491	0.213

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

DQC

ъ

Quantitative Analysis: Benchmark

Optimal HSV better than optimal affine

 \Rightarrow Increasing marginal rates more important than lump-sum transfers

 Moving to fully optimal system generates substantial gains (2.5%)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• The optimal marginal tax rate is around 50%

Quantitative Analysis: Sensitivity

What drives the results?

- 1. Eliminate insurable shocks: $\tilde{v}_{\alpha} = v_{\alpha} + v_{\varepsilon}$ and $\tilde{v}_{\varepsilon} = 0$
- 2. Utilitarian SWF $\theta = 0$
 - \Rightarrow Various SWFs including Empirically motivated SWF
- 3. Increase desire to raise revenue
- 4. Wage distribution has thin Log-Normal right tail: $\alpha \sim N$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Sensitivity: No Insurable Shocks

Tax System	Tax Parameters		Outcon	nes	
		welfare	Y	T'(y)	TR/Y
HSV ^{US}	$\lambda: 0.842 \tau: 0.161$	_	_	0.319	0.019
HSV	$\lambda: 0.804 \tau: 0.383$	4.17	-9.72	0.511	0.084
Affine	$ au_0:-0.283$ $ au_1:0.545$	5.34	-10.45	0.545	0.326
Mirrlees		5.74	-10.64	0.550	0.284

- No insurable shocks ⇒ larger role for public redistribution
- Want higher tax rates and larger transfers
- Optimal HSV worse than optimal affine

⇒ Distinguishing insurable shocks from uninsurable shocks is important

Social Welfare

- Consider alternative SWFs:
 - $\theta = -1$: Laissez-Faire Planner
 - $\theta \to \infty$: Rawlsian
- Empirically motivated SWF: $W(\alpha; \boldsymbol{\theta}^*)$ s.t. $\tau^*(\boldsymbol{\theta}^*) = \tau^{^{US}}$
 - Closed form expression for θ^* !

$$\sigma_{\alpha}^2 \theta^* - \frac{1}{\lambda_{\alpha} + \theta^*} = -\frac{1}{\lambda_{\alpha} - 1 + \tau} - \sigma_{\alpha}^2 (1 - \tau) + \frac{1}{1 + \sigma} \left\{ \frac{1}{(1 - g)(1 - \tau)} - 1 \right\}$$

• Simple in Normal case $(\lambda_{lpha}
ightarrow \infty)$

$$\theta^* = -(1-\tau) + \frac{1}{\sigma_{\alpha}^2} \frac{1}{1+\sigma} \left\{ \frac{1}{(1-g)(1-\tau)} - 1 \right\}$$

- θ^* increasing in τ and g
- θ^* declining in σ and σ^2_{α}
- θ^* increasing in λ_{α} (holding fixed $var(\alpha) = \sigma_{\alpha}^2 + \frac{1}{\lambda^2}$)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Social Welfare Functions

・ロト・日本・日本・日本・日本・日本

Sensitivity: Alternative SWFs

SWF		Mirrlees Allocations			s Welfare Change			
	θ	T'(y)	TR/Y	ΔY	Mirrlees	Affine	HSV	
Laissez-Faire	-1	0.083	-0.082	9.72	3.15	3.14	2.98	
Emp. Motivated	-0.57	0.314	0.051	0.16	0.05	-0.48	_	
Utilitarian	0	0.491	0.213	-7.99	2.48	1.77	2.08	
Rawlsian	∞	0.711	0.538	-22.55	708.28	649.14	354.90	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Empirically-Motivated SWF

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

HSV vs Affine with Various SWFs

SWF Sensitivity: Summary

- Optimal tax system very sensitive to assumed SWF
- Welfare gains moving from the current tax system to the optimal one can be tiny
- Affine system works well when preference for redistribution is either very strong or very weak:
 - In the first case, want large lump-sum transfers
 - In the second, want lump-sum taxes
- For intermediate tastes for redistribution ($\theta \in [-0.88, 0.16]$), HSV is better than affine

(ロ) (同) (三) (三) (三) (○) (○)

Sensitivity: Need to Raise Revenue

- Saez (2001) found a U-shaped marginal schedule to be optimal
- His intuition: Want to make sure welfare is targeted only to the very poor

(ロ) (同) (三) (三) (三) (○) (○)

- We don't find this. Why?
- Key is degree of revenue requirement: to finance
 - exogenous public expenditure G
 - endogenous universal lump-sum transfers Tr

Intuition: U-shaped Tax Rates with High G

- Tax rates at the top relatively insensitive to the level of G
 - · Already close to the top of the Laffer curve
 - Asymptotic rates indicated by Saez (2001): $\frac{1+\sigma}{\sigma+\lambda_{\infty}} \approx 71\%$
- Tax rates at low income levels increase in G
 - Little room at the top \Rightarrow instead raise marginal rates at low income levels
- U-shaped rather than monotonically declining
 - Dip in the middle to keep labor supply distortions low where the heaviest population mass is located

Alternative Ways to Increase Fiscal Pressure

- Increase optimal lump-sum transfers by
 - Increasing the planner's taste for redistribution $\theta = 1$
 - Shutting off private insurance
- Reduce the government's ability to satisfy revenue demands by
 - Increasing the labor supply elasticity $\sigma = 0.5$

(ロ) (同) (三) (三) (三) (○) (○)

Alternative Ways to Increase Fiscal Pressure

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ● ● ●

Why does Saez (2001) find U-shaped rates?

- Various assumptions that imply high fiscal pressure:
 - Higher value for government purchases (25% of GDP)
 - Rule out private insurance
 - Use utility functions that limit the government's ability to extract revenue from the rich
- U-shaped profile for marginal rates is not a general feature of an optimal tax system

(日) (日) (日) (日) (日) (日) (日)

Sensitivity: Log-Normal Wage

Tax System	Tax Paramete		Outcor	mes		
			welfare	Y	T'(y)	TR/Y
HSV ^{US}	$\lambda: 0.828$ $\tau:$	0.161	_	_	0.319	0.017
HSV	$\lambda: 0.813$ $\tau:$	0.285	0.88	-5.20	0.427	0.048
Affine	$ au_0:-0.230 \ au_1:$	0.451	2.19	-6.01	0.451	0.242
Mirrlees			2.28	-5.74	0.443	0.254

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Log-normal distribution \Rightarrow thin right tail
- Optimal HSV worse than optimal affine
- · Optimal affine nearly efficient

Why Distribution Shape Matters

 Want high top marginal rates when (i) few agents face those marginal rates, but (ii) can capture lots of revenue from higher-income households

Extension: Polynomial Tax Functions

Tax System	Tax Parameters			Outco	mes			
					welfare	Y	T'(y)	TR/Y
HSV ^{US}	λ 0.839	au 0.161			_	_	0.319	0.018
Affine	$ au_0 - 0.259$	$ au_1 \\ 0.492$			1.77	-8.00	0.492	0.279
Cubic	$ au_0 \\ -0.212$	$ au_1 \\ 0.370$	$ au_2 \\ 0.049$	$ au_3 \\ -0.002$	2.40	-8.01	0.491	0.228
Mirrlees					2.48	-7.99	0.491	0.213

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Extension: Type-Contingent Taxes

- Productivity partially reflects observable characteristics (e.g. education, age, gender)
- Some fraction of uninsurable shocks are observable: $\alpha \rightarrow \alpha + \kappa$
- Heathcote, Perri & Violante (2010) estimate variance of cross-sectional wage dispersion attributable to observables, $v_{\kappa} = 0.108$
- Planner should condition taxes on observables: $T(y; \kappa)$
- Consider two-point distribution for κ (college vs high school)

Extension: Type-Contingent Taxes

- Significant welfare gains relative to non-contingent tax
- Conditioning on observables ⇒ marginal tax rates of 42%

System		Outcomes				
		wel.	Y	T'(y)	TR/Y	
HSVUS	$) \cdot 0.834 \tau \cdot 0.161$			0.310	0.015	
110 V	A : 0.834,7 : 0.101	_	_	0.319	0.020	
HSV	$\begin{split} \lambda^L &: 1.069, \tau^L : 0.480 \\ \lambda^H &: 0.595, \tau^H : 0.073 \end{split}$	6.21	-2.80	0.416	$0.147 \\ -0.019$	
	$\tau_0^L:-0.403,\tau_1^L:0.345$				0.420	
Affine	$\tau_0^H:-0.032, \tau_1^H: 0.452$	6.15	-2.53	0.421	0.008	
Mirrloog	U) I	6 5 4	2 53	0.418	0.368	
wiiniees		0.54	-2.33	0.410	0.007	

Conclusions

- Optimal marginal tax schedule increasing in income, and neither flat nor U-shaped
- Welfare gains moving from the current tax system to the optimal one hinge on the choice of SWF, may be tiny
- Ramsey and Mirrlees tax schemes not far apart: can approximately decentralize Mirrlees with a simple tax scheme

(ロ) (同) (三) (三) (三) (○) (○)