Uncertainty aversion & heterogeneous beliefs in linear models

Cosmin Ilut Pavel Krivenko Martin Schneider Duke Stanford Stanford

CIGS Tokyo, May 2016

Ilut, Krivenko, Schneider ()

Beliefs in linear models

CIGS Tokyo, May 2016 1 / 22

Basic idea

- Models with heterogeneous ambiguity averse agents
 - agents use different worst case beliefs to evaluate future plans
 - equilibria look like in models with disagreement
- Multiple priors utility with ambiguity about means
 - first order effects of uncertainty
 - linear approximation works well
- \Rightarrow Use linear models to study effects of uncertainty

Leading example

- Recent history
 - Iow real interest rate + stock market boom
- Candidate story: higher uncertainty about middle class incomes
 - type A agents perceive uncertain labor income = behave as if mean labor income will be low
 - type B agents confident about labor income
 - agents trade trees with safe payoff, safe bonds collateralized by trees
- Equilibrium
 - ▶ type B agents rich: own trees & supply safe bonds to type A agents
 - type A agents poor: perceive tree price uncertainty, hold no trees
 - asset pricing: low riskless rate & high price of trees
- Effects of policy
 - government debt can substitute for safe private debt
 - nominal credit: inflation uncertainty reduces gains from trade

イロト イポト イヨト イヨト

Computation

- System of stochastic difference equations
 - > as typically used to characterize equilibria in macro models
 - but: different expectation operators for each agent
- Solution strategy
 - linearize around steady state
 - jointly determine steady state & dynamics
- Models with heterogeneous beliefs
 - agents may agree to disagree in the long run
- Models with differences in ambiguity aversion
 - similar in many ways to models with differences in risk aversion
 - average effects and response to uncertainty shocks easy to characterize
 - can be accurately solved by linearization

Outline

- Ambiguity aversion & precautionary savings
- Two agent model with heterogenous beliefs
 - computational approach
 - numerical example

3

∃ ► < ∃ ►</p>

- 一司

Aversion to uncertainty

- Two dates
 - date 2 states $\omega \in \Omega$
 - consumption plans $(c, \tilde{c}(\omega))$
- Preferences over consumption plans

$$u\left(c
ight)+eta u\left(\mathit{CE}\left(ilde{c}
ight)
ight)$$

- ▶ for certain plans ($\tilde{c}(\omega) = \bar{c}$), certainty equivalent $\textit{CE}(\tilde{c}) = \bar{c}$
- *u* captures desire to smooth consumption, IES = -cu''(c) / u'(c)
- Certainty equivalent with risk aversion

$$v(CE(\tilde{c})) = E^{Q}[v(\tilde{c})]$$

- subjective belief Q
- v captures risk aversion; CRRA = -cv''(c) / v'(c)
- Certainty equivalent with ambiguity aversion (multiple priors utility)

$$v(CE(\tilde{c})) = \min_{P \in \mathcal{P}} E^{P}[v(\tilde{c})]$$

 \blacktriangleright set of subjective beliefs $\mathcal P$ captures ambiguity

Precautionary savings

• Choose optimal savings s s.t.

$$c+s=w$$
 $ilde{c}=Rs+ ilde{y}$

- Risky labor income $\tilde{y} = \bar{y} + \sigma \tilde{z}$, $E^Q[\tilde{z}] = 0$, $var^Q(\tilde{z}) = 1$
 - assume u = v & interior solution

$$u'(c) = \beta RE^{Q} \left[u'(\tilde{c}) \right]$$

- response of savings to risk at $\sigma = 0$

$$\frac{ds}{d\sigma} = \Delta^{-1} R E^{Q} \left[u''(\tilde{c}) \tilde{z} \right] = \Delta^{-1} R u'''(\bar{c}) + \dots$$

- $\Delta > 0$ from 2nd order condition; response positive if u''' > 0
- Multiple priors with ambiguous labor income $\tilde{y} = \bar{y} + \tilde{z}$, $E\tilde{z} \in [-a, a]$
 - ▶ same FOC, but Q = worst case belief with $E\tilde{z} = -a$
 - response of savings to ambiguity at a = 0

$$\frac{ds}{da} = \Delta^{-1} R E^{Q} \left[-u''(\tilde{c}) \right] = -\Delta^{-1} R u''(\bar{c}) + \dots$$

- response positive if u'' < 0
- ▶ precautionary savings will show up in linearized FOC!< < < > <</p>

Recursive multiple priors utility

- $\Omega = \mathsf{state} \mathsf{ space}$
 - one element $\omega \in \Omega$ realized every period
 - histories $\omega^t \in \Omega^t$
- Preferences over consumption plans $c = (c_t (\omega^t))$
- Utility process solves

$$U_{t}(c;\omega^{t}) = u(c_{t}(\omega^{t})) + \beta \min_{p \in \mathcal{P}_{t}(\omega^{t})} E^{p}[U_{t+1}(c;\omega^{t},\omega_{t+1})]$$

- Primitives
 - felicity u, discount factor β
 - \blacktriangleright one-step-ahead belief sets $\mathcal{P}_t\left(\omega^t
 ight)$; may depend on history
- Consider equilibrium with RMP agents
 - at optimal plan, minimizers $p \in \mathcal{P}_t(\omega^t)$ support choice
 - \Rightarrow always obs equivalent EU model; possibly heterogeneous beliefs
 - if worst case belief easy to find, just study het beliefs model

Outline

- Ambiguity aversion & precautionary savings
- Two agent model with heterogenous beliefs
 - computational approach
 - numerical example

3

∃ ► < ∃ ►</p>

- 一司

Model of ambiguity sharing

• Two types of infinitely lived agents; preferences

$$E_0^j \left[\sum_{t=0}^\infty \beta^t u(c_t)\right]$$

• Beliefs about income (endowment of goods)

- ► type *B* agents always get \bar{y}^B ; all agents know this
- at date t, type A agents believe they get $y_{t+1} = \bar{y}^A \exp(-a_t)$
- in fact, type A agents get $y_{t+1} = \bar{y}^A$; type B agents know this
- a_t = ambiguity perceived by type A agents (stochastic)
- Assets
 - One period noncontingent debt, price q_t
 - Trees: dividend d, price pt; no short sales
 - ► Leverage $\ell_t = -q_t b_t / p_t \theta_t$; cost to borrower $k(\ell_t) q_t b_t$ $k(\ell) = 0$ for $\ell \le 0$; $k(\ell)$, $k'(\ell)$, $k''(\ell) > 0$ for $\ell > 0$
- Date t budget constraint

$$c_{t} + p_{t}\theta_{t} + q_{t}b_{t}(1 + k(\ell_{t})) = y_{t} + (p_{t} + d_{t})\theta_{t-1} + b_{t-1} =: w_{t}$$

Recursive equilibrium

- Market clearing
 - ► goods market: $c_t^A + c_t^B = \bar{y}^A + \bar{y}^B q_t b_t k(\ell_t)$ ► debt market: $b^A + b^B = 0$
- State variables
 - type A income y^A
 - ambiguity a
 - distribution of asset holdings; here just type B debt $b = -b^B = b^A$
- Allocations & prices
 - find $c^i(y^A, a, b)$, $b'(y^A, a, b)$, $q(y^A, a, b)$, $p(y^A, a, b)$
 - agents disagree only about income, know equilibrium map
 - \Rightarrow find functions from Euler equations + budget constraints

イロン 不良 とくほう イヨン 二日

System of stochastic difference equations

- Equilibria s.t. only type B agents hold tree
 - type B agents: Euler equations for both assets
 - type A agents: Euler equation for bonds, tree too expensive
- Bond pricing

$$q_{t} = \beta E_{t}^{A} \left[\left(\frac{c_{t+1}^{A}}{c_{t}^{A}} \right)^{-\gamma} \right] = \beta E_{t}^{B} \left[\left(\frac{c_{t+1}^{B}}{c_{t}^{B}} \right)^{-\gamma} \right] + q_{t} \left(k \left(\ell_{t} \right) + \ell_{t} k' \left(\ell_{t} \right) \right)$$

 \blacktriangleright lender pessimism, borrower leverage cost \Rightarrow lower bond price

• Tree pricing

$$p_{t} = \beta E_{t}^{B} \left[\left(\frac{c_{t+1}^{B}}{c_{t}^{B}} \right)^{-\gamma} (p_{t+1} + d_{t+1}) \right] + \ell_{t}^{2} k' (\ell_{t}) p_{t}$$

collateral benefit increases tree price

• With budget constrs and $\ell = qb/p$: 6 equations in c^A, c^B, q, p, b, ℓ

Computational challenge

- Steady state = solution to system when vol of shocks is zero
 - usually just remove E_t and solve for deterministic steady state
- Expectations in Euler equations without shocks
 - Type B expects all state variables to remain constant
 - Type A expects next period income $\bar{y}^A \exp(-\bar{a})$ and consumption

$$c^{A}\left(ar{y}^{A}\exp\left(-ar{a}
ight)$$
 , $ar{a},ar{b}
ight)$

- behaves as if perpetually surprised by high income
- problem: policy function c^A matters for steady state
- With different expectation operators for each agent
 - agents expect different dynamics of endogenous state variables
 - cannot solve for steady state independently of dynamics

イロト 人間ト イヨト イヨト

Solution strategy

- Guess coefficients of loglinear approximation
 - e.g.type A consumption

$$\hat{c}_{\mathcal{A}} = \log c^{\mathcal{A}} - \log ar{c}^{\mathcal{A}} = arepsilon_{\mathcal{Y}\mathcal{A}}^{c\mathcal{A}} \hat{\mathcal{Y}}^{\mathcal{A}} + arepsilon_{\mathsf{a}}^{c\mathcal{A}} \hat{\mathfrak{a}} + arepsilon_{b}^{c\mathcal{A}} \hat{b}$$

- Compute steady state
 - use guessed coefficients to model expectations, e.g.

$$\boldsymbol{c}^{A}\left(\bar{\boldsymbol{y}}^{A}\exp\left(-\bar{\boldsymbol{a}}\right),\bar{\boldsymbol{a}},\bar{\boldsymbol{b}}\right)\approx\bar{\boldsymbol{c}}^{A}\exp\left(-\varepsilon_{\boldsymbol{y}A}^{cA}\bar{\boldsymbol{a}}\right)$$

- Linearize around candidate steady state
- Iterate until fixed point in coefficients!

Remarks

- \blacktriangleright steady state typically \neq any agent's long run expectation
- can check accuracy via Euler equation errors

Gains from trade: sharing ambiguity vs risk

- Comparison model with risk
 - type B agents as before
 - at date t, type A agents get $y_t = \bar{y}^A (1 + \tilde{z}_t)$, \tilde{z} iid with mean zero
- Risk sharing in equilibrium
 - type B sells safe claim to type A
 - ► type A gives up goods today since CE of future income low
 - A's precautionary savings lowers interest rate
- Ambiguity sharing in equilibrium
 - ► type A gives up goods today since he acts as if future income low

Outline

- Ambiguity aversion & precautionary savings
- Two agent model with heterogenous beliefs
 - computational approach
 - numerical example

3

∃ ► < ∃ ►</p>

Numerical example

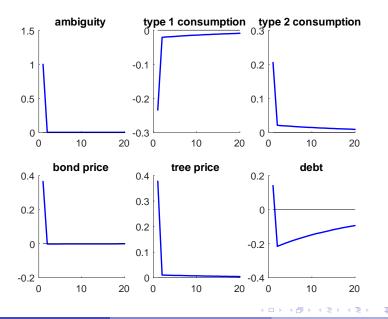
- Baseline parameters
 - output = 1, income & dividends: $\bar{y}^A = \bar{y}^B = .45$, d = .1
 - preferences: $u(c) = \log c$, $\beta = .96$, ambiguity $\bar{a} = 10\%$
 - ▶ $k(\ell) = (.075) \ell^2 \rightarrow \text{steady state leverage cost } k(\ell) qb = .016$
- Steady state

	\bar{c}^{A}	ē [₿]	\bar{q}	p	debt $\bar{q}\bar{b}$	$ar{\ell}=ar{q}ar{b}/ar{p}$
baseline	.454	.530	.997	3.2	1.3	.40
$ar{a}=0 \ \gamma=2$.428	.539	.960 1.012		0 1.9	0 .48

• Ambiguity generates gain from trade, type A "late consumer"

- Iower interest rate, higher tree price
- $\bullet~\mbox{Lower IES}$ $\rightarrow~\mbox{ambiguity matters more}$
 - negative interest rate, $\bar{c}^A < \bar{y}^A$

Impulse response to increase in ambiguity



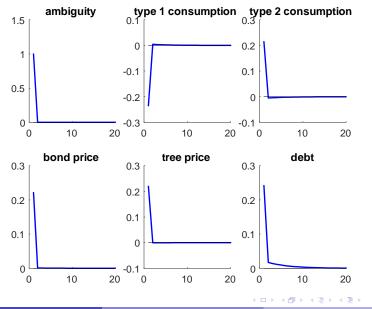
Ilut, Krivenko, Schneider ()

Beliefs in linear model

CIGS Tokyo, May 2016

18 / 22

Impulse response to ambiguity (lo discount factor)



Government debt

- Government
 - issues safe debt b^g & levies lump sum taxes; budget constraint

$$b_{t-1}^g = q_t b_t^g + \tau_t^A + \tau_t^B$$

- bond market clearing $b_t^A + b_t^B = b_t^g$
- parameters: $\bar{b}^{g} = .6$, equal taxes for both types
- Steady state comparison

	\bar{c}^A	ē [₿]	q	p	debt <i>āb</i> (private)	Ī
baseline	.454	.530	.997	3.2	1.3 (1.3)	.40
government	.463	.527	.994	3.1	1.8 (1.2)	.32

- Fiscal policy here alternative safe asset scheme
 - less private debt, higher interest rate, lower collateral values

20 / 22

Nominal credit & uncertain inflation

- Nominal credit
 - payoff of bond = $(1 + \pi)^{-1}$; *q* now nominal bond price
 - actual inflation zero
 - \blacktriangleright endogenous worst cases: borrower believes $\pi=-.01,$ lender believes $\pi=.01$

(worst case beliefs with ambiguous inflation)

• Steady state comparison

	\bar{c}^A	ē [₿]	\bar{q}	p	debt $ar{q}ar{b}$	$ar{\ell}=ar{q}ar{b}/ar{p}$
baseline	.454	.530	.997	3.2	1.3	.40
amb. inflation	.456	.537	.993	2.7	0.9	.32

- Inflation uncertainty lowers gains from trade
 - uncertainty premium lowers price of nominal bonds
 - less debt, lower value of collateral

Conclusion

- Stochastic difference equations with disagreement
 - transition dynamics important for behavior in steady state
 - solve jointly for steady state & coefficients of loglinear approximation
 - paper provides general formulation
- Multiple priors utility with ambiguity about means
 - find worst case beliefs for all agents
 - solve implied model with disagreement
- Example: differences in ambiguity about income
 - precautionary saving by scared poor type A agents
 - trees valuable as collateral for confident rich type B agents
 - Iow interest rate and stock market boom
 - ambiguity shocks may persistently lower type A consumption
 - government debt may substitute for safe private debt
 - inflation uncertainty lowers gains from trade

- 4 同 6 4 日 6 4 日 6