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Parsimonious mechanism for business cycle dynamics

Propose: Endogenous idiosyncratic uncertainty
I firms learn about own profitability prospects

Behaves as if linear RBC model with endogenously determined

1 Countercyclical labor wedge and spreads (from excess returns)

2 Co-movement from demand shocks

3 Amplification, propagation and hump-shaped dynamics
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Parsimonious mechanism for business cycle dynamics

Propose: Endogenous idiosyncratic uncertainty
I firms learn about own profitability prospects

Do not require additional shocks or rigidities such as

1 Wedge shocks (countercyclical labor wedge and spreads)

2 Nominal rigidities (co-movement)

3 Habit, adjustment cost (internal propagation)
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Countercyclical endogenous idiosyncratic uncertainty

Firms face Knightian uncertainty about own profitability

1 Learning through production: lower scale → more uncertainty

2 Uncertainty affects input choice: more uncertainty → lower scale

Feedback arises from any shock that moves activity
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Countercyclical idiosyncratic uncertainty shows up

As countercyclical wedges: labor and asset prices move ’too much’
compared to what econometrician measures

I rationalize ’excess volatility’

In linear decision rules at firm level

In the cross-sectional average through aggregation
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Model: Preferences

Representative household: recursive multiple priors utility

Ut(C ; st) = lnCt − ϕ
H1+η
t

1 + η
+ β min

p∈Pt(st)
Ep[Ut+1(C ; st , st+1)]

Pt(st): one-stead-ahead set of probability distributions

Larger set Pt(st) → less confidence
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Production

Firms: continuum, indexed by l ∈ [0, 1], perfectly competitive

Yl ,t = At{zl ,tKα
l ,t−1H

1−α
l ,t + νl ,t}

Aggregate TFP shock

lnAt = ρA lnAt−1 + εA,t , εA,t ∼ N(0, σ2
A)

Idiosyncratic TFP shock

zl ,t = (1− ρz)z̄ + ρzzl ,t−1 + εz,l ,t , εz,l ,t ∼ N(0, σ2
z )

Idiosyncratic additive shock, νl ,t ∼ N(0, σ2
ν)
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Information

Yl ,t = At{zl ,tKα
l ,t−1H

1−α
l ,t + νl ,t}

zl ,t and νl ,t unobservable to agents → learning

Non-invertibility problem: path of output and input not fully revealing
about the unobservable shocks

Interpretations of additive shock

1 Aggregation of production units with common and idiosyncratic shocks

2 Sale is signal on unobservable persistent demand shock

Details
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Heterogeneous-firm RBC model

Firms: choose {Kl ,t ,Hl ,t , Il ,t} to maximize

E ∗0

∞∑
t=0

Mt
0Dl ,t

I M t
0 : prices of contingent claims, under worst case probabilities

Dl,t = Yl,t −WtHl,t − Il,t

Resource constraint:

Yt = Ct + It + Gt

lnGt = (1− ρg )G + ρg lnGt−1 + εg ,t , εg ,t ∼ N(0, σ2
g )
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Timeline of events within a period

Aggregate shocks
(observable)

Given forecasts and variance of
hidden TFP, choose inputs,
labor market clearing

Stage 1 Stage 2

Idiosyncratic shocks
(unobservable)

Production, update
forecasts and variance of
hidden TFP

Investment,
consumption,
asset purchase

RCE
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Learning and ambiguity about idiosyncratic productivity

Estimate zl ,t from observables: linear + Gaussian → Kalman filter

Observation : Yl ,t/At = Kα
l ,t−1H

1−α
l ,t zl ,t + νl ,t

Transition : zl ,t = (1− ρz)z̄ + ρzzl ,t−1 + εz,l ,t

Low production input Kα
l ,t−1H

1−α
l ,t → high Mean Square Error Σl ,t|t

Not confident in the Kalman filter estimate: set of distributions

Etzl ,t+1 = (1− ρz)z̄ + ρz z̃l ,t|t + µl ,t ; µl ,t ∈ [−al ,t , al ,t ]

Confidence lower when estimation uncertainty is higher

−al ,t = −ηa
√

Σl ,t|t

I Distributions “close” to filter estimate (relative entropy distance)
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Ambiguity and the law of large numbers

Each firm’s expected zl ,t+1 under worst-case probability

E ∗t zl ,t+1 = (1− ρz)z̄ + ρz z̃l ,t|t −al ,t︸ ︷︷ ︸
=−ηa
√

Σl,t|t

I Household acts as if conditional mean of each zl,t+1 is lower

I First-order effect of uncertainty

Cross-sectional average given by a set[
z̄ −

∫
al ,tdl , z̄ +

∫
al ,tdl

]
I Epstein & Schneider (2003): formal treatment of LLN with ambiguity
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Linearized solution

1 Filtering problem is linear → analytic law of motion for Σl ,t|t

I Inputs have first-order effect on the level of posterior variance

2 First-order feedback from uncertainty to decision rules through −al ,t

3 In turn, linear decision rules → easy aggregation

I Cross-sectional mean: sufficient statistic for tracking distributions
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Implication: comovement and countercyclical labor wedge

Standard model
ϕHη

t = λtMPLt

→ H and C move in opposite direction unless TFP or ‘ϕ’ shock

Our model: labor chosen under worst case expectation

ϕHη
t = E ∗t [λtMPLt ]

Low confidence → C low → standard effect is H high
→ choose H as if productivity low → H low

Labor wedge: implicitly define labor tax

ϕHη
t = (1− τt)λtMPLt ⇒ E ∗t [λtMPLt ]

λtMPLt
= 1− τt

Low confidence → econometrician rationalizes ‘surprisingly low’ H by
high labor tax
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Implication: countercyclical ex-post excess return

Euler conditions for capital and risk-free assets

λt = βE ∗t [λt+1R
K
t+1]

λt = βE ∗t [λt+1Rt ]

→ under linearization, E ∗t R
K
t+1 − Rt = 0

Pricing based on worst case 6= econometrician’s DGP

During low confidence times, demand for capital ‘surprisingly low’
→ ex-post excess return RK

t+1 − Rt high

Implication extends to defaultable corporate bonds
→ countercyclical excess bond premia (Gilchrist & Zakrajsek 2012)
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Calibration
Magnitude of feedback loop determined by

1 Variability of inputs

I Inverse Frisch elasticity η = 0

I Capital utilization

2 Size and variability of posterior variance
I Idiosyncratic TFP shock ρz = 0.5, σz = 0.4

F establishment-level data (Bloom et al. 2014, Kehrig 2015)

I SS posterior variance Σ = 0.1
F estimated posterior variance of firm-specific shocks (David et al. 2015)

3 Size of entropy constraint

I Reasonable theoretical upper bound ηa = 2 (Ilut & Schneider 2014)
I Empirical: firm-level capital return forecasts across analysts

F Set ηa = 0.4 to get average dispersion of 39% (vs 43% in Senga 2014)

Parameters
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IRF to aggregate TFP shock
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Figure 1: Impulse response to an aggregate TFP shock. Thick black solid line is our baseline
model with active learning, thin blue dashed line is the model with passive learning, and
thick red dashed line is the frictionless RBC model.
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IRF to government spending shock
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Figure 2: Impulse response to a government spending shock. Thick black solid line is our
baseline model with active learning, thin blue dashed line is the model with passive learning,
and thick red dashed line is the frictionless RBC model.
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Bayesian estimation on US aggregate data

Linearization ⇒ estimation using standard Kalman filter

Quantitative model with additional rigidities (CEE, 2005)
I real: habit formation, investment adjustment costs
I nominal: sticky prices and wages

Shocks: TFP, G, mon. policy and ’financial wedge’ shock

∆k
t ' E ∗t R

k
t+1 − Rt

US Data: Yt ,Ht , It ,Ct , πt ,Rt ,Spreadt (on BAA corporate bond)

Spreadt ≡ Rk
t − Rt−1

=
(
E ∗t−1R

k
t − Rt−1

)
︸ ︷︷ ︸

wedge shock

+
(
Rk
t − E ∗t−1R

k
t

)
︸ ︷︷ ︸

endogenous uncertainty

I estimate both flex and sticky price versions
I stochastic singularity ⇒ iid measurement error
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Results
1 Endogenous uncertainty: parsimonious friction ⇒ reduce other

rigidities

Model ηa Pr(price ∆) Pr(wage ∆) Inv. adj. cost Habit
RE 0 0.24 0.04 0.3 0.62
Baseline 1.3 0.44 0.98 0.06 0.47

2 Endogenous uncertainty model fits data better
I marginal data density is higher (both flex and sticky price versions)
I under RE: observed spread is mostly just measurement error
I but well fitted under model with endogenous uncertainty

3 Variance decomposition: financial shock more important with learning

Model (sticky price) Y H I C π R

RE 0.15 0.23 0.12 0.22 0.88 0.90
Baseline 0.73 0.81 0.76 0.61 0.88 0.84
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Spread: data vs. models
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Endogenous uncertainty: countercyclical spread ⇒ bus.
cycle comovement
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Results
1 Endogenous uncertainty: parsimonious friction ⇒ reduce other
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Policy implication of endogenous uncertainty

Endogenous uncertainty ⇒ Policy matters

Policy experiment:

I modify Taylor rule to include adjustment to credit spread φspread

I lower output growth variation: from stabilizing endogenous uncertainty

Std. of output growth
φspread Baseline Fixed uncertainty

0 0.60 0.60
-0.5 0.59 0.60
-1.0 0.57 0.60
-1.5 0.52 0.63
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Conclusion

Heterogeneous-firm business cycle model where firms face Knightian
uncertainty about their own profitability

Feedback loop between uncertainty and economic activity produces

I Countercyclical labor wedge and ex-post excess return on capital

I Co-movement in response to non-TFP shocks

I Strong internal propagation with amplified and hump-shaped dynamics

Estimation: inference on rigidities and shocks

Policy implications
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Interpreting the additive shock (νl ,t)

1 At the aggregate level, observationally equivalent to model where
firms face unobservable demand shock

I Each unit of good l : provides sum of good specific and idiosyncratic
quality

Ỹl,t =

Yl,t∑
j=1

(zl,t + ν̃l,j,t)

I where units produced Yl,t = Kα
l,t−1H

1−α
l,t

I Noisy signal about persistent quality zl,t : procyclical precision

Ỹl,t/Yl,t = zl,t + νl,t , νl,t ∼ N

(
0,
σ2
ν̃

Yl,t

)
I demand is a function of estimate of quality zl,t

2 Aggregation of production units with common and idio shocks

Return
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Kalman filter

Estimate

z̃l ,t|t = z̃l ,t|t−1 + Gainl ,t(Yl ,t/At − z̃l ,t|t−1Fl ,t)

Kalman gain

Gainl ,t =

[
F 2
l ,tΣl ,t|t−1

F 2
l ,tΣl ,t|t−1 + σ2

ν,t

]
F−1
l ,t

Mean square error

Σl ,t|t = (1− Gainl ,tFl ,t)Σl ,t|t−1

=
σ2
ν,tΣl ,t|t−1

F 2
l ,tΣl ,t|t−1 + σ2

ν,t

Return
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Illustration: distinguishing distributions

Return
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Relative entropy distance

Agents consider the conditional means µ∗l ,t+1 that are sufficiently close to
the long run average of zero in the sense of relative entropy:

(µ∗l ,t+1)2

2ρ2
zΣl ,t|t

≤ 1

2
η2
a

LHS: relative entropy between two normal distributions that share the
same variance ρ2

zΣl ,t|t but have different means (µ∗l ,t+1 and zero)

Return
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Linearized solution

1 Filtering problem is linear → analytic law of motion for Σl ,t|t
I Inputs have first-order effect on the level of posterior variance

Σ̂l ,t−1|t−1 = εΣ,ΣΣ̂l ,t−2|t−2 − εΣ,F F̂l ,t−1, (1)

2 First-order feedback from uncertainty to decision rules through −al ,t

E ∗t ẑl ,t = εz,z ˆ̃zl ,t−1|t−1 − εz,ΣΣ̂l ,t−1|t−1, (2)

3 In turn, linear decision rules → easy aggregation
I Cross-sectional mean: sufficient statistic for tracking distributions

E ∗t ẑt = εz,z ˆ̃zt−1|t−1︸ ︷︷ ︸
=0

−εz,ΣεΣ,ΣΣ̂t−2|t−2 + εz,ΣεΣ,F F̂t−1 (3)

where x̂t ≡
∫
x̂l ,tdl

Return
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Recursive competitive equilibrium

Household’s problem at stage 1 : hats RVs resolved at stage 2

V h
1 (
−→
θ l ,B; ξ1,X ) = max

H

{
− ϕH

1+η

1 + η
+ E ∗[V h

2 (m̂; ξ̂2,X )]

}
s.t. m̂ = WH + RB +

∫
(D̂l + P̂l)θldl − G

(4)

Household’s problem at stage 2:

V h
2 (m; ξ2,X ) = max

C ,
−→
θl ′,B′

[
lnC + β

∫
V h

1

(−→
θl
′,B ′; ξ′1,X

′
)
dF (X ′|X )

]
s.t. m ≥ C + B ′ +

∫
Plθ
′
ldl ; ξ′1 = Γ(ξ2,X ) (5)
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Recursive competitive equilibrium

Firm l ’s problem at stage 1

v f1 (z̃l ,Σl ,Kl ; ξ1,X ) = max
Hl

E ∗[v f2 (ˆ̃z ′l ,Σ
′
l ,Kl ; ξ̂2,X )]

s.t. Updating rules of Kalman filter
(6)

Firm l ’s problem at stage 2: v f2 (z̃ ′l ,Σ
′
l ,Kl ; ξ2,X ) equals

max
Il

[
λ (Yl −WHl − Il) + β

∫
v f1
(
z̃ ′l ,Σ

′
l ,Kl ; ξ

′
1,X

′) dF (X ′|X )

]
s.t. K ′l = (1− δ)Kl + Il ; ξ

′
1 = Γ(ξ2,X ) (7)

Return
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Parameters

γ Labor augmenting tech growth 1.004
α Capital share 0.3
β Discount factor 0.99
η Inverse Frisch elasticity 0
δ0 SS depreciation 0.025
δ2/δ1 Convexity of depreciation 0.15
ηa Size of entropy constraint 0.4
Σ̄ SS posterior variance 0.1

(Kalman gain) 0.47
ḡ SS share of gov spending 0.2
ρz Idiosyncratic TFP 0.5
σz Idiosyncratic TFP 0.4
ρA Aggregate TFP 0.95
ρg Government spending 0.95
ρσ Firm-level dispersion 0.85

Return
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HP-filtered moments (TFP shock only)

Data Our model RE

σ(y) 1.11 1.11 0.49
σ(c)/σ(y) 0.72 0.11 0.17
σ(i)/σ(y) 3.57 2.95 3.23
σ(h)/σ(y) 1.64 1.02 0.86

σ(c, y) 0.86 0.72 0.85
σ(i , y) 0.92 0.99 0.99
σ(h, y) 0.88 0.99 0.99

σ(y , τl) -0.83 -0.95 0
σ(h, τl) -0.97 -0.95 0

σ(yt , yt−1) 0.89 0.87 0.66
σ(ht , ht−1) 0.95 0.88 0.66

σ(∆yt ,∆yt−1) 0.39 0.44 -0.06
σ(∆ht ,∆ht−1) 0.71 0.52 -0.06

Note: We choose the st. dev of aggregate TFP shock so that the output st. dev in the
model matches the data.

Return
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Government spending multiplier
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Law of large numbers for risky random variables

firm 1 firm 2 firm l firm N.... ....

? ? ? ?

cross-sectional average:
z̄

Ilut, Saijo Learning, Confidence, and Business Cycles 11 / 16



Law of large numbers for ambiguous random variables

firm 1 firm 2 firm l firm N.... ....

2ηaρz
√

Σl

cross-sectional average:
???
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Law of large numbers for ambiguous random variables

firm 1 firm 2 firm l firm N.... ....

? ? ? ?

cross-sectional average:
z̄ +

∫
µ∗l ,tdl
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Law of large numbers for ambiguous random variables

firm 1 firm 2 firm l firm N.... ....

? ? ? ?

cross-sectional average:
z̄ +

∫
µ∗l ,tdl
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Law of large numbers for ambiguous random variables

firm 1 firm 2 firm l firm N.... ....

? ? ? ?

cross-sectional average:
[z̄ −

∫
al ,tdl , z̄ +

∫
al ,tdl ]
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Law of large numbers for ambiguous random variables

firm 1 firm 2 firm l firm N.... ....

? ? ? ?

cross-sectional average:
[z̄ −

∫
al ,tdl , z̄ +

∫
al ,tdl ]
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