Learning, Confidence, and Business Cycles

Cosmin Ilut Hikaru Saijo

Duke & NBER UC Santa Cruz

CIGS Conference on Macroeconomic Theory and Policy May 2016 Parsimonious mechanism for business cycle dynamics

- Propose: Endogenous idiosyncratic uncertainty
 - firms learn about own profitability prospects
- Behaves as if linear RBC model with endogenously determined
 - Countercyclical labor wedge and spreads (from excess returns)
 - 2 Co-movement from demand shocks
 - Amplification, propagation and hump-shaped dynamics

Parsimonious mechanism for business cycle dynamics

- Propose: Endogenous idiosyncratic uncertainty
 - firms learn about own profitability prospects
- Do not require additional shocks or rigidities such as
 - Wedge shocks (countercyclical labor wedge and spreads)
 - 2 Nominal rigidities (co-movement)
 - I Habit, adjustment cost (internal propagation)

Countercyclical endogenous idiosyncratic uncertainty

Firms face Knightian uncertainty about own profitability

- $\textbf{O} Learning through production: lower scale \rightarrow more uncertainty$
- **②** Uncertainty affects input choice: more uncertainty \rightarrow lower scale

Feedback arises from any shock that moves activity

Countercyclical idiosyncratic uncertainty shows up

- As countercyclical wedges: labor and asset prices move 'too much' compared to what econometrician measures
 - rationalize 'excess volatility'
- In linear decision rules at firm level
- In the cross-sectional average through aggregation

Model: Preferences

Representative household: recursive multiple priors utility

$$U_t(C; s^t) = \ln C_t - \varphi \frac{H_t^{1+\eta}}{1+\eta} + \beta \min_{\boldsymbol{p} \in \mathcal{P}_t(s^t)} E^{\boldsymbol{p}}[U_{t+1}(C; s^t, s_{t+1})]$$

- $\mathcal{P}_t(s^t)$: one-stead-ahead set of probability distributions
- Larger set $\mathcal{P}_t(s^t) \rightarrow$ less confidence

• Firms: continuum, indexed by $l \in [0, 1]$, perfectly competitive

$$Y_{l,t} = A_t \{ z_{l,t} K_{l,t-1}^{\alpha} H_{l,t}^{1-\alpha} + \nu_{l,t} \}$$

• Firms: continuum, indexed by $l \in [0, 1]$, perfectly competitive

$$Y_{l,t} = \boldsymbol{A}_t \{ \boldsymbol{z}_{l,t} \boldsymbol{K}_{l,t-1}^{\alpha} \boldsymbol{H}_{l,t}^{1-\alpha} + \boldsymbol{\nu}_{l,t} \}$$

• Aggregate TFP shock

$$\ln A_t = \rho_A \ln A_{t-1} + \epsilon_{A,t}, \qquad \epsilon_{A,t} \sim N(0, \sigma_A^2)$$

• Firms: continuum, indexed by $l \in [0, 1]$, perfectly competitive

$$Y_{l,t} = A_t \{ \frac{\mathbf{Z}_{l,t}}{\mathbf{K}_{l,t-1}^{\alpha}} H_{l,t}^{1-\alpha} + \nu_{l,t} \}$$

• Aggregate TFP shock

$$\ln A_t = \rho_A \ln A_{t-1} + \epsilon_{A,t}, \qquad \epsilon_{A,t} \sim N(0, \sigma_A^2)$$

• Idiosyncratic TFP shock

$$z_{l,t} = (1 - \rho_z)\bar{z} + \rho_z z_{l,t-1} + \epsilon_{z,l,t}, \qquad \epsilon_{z,l,t} \sim N(0, \sigma_z^2)$$

• Firms: continuum, indexed by $l \in [0, 1]$, perfectly competitive

$$Y_{l,t} = A_t \{ z_{l,t} K^{\alpha}_{l,t-1} H^{1-\alpha}_{l,t} + \frac{\nu_{l,t}}{2} \}$$

• Aggregate TFP shock

$$\ln A_t = \rho_A \ln A_{t-1} + \epsilon_{A,t}, \qquad \epsilon_{A,t} \sim N(0, \sigma_A^2)$$

• Idiosyncratic TFP shock

$$z_{l,t} = (1 - \rho_z)\bar{z} + \rho_z z_{l,t-1} + \epsilon_{z,l,t}, \qquad \epsilon_{z,l,t} \sim N(0, \sigma_z^2)$$

• Idiosyncratic additive shock, $u_{I,t} \sim N(0, \sigma_{
u}^2)$

Information

$$Y_{l,t} = A_t \{ \mathbf{Z}_{l,t} K^{\alpha}_{l,t-1} H^{1-\alpha}_{l,t} + \mathbf{\nu}_{l,t} \}$$

- $z_{l,t}$ and $\nu_{l,t}$ unobservable to agents \rightarrow learning
- Non-invertibility problem: path of output and input not fully revealing about the unobservable shocks
- Interpretations of additive shock
 - Aggregation of production units with common and idiosyncratic shocks
 - Sale is signal on unobservable persistent demand shock

Heterogeneous-firm RBC model

• Firms: choose $\{K_{l,t}, H_{l,t}, I_{l,t}\}$ to maximize

$$E_0^* \sum_{t=0}^{\infty} M_0^t D_{I,t}$$

• M_0^t : prices of contingent claims, under worst case probabilities

$$D_{l,t} = Y_{l,t} - W_t H_{l,t} - I_{l,t}$$

Resource constraint:

$$Y_t = C_t + I_t + G_t$$

$$\ln G_t = (1 - \rho_g)G + \rho_g \ln G_{t-1} + \epsilon_{g,t}, \qquad \epsilon_{g,t} \sim N(0, \sigma_g^2)$$

Timeline of events within a period

▶ RCE

• Estimate $z_{l,t}$ from observables: linear + Gaussian \rightarrow Kalman filter

Observation : $Y_{l,t}/A_t = K_{l,t-1}^{\alpha} H_{l,t}^{1-\alpha} z_{l,t} + \nu_{l,t}$ Transition : $z_{l,t} = (1 - \rho_z)\overline{z} + \rho_z z_{l,t-1} + \epsilon_{z,l,t}$

• Estimate $z_{l,t}$ from observables: linear + Gaussian \rightarrow Kalman filter

$$\begin{aligned} & \textit{Observation}: Y_{l,t}/A_t = \mathsf{K}_{l,t-1}^{\alpha} \mathsf{H}_{l,t}^{1-\alpha} z_{l,t} + \nu_{l,t} \\ & \textit{Transition}: z_{l,t} = (1-\rho_z)\bar{z} + \rho_z z_{l,t-1} + \epsilon_{z,l,t} \end{aligned}$$

• Low production input $K_{l,t-1}^{\alpha}H_{l,t}^{1-\alpha} \rightarrow \text{high Mean Square Error } \Sigma_{l,t|t}$

• Estimate $z_{l,t}$ from observables: linear + Gaussian \rightarrow Kalman filter

Observation :
$$Y_{l,t}/A_t = K_{l,t-1}^{\alpha} H_{l,t}^{1-\alpha} z_{l,t} + \nu_{l,t}$$

Transition : $z_{l,t} = (1 - \rho_z)\bar{z} + \rho_z z_{l,t-1} + \epsilon_{z,l,t}$

- Low production input $K_{l,t-1}^{\alpha}H_{l,t}^{1-\alpha} \to high$ Mean Square Error $\Sigma_{l,t|t}$
- Not confident in the Kalman filter estimate: set of distributions

$$E_{t}z_{l,t+1} = (1 - \rho_{z})\bar{z} + \rho_{z}\tilde{z}_{l,t|t} + \mu_{l,t}; \quad \mu_{l,t} \in [-a_{l,t}, a_{l,t}]$$

• Estimate $z_{l,t}$ from observables: linear + Gaussian \rightarrow Kalman filter

Observation :
$$Y_{l,t}/A_t = K_{l,t-1}^{\alpha} H_{l,t}^{1-\alpha} z_{l,t} + \nu_{l,t}$$

Transition : $z_{l,t} = (1 - \rho_z)\bar{z} + \rho_z z_{l,t-1} + \epsilon_{z,l,t}$

- Low production input $K^{\alpha}_{l,t-1}H^{1-\alpha}_{l,t} \to high$ Mean Square Error $\Sigma_{l,t|t}$
- Not confident in the Kalman filter estimate: set of distributions

$$E_{t}z_{l,t+1} = (1 - \rho_{z})\bar{z} + \rho_{z}\tilde{z}_{l,t|t} + \mu_{l,t}; \quad \mu_{l,t} \in [-a_{l,t}, a_{l,t}]$$

• Confidence lower when estimation uncertainty is higher

$$-a_{l,t} = -\eta_a \sqrt{\Sigma_{l,t|t}}$$

Distributions "close" to filter estimate (relative entropy distance)

Ambiguity and the law of large numbers

• Each firm's expected $z_{l,t+1}$ under worst-case probability

$$E_t^* z_{l,t+1} = (1 - \rho_z) \overline{z} + \rho_z \widetilde{z}_{l,t|t} \underbrace{-a_{l,t}}_{= -\eta_a \sqrt{\Sigma_{l,t|t}}}$$

- Household acts as if conditional mean of each $z_{l,t+1}$ is lower
- First-order effect of uncertainty
- Cross-sectional average given by a set

$$\left[\bar{z} - \int a_{l,t} dl, \bar{z} + \int a_{l,t} dl\right]$$

▶ Epstein & Schneider (2003): formal treatment of LLN with ambiguity

Linearized solution

- **(**) Filtering problem is linear \rightarrow analytic law of motion for $\Sigma_{l,t|t}$
 - Inputs have first-order effect on the level of posterior variance
- **2** First-order feedback from uncertainty to decision rules through $-a_{l,t}$
- $\textcircled{O} In turn, linear decision rules \rightarrow easy aggregation$
 - Cross-sectional mean: sufficient statistic for tracking distributions

Implication: comovement and countercyclical labor wedge

Standard model

$$\varphi H_t^\eta = \lambda_t MPL_t$$

 \rightarrow H and C move in opposite direction unless TFP or ' $\varphi '$ shock

Implication: comovement and countercyclical labor wedge

Standard model

$$\varphi H_t^\eta = \lambda_t MPL_t$$

 \to H and C move in opposite direction unless TFP or ' φ ' shock • Our model: labor chosen under worst case expectation

$$\varphi H_t^{\eta} = \frac{\boldsymbol{\mathsf{E}}_t^*}{[\lambda_t M P L_t]}$$

 $\begin{array}{l} \mathsf{Low \ confidence} \to \ \mathsf{C} \ \mathsf{low} \to \mathsf{standard \ effect \ is \ } H \ \mathsf{high} \\ \to \mathsf{choose} \ H \ \mathsf{as \ if \ productivity \ low} \to H \ \mathsf{low} \end{array}$

Implication: comovement and countercyclical labor wedge

Standard model

$$\varphi H_t^\eta = \lambda_t MPL_t$$

 \to H and C move in opposite direction unless TFP or ' φ ' shock \bullet Our model: labor chosen under worst case expectation

$$\varphi H_t^{\eta} = \frac{E_t^*}{[\lambda_t MPL_t]}$$

Low confidence $\rightarrow C \text{ low } \rightarrow \text{ standard effect is } H \text{ high}$ $\rightarrow \text{ choose } H \text{ as if productivity low } \rightarrow H \text{ low}$

• Labor wedge: implicitly define labor tax

$$\varphi H_t^{\eta} = (1 - \tau_t) \lambda_t MPL_t \quad \Rightarrow \quad \frac{\mathbf{E}_t^* [\lambda_t MPL_t]}{\lambda_t MPL_t} = 1 - \tau_t$$

Low confidence \rightarrow econometrician rationalizes 'surprisingly low' H by high labor tax

Implication: countercyclical ex-post excess return

• Euler conditions for capital and risk-free assets

$$\lambda_t = \beta E_t^* [\lambda_{t+1} R_{t+1}^K]$$
$$\lambda_t = \beta E_t^* [\lambda_{t+1} R_t]$$

 \rightarrow under linearization, $E_t^* R_{t+1}^K - R_t = 0$

- Pricing based on worst case \neq econometrician's DGP
- During low confidence times, demand for capital 'surprisingly low' \rightarrow ex-post excess return $R_{t+1}^{K} R_t$ high
- Implication extends to defaultable corporate bonds
 → countercyclical excess bond premia (Gilchrist & Zakrajsek 2012)

Calibration

Magnitude of feedback loop determined by

- Variability of inputs
 - Inverse Frisch elasticity $\eta = 0$
 - Capital utilization
- Size and variability of posterior variance
 - Idiosyncratic TFP shock $\rho_z = 0.5, \sigma_z = 0.4$
 - * establishment-level data (Bloom et al. 2014, Kehrig 2015)
 - SS posterior variance $\Sigma = 0.1$
 - * estimated posterior variance of firm-specific shocks (David et al. 2015)
- Size of entropy constraint
 - Reasonable theoretical upper bound $\eta_a = 2$ (Ilut & Schneider 2014)
 - Empirical: firm-level capital return forecasts across analysts
 - * Set $\eta_a = 0.4$ to get average dispersion of 39% (vs 43% in Senga 2014)

IRF to aggregate TFP shock

IRF to aggregate TFP shock

IRF to government spending shock

IRF to government spending shock

Bayesian estimation on US aggregate data

- Linearization \Rightarrow estimation using standard Kalman filter
- Quantitative model with additional rigidities (CEE, 2005)
 - real: habit formation, investment adjustment costs
 - nominal: sticky prices and wages
- Shocks: TFP, G, mon. policy and 'financial wedge' shock

$$\Delta_t^k \simeq E_t^* R_{t+1}^k - R_t$$

• US Data: $Y_t, H_t, I_t, C_t, \pi_t, R_t, Spread_t$ (on BAA corporate bond)

$$Spread_{t} \equiv R_{t}^{k} - R_{t-1}$$
$$= \underbrace{\left(E_{t-1}^{*}R_{t}^{k} - R_{t-1}\right)}_{\text{wedge shock}} + \underbrace{\left(R_{t}^{k} - E_{t-1}^{*}R_{t}^{k}\right)}_{\text{endogenous uncertainty}}$$

- estimate both flex and sticky price versions
- stochastic singularity \Rightarrow iid measurement error

Results

Indogenous uncertainty: parsimonious friction ⇒ reduce other rigidities

Model	η_a	$\Pr(\text{price } \Delta)$	$\Pr(wage \Delta)$	Inv. adj. cost	Habit
RE	0	0.24	0.04	0.3	0.62
Baseline	1.3	0.44	0.98	0.06	0.47

Results

Indogenous uncertainty: parsimonious friction ⇒ reduce other rigidities

Model	η_{a}	$\Pr(\text{price } \Delta)$	$\Pr(wage \Delta)$	Inv. adj. cost	Habit
RE	0	0.24	0.04	0.3	0.62
Baseline	1.3	0.44	0.98	0.06	0.47

Indogenous uncertainty model fits data better

- marginal data density is higher (both flex and sticky price versions)
- under RE: observed spread is mostly just measurement error
- but well fitted under model with endogenous uncertainty

Spread: data vs. models

Endogenous uncertainty: countercyclical spread \Rightarrow bus. cycle comovement

24 / 27

Results

Indogenous uncertainty: parsimonious friction ⇒ reduce other rigidities

Model	η_{a}	$\Pr(\text{price } \Delta)$	$Pr(wage\ \Delta)$	Inv. adj. cost	Habit
RE	0	0.24	0.04	0.3	0.62
Baseline	1.3	0.44	0.98	0.06	0.47

- 2 Endogenous uncertainty model fits data better
 - marginal data density is higher (both flex and sticky price versions)
 - under RE: observed spread is mostly just measurement error
 - but well fitted under model with endogenous uncertainty
- Variance decomposition: financial shock more important with learning

Model (sticky price)	Y	Н	I	С	π	R
RE	0.15	0.23	0.12	0.22	0.88	0.90
Baseline	0.73	0.81	0.76	0.61	0.88	0.84

Policy implication of endogenous uncertainty

- Endogenous uncertainty \Rightarrow Policy matters
- Policy experiment:
 - \blacktriangleright modify Taylor rule to include adjustment to credit spread $\phi_{\textit{spread}}$
 - Iower output growth variation: from stabilizing endogenous uncertainty

	Std. of output growth			
$\phi_{\it spread}$	Baseline	Fixed uncertainty		
0	0.60	0.60		
-0.5	0.59	0.60		
-1.0	0.57	0.60		
-1.5	0.52	0.63		

Conclusion

- Heterogeneous-firm business cycle model where firms face Knightian uncertainty about their own profitability
- Feedback loop between uncertainty and economic activity produces
 - Countercyclical labor wedge and ex-post excess return on capital
 - Co-movement in response to non-TFP shocks
 - Strong internal propagation with amplified and hump-shaped dynamics
- Estimation: inference on rigidities and shocks
- Policy implications

Interpreting the additive shock $(\nu_{l,t})$

- At the aggregate level, observationally equivalent to model where firms face unobservable demand shock
 - Each unit of good *l* : provides sum of good specific and idiosyncratic quality

$$\widetilde{Y}_{l,t} = \sum_{j=1}^{Y_{l,t}} \left(z_{l,t} + \widetilde{\nu}_{l,j,t} \right)$$

- where units produced $Y_{l,t} = K^{\alpha}_{l,t-1} H^{1-\alpha}_{l,t}$
- Noisy signal about persistent quality $z_{l,t}$: procyclical precision

$$\widetilde{Y}_{l,t}/Y_{l,t} = z_{l,t} + \nu_{l,t}, \ \nu_{l,t} \sim N\left(0, \frac{\sigma_{\tilde{\nu}}^2}{Y_{l,t}}\right)$$

- demand is a function of estimate of quality z_{l,t}
- Aggregation of production units with common and idio shocks

Kalman filter

• Estimate

$$\tilde{z}_{l,t|t} = \tilde{z}_{l,t|t-1} + \mathsf{Gain}_{l,t}(Y_{l,t}/A_t - \tilde{z}_{l,t|t-1}F_{l,t})$$

• Kalman gain

$$Gain_{l,t} = \left[\frac{F_{l,t}^{2} \Sigma_{l,t|t-1}}{F_{l,t}^{2} \Sigma_{l,t|t-1} + \sigma_{\nu,t}^{2}}\right] F_{l,t}^{-1}$$

• Mean square error

$$\Sigma_{I,t|t} = (1 - Gain_{I,t}F_{I,t})\Sigma_{I,t|t-1}$$
$$= \frac{\sigma_{\nu,t}^2 \Sigma_{I,t|t-1}}{F_{I,t}^2 \Sigma_{I,t|t-1} + \sigma_{\nu,t}^2}$$

Illustration: distinguishing distributions

Relative entropy distance

Agents consider the conditional means $\mu_{l,t+1}^*$ that are sufficiently close to the long run average of zero in the sense of relative entropy:

$$rac{(\mu^*_{l,t+1})^2}{2
ho_z^2 \Sigma_{l,t|t}} \leq rac{1}{2}\eta_{ extbf{a}}^2$$

• LHS: relative entropy between two normal distributions that share the same variance $\rho_z^2 \Sigma_{l,t|t}$ but have different means ($\mu_{l,t+1}^*$ and zero)

▶ Return

Linearized solution

- **(**) Filtering problem is linear \rightarrow analytic law of motion for $\Sigma_{l,t|t}$
 - Inputs have first-order effect on the level of posterior variance

$$\hat{\Sigma}_{l,t-1|t-1} = \varepsilon_{\Sigma,\Sigma} \hat{\Sigma}_{l,t-2|t-2} - \varepsilon_{\Sigma,F} \hat{F}_{l,t-1}, \qquad (1)$$

2 First-order feedback from uncertainty to decision rules through $-a_{l,t}$

$$E_t^* \hat{z}_{l,t} = \varepsilon_{z,z} \hat{\tilde{z}}_{l,t-1|t-1} - \varepsilon_{z,\Sigma} \hat{\Sigma}_{l,t-1|t-1}, \qquad (2)$$

③ In turn, linear decision rules \rightarrow easy aggregation

Cross-sectional mean: sufficient statistic for tracking distributions

$$E_t^* \hat{z}_t = \underbrace{\varepsilon_{z,z} \hat{z}_{t-1|t-1}}_{=0} - \varepsilon_{z,\Sigma} \varepsilon_{\Sigma,\Sigma} \hat{\Sigma}_{t-2|t-2} + \varepsilon_{z,\Sigma} \varepsilon_{\Sigma,F} \hat{F}_{t-1} \qquad (3)$$

where $\hat{x}_t \equiv \int \hat{x}_{l,t} dl$

Return

Recursive competitive equilibrium

 \bullet Household's problem at stage 1 : hats RVs resolved at stage 2

$$V_{1}^{h}(\overrightarrow{\theta}_{l}, B; \xi_{1}, X) = \max_{H} \left\{ -\varphi \frac{H^{1+\eta}}{1+\eta} + E^{*}[V_{2}^{h}(\widehat{m}; \widehat{\xi}_{2}, X)] \right\}$$

s.t. $\widehat{m} = WH + RB + \int (\widehat{D}_{l} + \widehat{P}_{l})\theta_{l}dl - G$ (4)

• Household's problem at stage 2:

$$V_{2}^{h}(m;\xi_{2},X) = \max_{C,\overrightarrow{\theta_{1}}',B'} \left[\ln C + \beta \int V_{1}^{h} \left(\overrightarrow{\theta_{1}}',B';\xi_{1}',X' \right) dF(X'|X) \right]$$

s.t. $m \ge C + B' + \int P_{I}\theta_{I}'dI; \quad \xi_{1}' = \Gamma(\xi_{2},X)$ (5)

Recursive competitive equilibrium

• Firm I's problem at stage 1

$$v_1^f(\tilde{z}_l, \Sigma_l, K_l; \xi_1, X) = \max_{H_l} E^*[v_2^f(\hat{z}_l', \Sigma_l', K_l; \hat{\xi}_2, X)]$$

s.t. Updating rules of Kalman filter (6)

• Firm I's problem at stage 2: $v_2^f(\tilde{z}_l', \Sigma_l', K_l; \xi_2, X)$ equals

$$\max_{I_{l}} \left[\lambda \left(Y_{l} - WH_{l} - I_{l} \right) + \beta \int v_{1}^{f} \left(\tilde{z}_{l}', \Sigma_{l}', K_{l}; \xi_{1}', X' \right) dF(X'|X) \right]$$

s.t. $K_{l}' = (1 - \delta)K_{l} + I_{l}; \ \xi_{1}' = \Gamma(\xi_{2}, X)$ (7)

Return

Parameters

γ	Labor augmenting tech growth	1.004
α	Capital share	0.3
β	Discount factor	0.99
η	Inverse Frisch elasticity	0
δ_0	SS depreciation	0.025
δ_2/δ_1	Convexity of depreciation	0.15
η_a	Size of entropy constraint	0.4
Σ	SS posterior variance	0.1
	(Kalman gain)	0.47
Ē	SS share of gov spending	0.2
ρ_z	Idiosyncratic TFP	0.5
σ_z	Idiosyncratic TFP	0.4
ρ_A	Aggregate TFP	0.95
$ ho_{g}$	Government spending	0.95
$ ho_{\sigma}$	Firm-level dispersion	0.85

HP-filtered moments (TFP shock only)

	Data	Our model	RE
$\sigma(y)$	1.11	1.11	0.49
$\sigma(c)/\sigma(y)$	0.72	0.11	0.17
$\sigma(i)/\sigma(y)$	3.57	2.95	3.23
$\sigma(h)/\sigma(y)$	1.64	1.02	0.86
$\sigma(c, y)$	0.86	0.72	0.85
$\sigma(i, y)$	0.92	0.99	0.99
$\sigma(h, y)$	0.88	0.99	0.99
$\sigma(y, \tau_l)$	-0.83	-0.95	0
$\sigma(h, \tau_l)$	-0.97	-0.95	0
$\sigma(y_t, y_{t-1})$	0.89	0.87	0.66
$\sigma(h_t, h_{t-1})$	0.95	0.88	0.66
$\sigma(\Delta y_t, \Delta y_{t-1})$	0.39	0.44	-0.06
$\sigma(\Delta h_t, \Delta h_{t-1})$	0.71	0.52	-0.06

Note: We choose the st. dev of aggregate TFP shock so that the output st. dev in the model matches the data.

Government spending multiplier

Law of large numbers for risky random variables

