A theory of nonperforming loans and debt restructuring

Keiichiro Kobayashi ${ }^{1}$ Tomoyuki Nakajima ${ }^{2}$

${ }^{1}$ Keio University
${ }^{2}$ Kyoto University
CIGS Conference
May 30, 2016

Nonperforming loans

- A loan is classified as nonperforming when payments of interest and/or principal are past due by 90 days or more.

Non performing loans in Euro area and Japan

Notes: Fraction of non-performing loans in total gross loans. Source: World Bank.

Non performing loans in some European countries

Notes: Fraction of non-performing loans in total gross loans. Source: World Bank.

- Nonperforming loans can be a significant source of distortion.
- Our theory is related to but different from debt overhang.
- Having nonperforming loans is different from just having a lot of debt.
- What is special about nonperforming loans?
- When loans are nonperforming, the contractual value of debt is different from the present discounted value of repayments.
- In other words, the value of debt is no longer a "state variable."
- Benchmark model: Albuquerque and Hopenhayn (2004).
- Borrowing constraint arises because the borrower may default at any time.
- There exists a maximum amount of debt that the borrower can repay.
- What happens if the amount of debt exceeds the repayable amount?
- This may happen, for instance, if the borrower's productivity declines, or if the value of the collateral asset falls.
- The lender has two options:
- rewrite the contract and reduce the amount of debt (debt restructuring);
- retain the right to the original amount of debt (non-performing loans).
- If the bank reduces the debt, the levels of lending and output converge to their first-best levels in a finite period of time.
- This is a kind of debt overhang, but inefficiency only lasts temporarily.
- If the bank chooses not to do so, the loans become nonperforming.
- The PDV of repayments is lower than the contractual value of debt.
- The equilibrium level of output is permanently lower than the first-best level.
- The value obtained by the bank is higher when the debt is restructured (reduced to a repayable amount).
- Why would the bank choose not to do that?
- If the reduction of debt involves bargaining, the agreement may not be reached instantly, and debt restructuring could be delayed.
- We apply the model of Abreu and Gul (2000) to illustrate this point.
(2) Benchmark model

(3) Non-performing loans

4. Bargaining with two lenders
(5) Final remarks

- a deterministic version of Albuquerque and Hopenhayn (2004).
- A bank lends to a firm.
- $r=$ common discount rate.
- $D_{0}=$ initial debt of the firm.
- $b_{t}=$ repayment from the firm to the bank:

$$
\dot{D}_{t}=r D_{t}-b_{t} .
$$

- $k_{t}=$ short-term loans (working capital) that the firm borrows from the bank:
- $F\left(k_{t}\right)=$ output produced using k_{t}.
- $x_{t}=$ dividends to the owners of the firm:

$$
x_{t}=F\left(k_{t}\right)-r k_{t}-b_{t} .
$$

- Limited liability:

$$
x_{t} \geq 0
$$

Enforcement constraint

- $V_{t}=$ value to the firm's owners:

$$
V_{t}=\int_{t}^{\infty} e^{-r(s-t)} x_{s} d s
$$

- The firm can choose to default at any time t, after receiving working capital k_{t}.
- $G\left(k_{t}\right)=$ the value of the outside opportunity of the firm.
- The bank would receive none when the firm defaults.
- Enforcement constraint:

$$
V_{t} \geq G\left(k_{t}\right)
$$

- The liquidation value of the firm is assumed to be zero.

Plans

- At each time t, the contract between the bank and the firm specifies $\left(D_{t}, r\right)$.
- Then, given $\left(D_{t}, r\right)$, the bank offers a plan $\left\{k_{t+s}^{t}, b_{t+s}^{t}, x_{t+s}^{t}\right\}_{s \in \mathbb{R}_{+}}$to the firm:
- $k_{t+s}^{t}=$ working capital provided at time $t+s$;
- $b_{t+s}^{t}=$ repayment at $t+s$;
- $x_{t+s}^{t}=F\left(k_{t+s}^{t}\right)-r k_{t+s}^{t}-b_{t+s}^{t}$.
- The associated values for the bank and the firm are:

$$
\begin{aligned}
D_{t+s}^{t} & =\int_{t+s}^{\infty} e^{-r(u-t-s)} b_{u}^{t} d u \\
V_{t+s}^{t} & =\int_{t+s}^{\infty} e^{-r(u-t-s)} x_{u}^{t} d u
\end{aligned}
$$

- In equilibrium, the bank's offers must be time consistent, i.e.,

$$
k_{s}^{t}=k_{s}^{t^{\prime}}, \quad b_{s}^{t}=b_{s}^{t^{\prime}}, \quad x_{s}^{t}=x_{s}^{t^{\prime}}, \quad \text { for all } t<t^{\prime} \leq s \in \mathbb{R}_{+} .
$$

Feasible plans

- A plan offered at time t is feasible if the limited liability and enforcement conditions are satisfied for all $s \geq 0$:

$$
0 \leq x_{t+s}^{t}, \quad \text { and } \quad G\left(k_{t+s}^{t}\right) \leq V_{t+s}^{t}
$$

- $\Gamma=$ the set of all feasible plans.
- $\Gamma(D)=$ the set of all feasible plans such that the value to the bank is D :

$$
D=\int_{0}^{\infty} e^{-r t} b_{t} d t
$$

- D_{t} is the state variable in this model.
- We shall consider the "best" Markov plans under different circumstances.

First-best level of production

- $k^{*}=$ the first-best level of production:

$$
F^{\prime}\left(k^{*}\right)=r .
$$

Associated with k^{*}, define:

$$
\begin{aligned}
V^{*} & =G\left(k^{*}\right), \\
x * & =r V^{*}, \\
b^{*} & =F\left(k^{*}\right)-r k^{*}-x^{*}, \\
D^{*} & =\frac{b^{*}}{r} .
\end{aligned}
$$

If $D_{0} \leq D^{*}$, the first-best plan with $k_{t}^{0}=k^{*}$ for all t is feasible.

Efficient plans

- Given $D \in \mathbb{R}_{+}$, the (constrained) efficient plan is a plan that solves

$$
\max _{\left\{k_{t}, b_{t}, x_{t}\right\}_{t \in \mathbb{R}_{+}} \in \Gamma(D)} \int_{0}^{\infty} e^{-r t} x_{t} d t
$$

- The efficient plans are expressed using the value of debt as a state variable:
- There exists a maximum value of debt, $D_{\text {max }}$, which can be repaid by the firm.
- $V_{t}=V_{e}\left(D_{t}\right)$, where $V_{e}:\left[0, D_{\max }\right] \rightarrow \mathbb{R}_{+}$is a strictly decreasing function.
- k_{t}, x_{t}, and b_{t} are given as

$$
\begin{aligned}
& k_{e}\left(D_{t}\right)= \begin{cases}G^{-1}\left[V_{e}\left(D_{t}\right)\right], & \text { for } D_{t}>D^{*}, \\
k^{*}, & \text { for } D_{t} \leq D^{*},\end{cases} \\
& x_{e}\left(D_{t}\right)= \begin{cases}0, & \text { for } D_{t}>D^{*}, \\
r V_{e}\left(D_{t}\right), & \text { for } D_{t} \leq D^{*},\end{cases} \\
& b_{e}\left(D_{t}\right)=F\left[k_{e}\left(D_{t}\right)\right]-r k_{e}\left(D_{t}\right)-x_{e}\left(D_{t}\right),
\end{aligned}
$$

Dynamics of the efficient plans

- If $D_{0} \leq D^{*}$, the first-best is attained in the efficient plan:

$$
k_{e, t}=k^{*}, \quad \text { for all } t \geq 0
$$

- For $D_{0} \in\left(D^{*}, D_{\max }\right]$, the level of production is inefficiently low initially (debt overhang), but converges to the first-best level in finite time.
- Let

$$
\bar{t} \equiv \frac{1}{r} \ln \left(\frac{V^{*}}{V_{e}\left(D_{0}\right)}\right) .
$$

Then

$$
\begin{aligned}
& V_{e, t}= \begin{cases}e^{r t} V_{e}\left(D_{0}\right), & \text { for } t<\bar{t}, \\
V^{*}, & \text { for } t \geq \bar{t},\end{cases} \\
& k_{e, t}= \begin{cases}G^{-1}\left(V_{e, t}\right), & \text { for } t<\bar{t}, \\
k^{*}, & \text { for } t \geq \bar{t},\end{cases}
\end{aligned}
$$

Markov perfect equilibrium

- At each point in time t, given contract $\left(D_{t}, r\right)$, the bank offers a plan $\left\{k_{t+s}^{t}, b_{t+s}^{t}, x_{t+s}^{t}\right\}_{s \in \mathbb{R}_{+}}$to the firm subject to the constraint:

$$
\int_{0}^{\infty} e^{-r(s-t)} b_{t+s}^{t} d s, \leq D_{t}, \quad \text { and } \quad x_{t+s}^{t} \geq 0
$$

Then, given this offer, the firm decides whether or not to default.

- The efficient plan $\left\{k_{e}(D), x_{e}(D), b_{e}(D), V_{e}(D)\right\}$ is attained as a Markov perfect equilibrium with the following strategies:
(1) at each time t, the bank offers $\left\{k_{t+s}^{t}, b_{t+s}^{t}, x_{t+s}^{t}\right\}_{s \in \mathbb{R}_{+}}$such that $k_{t+s}^{t}=k_{e}\left(D_{t+s}\right), b_{t+s}^{t}=b_{e}\left(D_{t+s}\right)$, and $x_{t+s}^{t}=x_{e}\left(D_{t+s}\right)$, where D_{t+s} is the solution to $\dot{D}_{t+s}=r D_{t+s}-b_{e}\left(D_{t+s}\right)$ with initial value D_{t};
(3) given ($D_{t}, b_{t}^{t}, k_{t}^{t}, x_{t}^{t}$), the firm defaults if either (i) $V_{e}(D)<G\left(k_{t}^{t}\right)$, or (ii) $x_{t}^{t}<x_{e}\left(D_{t}\right)$.
(3) Non-performing loans

4. Bargaining with two lenders
(5) Final remarks

Too much debt

- To analyze non-performing loans, suppose that there is an unexpected shock in period 0 so that

$$
D_{0}>D_{\text {max }} .
$$

- Two options for the bank:
(1) rewrite the contract to reduce the amount of debt to $D_{\text {max }}$;
(2) retain the right to D_{0} with understanding the firm is never able to repay it.
- If the debt is reduced to $D_{\text {max }}$,
- then the efficient plan discussed in the previous section can be implemented.
- Nonperforming loans would not arise.
- If the bank keeps the right to $D_{0}>D_{\text {max }}$,
- the PDV of future repayments to the bank would be less than the contractual value of the firm's debt.
- The loan becomes nonperforming.

Contractual values of debt

- $D_{0}^{c}=$ contractual value of debt in period 0 .
- If the firm repays $\left\{b_{t}\right\}_{t \in \mathbb{R}_{+}}$, then the contractual value of debt evolves as

$$
D_{t}^{c}=e^{r t} D_{0}-\int_{0}^{t} e^{r(t-s)} b_{s} d s
$$

- $d_{t}\left(\left\{b_{t+j}\right\}_{j \in \mathbb{R}_{+}}\right)=$PDV of repayments $\left\{b_{t+j}\right\}$ after t :

$$
d_{t}\left(\left\{b_{t+j}\right\}_{j \in \mathbb{R}_{+}}\right)=\int_{0}^{\infty} e^{-r j} b_{t+j} d j
$$

- If $D_{0}^{c}>D_{\text {max }}$, then for any feasible repayment plan $\left\{b_{t}\right\}_{t \in \mathbb{R}_{+}}$,

$$
D_{t}^{c}>d_{t}\left(\left\{b_{t+j}\right\}_{j \in \mathbb{R}_{+}}\right)
$$

Thus, the bank also suffers from an enforcement problem.

Debt is no longer a state variable

- For $D_{0}^{c}>D_{\max }, \Gamma\left(D_{0}^{c}\right)=\emptyset$.
- The bank can make an offer with the PDV of repayments less than D_{0}^{c}.
- Thus, the set of feasible plans that the bank with D_{0}^{c} can offer is

$$
\bar{\Gamma}\left(D_{0}^{c}\right) \equiv \bigcup_{D \leq D_{0}^{c}} \Gamma(D) .
$$

- The set of feasible plans for the bank is independent of the value of initial debt if $D_{0}^{c}>D_{\text {max }}$:

$$
\bar{\Gamma}\left(D_{0}^{c}\right)=\Gamma\left(D_{\max }\right)=\Gamma, \quad \forall D_{0}^{c}>D_{\max } .
$$

- In other words, the value of debt is no longer a state variable.

Markov plans

- With $D_{0}^{c}>D_{\text {max }}$, there is no state variables.
- Markov plans are constant plans.
- Let $\underline{\Gamma}=$ the set of all feasible constant plans.

$$
\underline{\Gamma} \equiv\left\{\left(k_{t}, b_{t}, x_{t}\right) \in \Gamma \mid\left(k_{t}, b_{t}, x_{t}\right)=(k, b, x), \quad \forall t \in \mathbb{R}_{+}\right\} .
$$

- The highest value the bank can obtain with Markov plans is:

$$
\max _{\left\{k_{t}, b_{t}, x_{t}\right\} \in[} \int_{0}^{\infty} e^{-r t} b_{t} d t
$$

- The solution to this problem is given by $\left\{k_{\mathrm{npl}}, b_{\mathrm{npl}}, x_{\mathrm{npl}}, D_{\mathrm{npl}}, V_{\mathrm{npl}}\right\}$, where k_{npl} is the solution to:

$$
F^{\prime}\left(k_{\mathrm{npl}}\right)=r+r G^{\prime}\left(k_{\mathrm{npl}}\right),
$$

and $b_{\text {npl }}=F\left(k_{\text {npl }}\right)-r k_{\mathrm{npl}}-r G\left(k_{\mathrm{npl}}\right), x_{\mathrm{npl}}=F\left(k_{\mathrm{npl}}\right)-r k_{\mathrm{npl}}-b_{\mathrm{npl}}, D_{\mathrm{npl}}=\frac{b_{\text {npl }}}{r}$,
$V_{\mathrm{npl}}=\frac{x_{\mathrm{npl}}}{r}$.

Markov Perfect Equilibrium

- This can be obtained as a Markov Perfect Equilibrium with the following strategies:
(1) at each time t, the bank offers $\left\{k_{t+s}^{t}, b_{t+s}^{t}, x_{t+s}^{t}\right\}_{s \in \mathbb{R}_{+}}$such that $k_{t+s}^{t}=k_{\text {npl }}$, $b_{t+s}^{t}=b_{\text {npl }}$, and $x_{t+s}^{t}=x_{\text {npl }}$ for all t and s;
(2) given the offer $\left\{k_{t+s}^{t}, b_{t+s}^{t}, x_{t+s}^{t}\right\}_{s \in \mathbb{R}_{+}}$from the bank, the firm defaults if either (i) $G\left(k_{t}^{t}\right)>V_{\text {npl }}$ or (ii) $x_{t}^{t}<x_{\text {npl }}$.

Persistence of inefficiency

- Inefficiency lasts permanently:

$$
k_{t}=k^{\mathrm{npl}}<k^{*}
$$

- Note that $D_{\max }>D_{\text {npl }}$, i.e., the value to the bank is higher when debt is restructured.
- Then why would the bank choose not to restructure debt?
- If debt restructuring is costly, and the cost exceeds $D_{\text {max }}-D^{\text {npl }}$, then the bank would choose to hold nonperforming loans.
- But even without such costs, if debt restructuring involves bargaining, then there can be an inefficient delay in reaching an agreement.

(2) Benchmark model

(3) Non-performing loans
4) Bargaining with two lenders

(5) Final remarks

Inefficient delays in bargaining

- Rubinstein (1982): a complete information model of bargaining.
- The unique SPE is efficient (the agreement is reached immediately).
- Inefficient delay may occur with asymmetric information:
- Abreu and Gul (2000), Feinberg and Skrzypacz (2005), Fuchs and Skrzypacz (2010), etc.
- Here we apply the model of Abreu and Gul (2000).
- Debt restructuring is inefficiently delayed, and loans become nonperforming.

Abreu and Gul (2000)

- Two agents bargain over their shares of a pie.
- Each agent may be either "rational" or "irrational."
- An irrational type is identified by a fixed offer and acceptance rule.
- Independence-from-procedures result:
- Regardless of the details of the bargaining protocol, the equilibrium distribution of outcomes in discrete-time bargaining games converge to the same limit.
- This limit corresponds to the (unique) equilibrium in the continuous-time bargaining game with a war of attrition structure.
- The rational type of each agent pretends to be their irrational type.
- Their strategy is described by a distribution over the time to concede.
- The equilibrium exhibits inefficient delay.
- As the probability of irrationality goes to zero, delay and inefficiency disappear.

Two banks

- Continue to consider the case where $D_{0}^{c}>D_{\max }$.
- Bank i holds a share $\omega^{i} \in(0,1)$ of D_{0}^{c}.
- Before debt restructuring, if the firm repays \hat{b}_{t}, then bank i receives $\omega^{i} \hat{b}_{t}$.
- Two banks bargain over their shares of the value of the debt after it is reduced to $D_{\text {max }}$.
- Simplifying assumptions:
- When the two banks bargain over their shares of $D_{\text {max }}$, they take as given the repayments $\left\{\hat{b}_{t}\right\}$ that the firm makes before debt restructuring.
- On the other hand, the repayments before debt restructuring, $\left\{\hat{b}_{t}\right\}$, are determined to maximize the joint surplus of the banks taking as given the equilibrium in the bargaining game.

Bargaining between the two banks

- The irrational type of bank i is identified by a number $\alpha^{i} \in(0,1)$.
- It always demands $\alpha^{i} D_{\max }$ and would accept the offer from the other bank if and only if its share is greater than or equal to α^{i}.
- $z^{i}=$ initial probability that bank i is irrational.
- Each bank's strategy is described by a cdf function $\Phi^{i}(t)$, i.e., the probability that lender i concedes to the other lender by time t (inclusive).
- In equilibrium, there exists a time $T^{0}>0$ such that
- $\Phi^{i}(t)$ is continuous for all $t>0$ and $i=1,2$;
- $\Phi^{i}(t)$ is constant for $t \geq T^{0}$ and $i=1,2$;
- $\Phi^{i}(t)$ is strictly increasing for $t \in\left[0, T^{0}\right)$ and $i=1,2$.
- Given $\left\{b_{t}\right\}$ and $\Phi^{j}(t)$, the expected value of bank i when it concedes to bank j at time t is:

$$
\begin{aligned}
u_{t}^{i}= & \int_{s=0}^{t}\left\{\int_{w=0}^{s} e^{-r w} \omega^{i} \hat{b}_{w} d w+e^{-r s} \alpha^{i} D_{\max }\right\} d \Phi^{j}(s) \\
& +\left[1-\Phi^{j}(t)\right]\left\{\int_{s=0}^{t} e^{-r s} \omega^{i} \hat{b}_{s} d s+e^{-r t}\left(1-\alpha^{j}\right) D_{\max }\right\}
\end{aligned}
$$

- Using the condition that $\frac{d u_{t}^{i}}{d t}=0$ for $t \in\left(0, T^{0}\right)$, the equilibrium is given by:

$$
\Phi^{j}(t)= \begin{cases}1-c^{j} \exp \left(-\int_{0}^{t} \lambda^{j}(s) d s\right), & t<T^{0}, \\ 1-z^{j}, & t \geq T^{0} .\end{cases}
$$

where

$$
\lambda^{j}(t) \equiv \frac{\left(1-\alpha^{j}\right) r-\beta^{i}(t)}{\alpha^{1}+\alpha^{2}-1},
$$

with $\beta^{i}(t) \equiv \frac{\omega^{i} \hat{b}_{t}}{D_{\text {max }}}$.

- $\left(c^{1}, c^{2}, T^{0}\right)$ is determined as follows:

$$
T^{0} \equiv \min \left(T^{1}, T^{2}\right),
$$

where T^{i} is defined implicitly by

$$
1-\exp \left(\int_{0}^{T^{i}} \lambda^{i}(s) d s\right)=1-z^{i}
$$

and c^{i} is determined by

$$
1-c^{i} \exp \left(\int_{0}^{T^{0}} \lambda^{i}(s) d s\right)=1-z^{i} .
$$

Repayments before debt restructuring

- Define $\Phi(t)=$ the probability that either one of the two lenders concede by time t :

$$
\Phi(t)=\left\{\begin{array}{l}
1-c \exp \left(-\int_{0}^{t} \lambda(s) d s\right), \quad t<T^{0} \\
1-z, \quad t \geq T^{0}
\end{array}\right.
$$

where $c \equiv c^{1} c^{2}, \lambda(s) \equiv \lambda^{1}(s)+\lambda^{2}(s)$, and $z=z^{1} z^{2}$.

- Given Φ and T^{0}, we consider a Markov plan that maximizes the joint value of the two banks.
- Because of T^{0}, time t is a payoff-relevant state variable in this problem.
- Let $\left\{\hat{k}_{t}, \hat{b}_{t}, \hat{x}_{t}\right\}$ is the plan before the debt reduction.
- Conditional on the event that debt restructuring has not been done by t, the values to the banks and the firm are:

$$
\begin{aligned}
\hat{D}_{t}= & \int_{t}^{T^{0}}\left\{\int_{t}^{s} e^{-r(w-t)} \hat{b}_{w} d w+e^{-r(s-t)} D_{\max }\right\} \frac{d \Phi(s)}{1-\Phi(t)} \\
& +\frac{1-\Phi\left(T^{0}\right)}{1-\Phi(t)} e^{-r\left(T^{0}-t\right)} D_{\mathrm{npl}}, \\
\hat{V}_{t}= & \int_{t}^{T^{0}}\left\{\int_{t}^{s} e^{-r(w-t)} \hat{X}_{w} d w+e^{-r(s-t)} V_{\min }\right\} \frac{d \Phi(s)}{1-\Phi(t)} \\
& +\frac{1-\Phi\left(T^{0}\right)}{1-\Phi(t)} e^{-r\left(T^{0}-t\right)} V_{\mathrm{npl}} .
\end{aligned}
$$

- Given Φ and T^{0}, let $\hat{\Gamma}(t)$ be the set of all plans $\left\{\hat{k}_{t}, \hat{b}_{t}, \hat{x}_{t}\right\}_{t \in\left[0, T^{0}\right)}$ such that

$$
\hat{V}_{t} \geq G\left(\hat{k}_{t}\right), \quad \text { and } \quad \hat{x}_{t}=F\left(\hat{k}_{t}\right)-r \hat{k}_{t}-\hat{b}_{t} \geq 0
$$

where \hat{V}_{t} is given as above.

- The Markov plan that maximizes the joint surplus of the two banks is:

$$
\max _{\left\{\hat{k}_{t}, \hat{b}_{t}, \hat{x}_{t}\right\} \in \hat{\Gamma}(0)} \hat{D}_{0} .
$$

- In this solution, $\hat{x}_{t}=0$ for all $t<T^{0}$ and

$$
\begin{aligned}
& \hat{V}_{t}=V_{\min } \int_{t}^{T^{0}} \lambda(s) \exp \left(-\int_{t}^{s}[\lambda(w)+r] d w\right) d s \\
&+V_{\mathrm{npl}} \exp \left(-\int_{t}^{T^{0}}[\lambda(s)+r] d s\right) .
\end{aligned}
$$

Given \hat{V}_{t} for $t<T^{0}$,

$$
\hat{k}_{t}=G^{-1}\left(\hat{V}_{t}\right), \quad \hat{b}_{t}=F\left(k_{t}\right)-r \hat{k}_{t} .
$$

- The equilibrium as a whole is given by $\left(\left\{\hat{b}_{t}, \hat{k}_{t}, \hat{x}_{t}\right\}_{t \in\left[0, T^{0}\right)}, \Phi\right)$ that jointly solves these two sets of the conditions.
(2) Benchmark model
(3) Non-performing loans

4. Bargaining with two lenders
(5) Final remarks

Nonperforming loans in Japan (relative to GDP)

Notes: Outstanding loans are measured as a fraction of GDP.
Sources: Financial Services Agency, The Japanese Government, Status of Non-Performing Loans.

Interpretation of Japan's lost decades

- Evidence on evergreening and "zombie firms" in Japan:
- Peek and Rosengren (2005), Caballero, Hoshi, and Kashyap (2008), etc.
- Fukuda and Nakamura (2011): Most firms which are identified as zombies by Caballero, Hoshi and Kashyap (2008) did recover substantially in the 2000s.
- In the 1990s, nonperforming loans piled up and evergreening was widespread.
- It created zombie firms as discussed by Caballero, Hoshi, and Kashyap (2008).
- In the 2000s, the bankruptcy and reorganization procedures were reformed.
- The Civil Rehabilitation Law was enacted in 2000 and the Alternative Dispute Resolution Law followed in 2004.
- Outstanding debt decreased rapidly, and most zombie firms recovered as shown by Fukuda and Nakaumara (2011).

Summary: Debt restructuring

- Suppose that $D_{0}^{c}>D_{\text {max }}$.
- Debt restructuring:
- The bank reduces D_{0}^{c} to $D_{\text {max }}$.
- The contractual value of debt is used as a state variable.
- The efficient plan is the solution to
which has a Markovian form: $\left\{k_{e}(D), x_{e}(D), b_{e}(D)\right\}$.
- Inefficiency (debt overhang) only lasts temporariliy.
- The first best allocation is attained in a finite period of time.

Summary: Nonperforming loans

- Suppose that the bank does not reduce D_{0}^{c}.
- The loan becomes nonperforming.
- The PDV of repayments is less than the value of debt.
- The contractual value of debt is no longer a state variable.
- The set of feasible plans does not depend on the value of debt on the contract.
- Markov plans are constant plans.
- Let $\bar{\Gamma}=$ the set of constant feasible plans.
- The most profitable Markov plan for the bank is the solution to
which is given as $\left\{k_{\text {npl }}, x_{\text {npl }}, b_{\text {npl }}\right\}$.
- Inefficiency lasts permanently.
- Note, however, that $D_{\max }>D_{\mathrm{npl}}$.

Summary: Bargaining with two banks

- Apply Abreu and Gul's model of bargaining with asymmetric information.
- Each bank may be irrational with a fixed offer and acceptance rule.
- The equilibrium in the bargaining game between the two banks exhibits an inefficient delay.
- Debt restructuring is not done immediately, and the loan becomes nonperforming.
- The time t becomes a state variable.
- $\hat{\Gamma}(t)=$ the set of all feasible plans after t (before debt restructuring).
- The Markov plan that maximizes the joint surplus for the banks is the solution to:

$$
\max _{\left\{\hat{k}_{t}, \hat{b}_{t}, \hat{x}_{t}\right\} \in \hat{\Gamma}(0)} \hat{D}_{0},
$$

which has a Markovian form: $\{\hat{k}(t), \hat{x}(t), \hat{b}(t)\}$.

