Wholesale Banking and Bank Runs in Macroeconomic Modelling of Financial Crises

Mark Gertler, Nobuhiro Kiyotaki and Andrea Prespitino NYU, Princeton, Federal Reserve Board

A key feature of the recent crisis is banking crisis
Slow run on shadow banks from Summer 2007, followed by fast run after Lehman failure in Fall 2008

Spreads rose and investments fell
Wholesale funding by financial intermediaries expanded significantly before the crisis

What are the driving forces?
Efficiency gain?
Possibility of run in wholesale funding market?
Why should we care about run?

Retail	Private Depository Institutions
Sector	Money Market Mutual Funds
	Mutual Funds
Wholesale	Originate : Financing Companies
Sector	Real Estate Investment Trusts
	Securitize : Government Sponsored Enterprises
	Security Brokers Dealers
	ABS Issuers
	Hold : GSE Mortgage Pools
	Funding Companies
	Holding Companies

Figure 2: Wholesale Intermediation

Figure 3: Intermediation by Sector

The graph shows the evolution of credit intermediated by the three different sectors. Nominal data from the flow of funds are deflated using the CPI and normalized so that the log of the normalized value of real wholesale intermediation in 1980 is equal to 1 . The resulting time series are then multiplied by 100

Figure 4: Brokers Leverage

Leverage is given by the ratio of total assets over equity. Equity is computed from the flow of funds by subtracting liabilities other than "holding comanies equity investment" from total assets. The net position leverage computes assets by netting out long and short positions in REPO and Security Credit

Figure 5: Short Term Wholesale Funding

The graph shows the logarithm of the real value outstanding. Nominal values from Flow of FUnds are deflated using the CPI

Figure 6: Retail short term Funding

The graph shows the logarithm of the real value outstanding. Nominal values from Flow of Fnds are deflated using the CPI and normalized so that the log of the normalized value of retail short term funding in 2001 is equal to 100

We develop a macro model of wholesale and retail banks and households

Wholesale banks are better at making business loans
Banks are better in monitoring other banks than households
Financial innovation: better monitoring of other banks \rightarrow wholesale banks borrow more from retail banks
leverage of each bank $\uparrow \uparrow>$ net leverage of banking sector \uparrow
Improve efficiency: larger steady state output and smaller financial accelerator

But wholesale banks are more vulnerable to roll-over risk, or "bank run"

Figure 7: Investment Collapse

Spreads and Investment

Basic Model

Capital is either intermediated by banks or held by households

$$
K_{t}^{w}+K_{t}^{r}+K_{t}^{h}=\bar{K}
$$

$$
\left.\begin{array}{c}
\text { date } t \\
K_{t}^{j} \text { capital } \\
F^{j}\left(K_{t}^{j}\right) \text { goods }
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { date } t+1 \\
K_{t}^{j} \text { capital } \\
Z_{t+1} K_{t}^{j} \text { output }
\end{array}\right\} \begin{gathered}
F^{j}\left(K_{t}^{h}\right)=\frac{\alpha^{j}}{2}\left(K_{t}^{j}\right)^{2}: \text { management cost } \\
\alpha^{h}>\alpha^{r}>\alpha^{w}=0
\end{gathered}
$$

Retail bank pays $f_{t}^{r}=F^{r \prime}\left(K_{t}^{j}\right)$ fee per unit of capital to households who provide management service

Retail deposit and interbank loan contracts

Short term

Promised rates of returns \bar{R}_{t+1} and $\bar{R}_{b t+1}$ are non-contingent
With run, the return to the creditor is the minimum of the promised return and total realized debtor bank assets per outstanding credit

In Basic Model, bank run is unanticipated

Households maximize

$$
U_{t}=E_{t}\left(\sum_{i=0}^{\infty} \beta^{i} \ln C_{t+i}^{h}\right)
$$

subject to:

$$
\begin{gathered}
C_{t}^{h}+D_{t}+Q_{t} K_{t}^{h}+F^{h}\left(K_{t}^{h}\right) \\
=Z_{t} W^{h}+R_{t} D_{t-1}+\left(Z_{t}+Q_{t}\right) K_{t-1}^{h}+f_{t}^{r} K_{t}^{r}-F^{r}\left(K_{t}^{r}\right)
\end{gathered}
$$

$$
\begin{gathered}
1=E_{t}\left(\beta \frac{C_{t}}{C_{t+1}}\right) R_{t+1} \\
1=E_{t}\left(\beta \frac{C_{t}}{C_{t+1}} \cdot \frac{Z_{t+1}+Q_{t+1}}{Q_{t}+F^{h \prime}\left(K_{t}^{h}\right)}\right)
\end{gathered}
$$

Many bankers of type $j=w, r$
Each has an i.i.d. survival probability of σ^{j}
Banker consumes wealth upon exit: $c_{t}^{j}=n_{t}^{j}$
Preferences are linear in "terminal" consumption

$$
V_{t}^{j}=E_{t}\left[\sum_{i=1}^{\infty} \beta^{i}\left(\sigma^{j}\right)^{i-1}\left(1-\sigma^{j}\right) c_{t+i}^{j}\right]
$$

Each exiting banker replaced by a new banker with an endowment $w^{j}=n_{t}^{j}$

Net worth n_{t}^{j} of surviving bankers

$$
n_{t}^{j}=\left(Z_{t}+Q_{t}\right) k_{t-1}^{j}-R_{t} d_{t-1}^{j}-R_{b t} b_{t-1}^{j}
$$

Consider a bank with $n_{t}^{j}=1$. The bank chooses $\left(Q_{t}+f_{t}^{j}\right) k_{t}^{j}$ and d_{t}^{j} to maximize

$$
\begin{gathered}
V_{t}^{j}=\beta E_{t}\left\{\left(1-\sigma^{j}+\sigma^{j} \frac{V_{t+1}^{j}}{n_{t+1}^{j}}\right) n_{t+1}^{j}\right\} \\
=\beta E_{t} \Omega_{\mathrm{t}+1}^{j}\left[\left(R_{k \mathrm{t}+1}^{j}-R_{b \mathrm{t}+1}\right)\left(Q_{t}+f_{t}^{j}\right) k_{t}^{j}+\left(R_{b \mathrm{t}+1}-R_{\mathrm{t}+1}\right) d_{t}^{j}+R_{b \mathrm{t}+1}\right] \\
=\mu_{k t}^{j}\left(Q_{t}+f_{t}^{j}\right) k_{t}^{j}+\mu_{b t}^{j} d_{t}^{j}+\nu_{b t}^{j}, \text { where } R_{k t+1}^{j}=\frac{Q_{t+1}+Z_{t+1}}{Q_{t}+f_{t}^{j}}
\end{gathered}
$$

subject to

$$
V_{t}^{j} \geq \theta\left[1+d_{t}^{j}+\omega \operatorname{Max}\left(\left(Q_{t}+f_{t}^{j}\right) k_{t}^{j}-d_{t}^{j}-1,0\right)\right]
$$

Wholesale banks

$$
\begin{gathered}
D_{t}^{w}=0, \text { if } \omega \mu_{b t}^{w}<(1-\omega) \mu_{k t}^{w} \\
Q_{t} K_{t}^{w}=\phi_{t}^{w} N_{t}^{w}=N_{t}^{w}+B_{t} \\
\phi_{t}^{w}=\frac{\nu_{b t}^{w}-\theta(1-\omega)}{\theta \omega-\mu_{k t}^{w}}
\end{gathered}
$$

Retail banks

$$
\begin{gathered}
\left(Q_{t}+f_{t}^{r}\right) K_{t}^{r}+B_{t}=\phi_{t}^{r} N_{t}^{r}=N_{t}^{r}+D_{t}^{r} \\
\phi_{t}^{r}=\frac{\nu_{b t}^{r}-\mu_{b t}^{r}}{\theta-\mu_{b t}^{r}}
\end{gathered}
$$

$$
N_{t}^{j}=\sigma^{j}\left[\left(Z_{t}+Q_{t}\right) K_{t-1}^{j}-R_{t} D_{t-1}^{j}-R_{b t} B_{t-1}^{j}\right]+\left(1-\sigma^{j}\right) w^{j}
$$

Wholesale Banks

PARAMETERS		
Households		
β	discount rate	. 99
α^{h}	Intermediation cost	. 03
W^{h}	Endowment	. 006
Retail Banks		
σ^{r}	Survival Probability	. 95
α^{r}	Intermediation cost	. 0075
W^{r}	Endowment	. 0008
θ	Divertable proportion of assets	. 25
Wholesale Banks		
σ^{w}	Survival Probability	. 9
α^{w}	Intermediation cost	0
W^{w}	Endowment	. 0004
ω	Shrinkage of divertable proportion of assets	. 5
Production		
σ_{z} ρ_{z}	std of dividends autocorrelation of dividends	.05 .9

Financial Innovation: A Permanent Fall in ω

Wholesale banks borrow more from retail banks with higher leverage

Retail banks reduce business loans
Leverage multiples of individual bank is higher, but

$$
\frac{Q_{t} K_{t}^{w}+\left(Q_{t}+f_{t}^{r}\right) K_{t}^{r}}{N_{t}^{w}+N_{t}^{r}}<\frac{\left(Q_{t}+f_{t}^{r}\right) K_{t}^{r}+B_{t}}{N_{t}^{r}}<\frac{Q_{t} K_{t}^{w}}{N_{t}^{w}}
$$

Economy becomes more efficient with larger net output
Financial accelerator becomes SMALLER

Ratio between WS and Retail short term funding

Figure 11：A recession before and after financial innovation（NO RUN EQUILIBRIUM）

Wholesale Bank Runs

Ex ante, zero probability of a run
If retail banks do not roll over their interbank credit ("run"), the wholesale banks sell their capital to households and retail banks who are less efficient in managing capital

In addition to an equilibrium without run, bank run equilibrium exists if:

$$
\left(Z_{t}+Q_{t}^{*}\right) K_{t-1}^{w}<R_{b t} B_{t-1}
$$

$Q_{t}^{*} \equiv$ the liquidation price of the bank's assets

After a bank run at t :

$$
\begin{gathered}
K_{t}^{h}+K_{t}^{r}=\bar{K} \\
N_{t+1}^{w}=\left(1-\sigma^{w}\right) w^{w}+\sigma^{w}\left(1-\sigma^{w}\right) w^{w} \\
N_{s}^{w}=\sigma^{w}\left[\left(Z_{s}+Q_{s}\right) K_{s-1}^{w}-R_{b s} B_{s-1}\right]+\left(1-\sigma^{w}\right) w^{w}, \forall s \geq t+2
\end{gathered}
$$

Household condition for direct capital holding \rightarrow

$$
Q_{t}^{*}=E_{t}\left\{\sum_{i=1}^{\infty} \Lambda_{t, t+i}\left[Z_{t+i}-\alpha^{h} K_{t+i}^{h}\right]\right\}-\alpha^{h} K_{t}^{h}
$$

Figure 13：A recession followed by a run on wholesale bankers only

Anticipated Bank Runs

$$
\begin{gathered}
\text { Deposit returns } R_{b t+1}=\left\{\begin{array}{c}
\bar{R}_{b t+1} \text { if no bank run } \\
x_{b t+1} \bar{R}_{b t+1} \text { if bank run }
\end{array}\right. \\
x_{b t+1}=\operatorname{Min}\left[1, \frac{\left(Q_{t+1}^{*}+Z_{t+1}\right) K_{t}^{w}}{\bar{R}_{b t+1} B_{t}}\right]
\end{gathered}
$$

Household attaches the probability of bank run as

$$
p_{t}=p\left(E_{t}\left(x_{b t+1}\right)\right), p(1)=0, p^{\prime}(\cdot)<0
$$

FONC for interbank loan is

$$
E_{t}\left[\left(1-p_{t}\right) \Omega_{t+1}^{r}\left(R_{k t+1}^{r}-\bar{R}_{b t+1}\right)+p_{t} \Omega_{t+1}^{r *}\left(R_{k t+1}^{r *}-x_{b t+1} \bar{R}_{b t+1}\right)\right]=0
$$

Figure 14: A recession in the model with anticipated runs

Figure 15：A recession followed by a run in the model with anticipated runs

—— recession followed by anticipated run on wholseale $ー$－ーーー recession

Total Finance Premium $\left(E R^{k}-R\right)$

Financial CP Spread

Some Remarks About Policy

Capital requirement on all the large banks reduces likelihood of bank run

Can reduce the efficiency of intermediation
Lender-of-last resort stabilizes liquidation price
May reduce the likelihood of run
But increases the leverage multiple ex ante and the financial accelerator

