Screening and Adverse Selection in Frictional Markets

Benjamin Lester Philadelphia Fed

Venky Venkateswaran NYU Stern Ali Shourideh Wharton

Ariel Zetlin-Jones Carnegie Mellon University

May 2015

Disclaimer: The views expressed here do not necessarily reflect the views of the Federal Reserve Bank of Philadelphia.

• Examples: insurance, loans, financial securities

• Examples: insurance, loans, financial securities

In these markets, contracts used to screen different types

• Examples: differential coverage, loan amounts, trade sizes

• Examples: insurance, loans, financial securities

In these markets, contracts used to screen different types

• Examples: differential coverage, loan amounts, trade sizes

A unified theoretical framework is lacking

- Large empirical literature (and some theory)
- But typically restricts contracts and/or assumes perfect competition

• Examples: insurance, loans, financial securities

In these markets, contracts used to screen different types

• Examples: differential coverage, loan amounts, trade sizes

A unified theoretical framework is lacking

- Large empirical literature (and some theory)
- But typically restricts contracts and/or assumes perfect competition

But many important questions

- Recent push to make these markets more competitive, transparent
- Is this a good idea?

A tractable model of adverse selection, screening and imperfect comp.

1 Complete characterization of the unique equilibrium

A tractable model of adverse selection, screening and imperfect comp.

- 1 Complete characterization of the unique equilibrium
- e Explore positive predictions for distribution of contracts

A tractable model of adverse selection, screening and imperfect comp.

- 1 Complete characterization of the unique equilibrium
- e Explore positive predictions for distribution of contracts
- **3** Policy experiments: changes in competition, transparency

Sketch of Model: Key Ingredients

- Adverse Selection: sellers have private info about quality
 - A fraction μ_h have quality h, the rest quality ℓ

Sketch of Model: Key Ingredients

- Adverse Selection: sellers have private info about quality
 - A fraction μ_h have quality h, the rest quality ℓ
- Screening: Buyers offer general menus of non-linear contracts
 - Price-quantity pairs: induce sellers to self-select

Sketch of Model: Key Ingredients

- Adverse Selection: sellers have private info about quality
 - A fraction μ_h have quality h, the rest quality ℓ
- Screening: Buyers offer general menus of non-linear contracts
 - Price-quantity pairs: induce sellers to self-select
- Imperfect Comp: sellers receive either 1 or 2 offers (à la Burdett-Judd)
 - Buyer competing with another with prob π , otherwise monopsonist.
 - Contract offered before buyers know

Perfect competition and "mild adverse selection" \Rightarrow Mixed Strategy Eq.

Monopsony and "severe adverse selection" \Rightarrow No Trade with High Type

Monopsony and "mild adverse selection" \Rightarrow Full Trade

Obj: Characterize eqm for any degree of adverse selection and imperfect comp.

Obj: Characterize eqm for any degree of adverse selection and imperfect comp.

Financial and Insurance markets typically characterized by imperfect comp.

0

(Monopsony

Obj: Characterize eqm for any degree of adverse selection and imperfect comp.

 $\Pi \rightarrow \pi$ (Perfect Comp)

Financial and Insurance markets typically characterized by imperfect comp.

What are the implications of imperfect comp. for....

- Terms of trade
- Welfare
- Policy

Methodology

• New techniques to characterize unique eqm for all $(\mu_h,\pi)\in [0,1]^2$

Methodology

- New techniques to characterize unique eqm for all $(\mu_h,\pi)\in [0,1]^2$
- Establish important (and general!) property of all equilibria:
 - Strictly rank preserving: offers for ℓ and h ranked exactly the same
 - No specialization

Summary of Findings

Methodology

- New techniques to characterize unique eqm for all $(\mu_h, \pi) \in [0, 1]^2$
- Establish important (and general!) property of all equilibria:
 - Strictly rank preserving: offers for ℓ and h ranked exactly the same
 - No specialization

Positive Implications

- Equilibrium can be pooling, separating, or mix
- · Separation when adverse selection severe, trading frictions mild
- · Pooling when adverse selection mild, trading frictions severe

Summary of Findings

Methodology

- New techniques to characterize unique eqm for all $(\mu_h,\pi)\in [0,1]^2$
- Establish important (and general!) property of all equilibria:
 - Strictly rank preserving: offers for ℓ and h ranked exactly the same
 - No specialization

Positive Implications

- Equilibrium can be pooling, separating, or mix
- · Separation when adverse selection severe, trading frictions mild
- · Pooling when adverse selection mild, trading frictions severe

Normative Implications

- Adverse selection severe: interior π maximizes surplus from trade
- Adverse selection mild: welfare unambiguously decreasing in π
- Increasing transparency/relaxing info frictions can \uparrow or \downarrow welfare

Empirical

• Chiappori and Salanie (2000); Ivashina (2009); Einav et al. (2010); Einav et al. (2012)

Adverse Selection and Screening

• Rothschild and Stiglitz (1976); Dasgupta and Maskin (1986); Rosenthal and Weiss (1984); Mirrlees (1971); Stiglitz (1977); Maskin and Riley (1984); Guerrieri, Shimer and Wright (2010); Many, many others

Imperfect Competition and Selection

- Search Frictions: Burdett and Judd (1983); Garrett, Gomes, and Maestri (2014)
- Specialization: Benabou and Tirole (2014), Mahoney and Weyl (2014), Veiga and Weyl (2015)

Environment

- Each Seller endowed with 1 divisible asset
 - Seller values asset at rate c_i
 - Two types of sellers $i \in \{l, h\}$ with prob. μ_i
- Buyer values type *i* asset at rate *v_i*

- Each Seller endowed with 1 divisible asset
 - Seller values asset at rate c_i
 - Two types of sellers $i \in \{l, h\}$ with prob. μ_i
- Buyer values type *i* asset at rate *v_i*
- If x units sold for transfer t, payoffs are
 - Seller: $t + (1 x)c_i$
 - Buyer: *xv_i* − *t*

- Each Seller endowed with 1 divisible asset
 - Seller values asset at rate c_i
 - Two types of sellers $i \in \{I, h\}$ with prob. μ_i
- Buyer values type *i* asset at rate *v_i*
- If x units sold for transfer t, payoffs are
 - Seller: $t + (1 x)c_i$
 - Buyer: $xv_i t$
- Assumptions:
 - Gains to trade: $v_i > c_i$
 - Lemons Assumption: $v_l < c_h$
 - Adverse Selection: Only sellers know asset quality

Screening

- Buyers post arbitrary menus of exclusive contracts
- Screening menus intended to induce self-selection

Screening

- Buyers post arbitrary menus of exclusive contracts
- Screening menus intended to induce self-selection

Search frictions

- Each seller receives 1 offer w.p. $1-\pi$ and both w.p. π
 - Refer to seller with 1 offer as Captive
 - Refer to seller with 2 offers as non-Captive

Screening

- Buyers post arbitrary menus of exclusive contracts
- · Screening menus intended to induce self-selection

Search frictions

- Each seller receives 1 offer w.p. $1-\pi$ and both w.p. π
 - Refer to seller with 1 offer as Captive
 - Refer to seller with 2 offers as non-Captive

Stylized Model of Trade

- best examples: corporate loans market; securitization (maybe)
- other examples: information-based trading; insurance

Strategies

- Each buyer offers arbitrary menu of contracts $\{(x_n, t_n)_{n \in \mathcal{N}}\}$
- Captive seller's choice: best (x_n, t_n) from one buyer
- Non-captive seller's choice: best (x_n, t_n) among both buyers

Strategies

- Each buyer offers arbitrary menu of contracts $\{(x_n, t_n)_{n \in \mathcal{N}}\}$
- Captive seller's choice: best (x_n, t_n) from one buyer
- Non-captive seller's choice: best (x_n, t_n) among both buyers

Revelation Principle

sufficient to consider

• menus with two contracts $z \equiv \{(x_l, t_l), (x_h, t_h)\}$

$$(IC_j): t_j + c_j(1-x_j) \ge t_{-j} + c_j(1-x_{-j}) j \in \{h, l\}$$

• seller *j*: chooses contract *j* from available the set of menus available

Equilibrium Price Dispersion

- Suppose $\pi \in (0,1)$: no symmetric pure strategy equilibrium exists
 - buyers can guarantee positive profits: trade only with captive types
 - in a pure strategy equilibrium: have to share non-captive types

Equilibrium Price Dispersion

- Suppose $\pi \in (0,1)$: no symmetric pure strategy equilibrium exists
 - buyers can guarantee positive profits: trade only with captive types
 - in a pure strategy equilibrium: have to share non-captive types There is always an incentive to undercut
- Only mixed strategy equilibria possible
 - \Rightarrow equilibrium features price dispersion
 - \Rightarrow equilibrium described by buyers' distribution over menus

A symmetric equilibrium is a distribution $\Phi(z)$ such that almost all z satisfy,

1 Incentive compatibility:

$$t_j + c_j(1 - x_j) \ge t_{-j} + c_j(1 - x_{-j})$$
 $j \in \{h, l\}$

2 Seller optimality:

 $\chi_i(\mathbf{z}, \mathbf{z}')$ maximizes her utility

3 Buyer optimality: for each $z \in Supp(\Phi)$

$$\mathbf{z} \in \arg \max_{\mathbf{z}} \sum_{i \in \{l,h\}} \mu_i (\mathbf{v}_i \mathbf{x}_i - t_i) \left[1 - \pi + \pi \int_{\mathbf{z}'} \chi_i (\mathbf{z}, \mathbf{z}') \Phi(d\mathbf{z}') \right] \quad (1)$$

Equilibrium described by non-degenerate distribution in 4 dimensions

Equilibrium described by non-degenerate distribution in 4 dimensions

Proceed in 4 steps

- 1. Show that menus can be summarized by a pair of utilities (u_h, u_l)
 - Reduces dimensionality of problem to distribution in 2 dimensions
- 2. Show there is a 1-1 mapping between u_l and u_h
 - $\bullet\,$ Reduces problem to distribution in 1 dimension + a monotonic function
- 3. Construct Equilibrium
- 4. Show that constructed equilibrium is unique

Result (Dasgupta and Maskin (1986))

In all menus offered in equilibrium,

- the low types trades everything: $x_l = 1$
- IC₁ binds: $t_1 = t_h + c_1(1 x_h)$

Result (Dasgupta and Maskin (1986))

In all menus offered in equilibrium,

- the low types trades everything: $x_l = 1$
- IC_l binds: $t_l = t_h + c_l(1 x_h)$

Result

Equilibrium menus can be represented by (u_h, u_l) with corresponding allocations

$$t_{l} = u_{l}$$
 $x_{h} = 1 - \frac{u_{h} - u_{l}}{c_{h} - c_{l}}$ $t_{h} = \frac{u_{l}c_{h} - u_{h}c_{l}}{c_{h} - c_{l}}$

Result (Dasgupta and Maskin (1986))

In all menus offered in equilibrium,

- the low types trades everything: $x_l = 1$
- IC_l binds: $t_l = t_h + c_l(1 x_h)$

Result

Equilibrium menus can be represented by (u_h, u_l) with corresponding allocations

$$t_l = u_l$$
 $x_h = 1 - \frac{u_h - u_l}{c_h - c_l}$ $t_h = \frac{u_l c_h - u_h c_l}{c_h - c_l}$

Since we must have $0 \le x_h \le 1$,

$$c_h - c_l \geq u_h - u_l \geq 0$$

$$F_{j}\left(u_{j}\right) = \int_{\mathbf{z}'} \mathbf{1}\left[t_{j}' + c_{j}\left(1 - x_{j}'\right) \leq u_{j}\right] d\Phi\left(\mathbf{z}'\right) \qquad j \in \{h, l\}$$

$$F_{j}\left(u_{j}\right) = \int_{\mathbf{z}'} \mathbf{1}\left[t_{j}' + c_{j}\left(1 - x_{j}'\right) \leq u_{j}\right] d\Phi\left(\mathbf{z}'\right) \qquad j \in \{h, l\}$$

Then, each buyer solves

$$\begin{split} \Pi(u_{h}, u_{l}) &= \max_{u_{l} \geq c_{l}, u_{h} \geq c_{h}} \sum_{j \in \{l, h\}} \mu_{j} \left[1 - \pi + \pi F_{j} \left(u_{j} \right) \right] \Pi_{j} \left(u_{h}, u_{l} \right) \\ \text{s. t.} & c_{h} - c_{l} \geq u_{h} - u_{l} \geq 0 \end{split}$$

$$F_{j}\left(u_{j}\right) = \int_{\mathbf{z}'} \mathbf{1}\left[t_{j}' + c_{j}\left(1 - x_{j}'\right) \leq u_{j}\right] d\Phi\left(\mathbf{z}'\right) \qquad j \in \{h, l\}$$

Then, each buyer solves

$$\Pi(u_{h}, u_{l}) = \max_{\substack{u_{l} \geq c_{l}, \ u_{h} \geq c_{h}}} \sum_{j \in \{l, h\}} \mu_{j} \left[1 - \pi + \pi F_{j} \left(u_{j} \right) \right] \Pi_{j} \left(u_{h}, u_{l} \right)$$

s. t. $c_{h} - c_{l} \geq u_{h} - u_{l} \geq 0$

with $\Pi_{l}(u_{h}, u_{l}) \equiv v_{l}x_{l} - t_{l} = v_{l} - u_{l}$ $\Pi_{h}(u_{h}, u_{l}) \equiv v_{h}x_{h} - t_{h} = v_{h} - u_{h}\frac{v_{h} - c_{l}}{c_{h} - c_{l}} + u_{l}\frac{v_{h} - c_{h}}{c_{h} - c_{l}}$

$$F_{j}\left(u_{j}\right) = \int_{\mathbf{z}'} \mathbf{1}\left[t_{j}' + c_{j}\left(1 - x_{j}'\right) \leq u_{j}\right] d\Phi\left(\mathbf{z}'\right) \qquad j \in \{h, l\}$$

Then, each buyer solves

$$\begin{aligned} \Pi(u_{h}, u_{l}) &= \max_{u_{l} \geq c_{l}, u_{h} \geq c_{h}} \sum_{j \in \{l, h\}} \mu_{j} \left[1 - \pi + \pi F_{j} \left(u_{j} \right) \right] \Pi_{j} \left(u_{h}, u_{l} \right) \\ \text{s. t.} & c_{h} - c_{l} \geq u_{h} - u_{l} \geq 0 \end{aligned}$$

with $\Pi_{l}(u_{h}, u_{l}) \equiv v_{l}x_{l} - t_{l} = v_{l} - u_{l}$ $\Pi_{h}(u_{h}, u_{l}) \equiv v_{h}x_{h} - t_{h} = v_{h} - u_{h}\frac{v_{h} - c_{l}}{c_{h} - c_{l}} + u_{l}\frac{v_{h} - c_{h}}{c_{h} - c_{l}}$

$$F_{j}\left(u_{j}\right) = \int_{\mathbf{z}'} \mathbf{1}\left[t_{j}' + c_{j}\left(1 - x_{j}'\right) \leq u_{j}\right] d\Phi\left(\mathbf{z}'\right) \qquad j \in \{h, l\}$$

Then, each buyer solves

$$\Pi(u_{h}, u_{l}) = \max_{\substack{u_{l} \geq c_{l}, \ u_{h} \geq c_{h}}} \sum_{j \in \{l, h\}} \mu_{j} \left[1 - \pi + \pi F_{j} \left(u_{j} \right) \right] \Pi_{j} \left(u_{h}, u_{l} \right)$$

s. t. $c_{h} - c_{l} \geq u_{h} - u_{l} \geq 0$
with $\Pi_{l} \left(u_{h}, u_{l} \right) \equiv v_{l} x_{l} - t_{l} = v_{l} - u_{l}$
 $\Pi_{l} \left(u_{h}, u_{l} \right) = c_{h} - c_{h} + c_{h} - c_{h}$

$$\Pi_{h}(u_{h}, u_{l}) \equiv v_{h}x_{h} - t_{h} = v_{h} - u_{h}\frac{c_{h}}{c_{h} - c_{l}} + \frac{u_{l}}{c_{h} - c_{l}}$$

Need to characterize the two linked distributions F_l and F_h !

Result

 F_l and F_h have connected support and are continuous.

- Except for a knife-edge case (see paper)
- Proof more involved than standard case because of interdependencies

Result

 F_l and F_h have connected support and are continuous.

- Except for a knife-edge case (see paper)
- Proof more involved than standard case because of interdependencies

Result

The profit function $\Pi(u_h, u_l)$ is strictly supermodular.

• Intuition: $u_l \uparrow \Rightarrow \Pi_h \uparrow \Rightarrow$ stronger incentives to attract high types

•
$$\Rightarrow U_h(u_l) \equiv argmax_{u_h} \Pi(u_h, u_l)$$
 is weakly increasing

 $U_h(u_l)$ is a strictly increasing function.

 $U_h(u_l)$ is a strictly increasing function.

Idea of Proof

- $U_h(u_l)$ increasing due to super-modularity of profit function
- *F_l* and *F_h* have no holes or mass points imply *U_h* is strictly increasing and not a correspondence

 $U_h(u_l)$ is a strictly increasing function.

Implications for Characterization

- Rank ordering of equilibrium menus identical across types
- Menus attract same fraction of both types $F_l(u_l) = F_h(U_h(u_l))$
- Greatly simplifies the analysis: only have to find $F_l(u_l)$ and $U_h(u_l)$

 $U_h(u_l)$ is a strictly increasing function.

Implications for Characterization

- Rank ordering of equilibrium menus identical across types
- Menus attract same fraction of both types $F_l(u_l) = F_h(U_h(u_l))$
- Greatly simplifies the analysis: only have to find $F_l(u_l)$ and $U_h(u_l)$

 $U_h(u_l)$ is a strictly increasing function.

Implications for Characterization

- Rank ordering of equilibrium menus identical across types
- Menus attract same fraction of both types $F_l(u_l) = F_h(U_h(u_l))$
- Greatly simplifies the analysis: only have to find $F_l(u_l)$ and $U_h(u_l)$

Broader Implications

- Buyers do not specialize or attract only a subset of types
- Terms of trade offered to both types are positive correlated

 $U_h(u_l)$ is a strictly increasing function.

Implications for Characterization

- Rank ordering of equilibrium menus identical across types
- Menus attract same fraction of both types $F_l(u_l) = F_h(U_h(u_l))$
- Greatly simplifies the analysis: only have to find $F_l(u_l)$ and $U_h(u_l)$

Broader Implications

- · Buyers do not specialize or attract only a subset of types
- Terms of trade offered to both types are positive correlated

Robust to any number of types

• Relies only on utility representation and ability to show distributions are well behaved

Constructing Equilibria

Monopsony: $\pi = 0$

Bertrand: $\pi = 1$

Equilibria: The two limit cases

Monopsony: $\pi = 0$

- $\mu_h < \bar{\mu}_h \Rightarrow$ Sep. with $x_h = 0$ and $\Pi_l > \Pi_h = 0$
 - No Cross-subsidization
- $\mu_h \geq \bar{\mu}_h \Rightarrow$ Pooling with $x_h = x_l = 1$ and $\Pi_h > 0 > \Pi_l$
 - Cross-subsidization

Bertrand: $\pi = 1$

Equilibria: The two limit cases

Monopsony: $\pi = 0$

- $\mu_h < \bar{\mu}_h \Rightarrow$ Sep. with $x_h = 0$ and $\Pi_l > \Pi_h = 0$
 - No Cross-subsidization
- $\mu_h \geq \bar{\mu}_h \Rightarrow$ Pooling with $x_h = x_l = 1$ and $\Pi_h > 0 > \Pi_l$
 - Cross-subsidization

Bertrand: $\pi = 1$

- $\mu_h < \bar{\mu}_h \Rightarrow$ Sep. with $x_h < 1$, $\Pi_h = \Pi_l = 0$
 - No Cross-subsidization
- $\mu_h \geq \bar{\mu}_h \Rightarrow$ Sep. with $x_h < 1$, $\Pi = 0$, but $\Pi_h > 0 > \Pi_l$
 - Cross-subsidization

Monopsony: $\pi = 0$

• $\mu_h < \bar{\mu}_h \Rightarrow$ Sep. with $x_h = 0$ and $\Pi_l > \Pi_h = 0$

• No Cross-subsidization

•
$$\mu_h \geq \bar{\mu}_h \Rightarrow$$
 Pooling with $x_h = x_l = 1$ and $\Pi_h > 0 > \Pi_l$

Cross-subsidization

Bertrand: $\pi = 1$

- $\mu_h < \bar{\mu}_h \Rightarrow$ Sep. with $x_h < 1$, $\Pi_h = \Pi_l = 0$
 - No Cross-subsidization
- $\mu_h \geq \bar{\mu}_h \Rightarrow$ Sep. with $x_h < 1$, $\Pi = 0$, but $\Pi_h > 0 > \Pi_l$
 - Cross-subsidization

Intuition: Higher $\mu_h \Rightarrow \text{Relaxing } IC^{\prime} \text{ more attractive}$

Types of equilibria in the middle

All separating, all pooling or a mix

Low μ_h

- $\Pi_l, \ \Pi_h \ge 0$
- All separating, $U_h(u_l) \neq u_l$

No cross-subsidization: Characterization

Focus on separating equilibrium in no-cross subsidization region

Recall problem of a buyer:

$$\begin{split} \Pi(u_{h}, u_{l}) &= \max_{u_{l} \geq c_{l}, u_{h} \geq c_{h}} \sum_{j \in \{l, h\}} \mu_{j} \left[1 - \pi + \pi F_{j}(u_{j}) \right] \Pi_{j}(u_{h}, u_{l}) \\ \text{s. t.} & c_{h} - c_{l} \geq u_{h} - u_{l} \geq 0 \end{split}$$

No cross-subsidization: Characterization

Focus on separating equilibrium in no-cross subsidization region

Recall problem of a buyer:

$$\begin{aligned} \Pi(u_h, u_l) &= \max_{u_l \geq c_l, \ u_h \geq c_h} \sum_{j \in \{l, h\}} \mu_j \left[1 - \pi + \pi F_j(u_j) \right] \Pi_j(u_h, u_l) \\ \text{s. t.} & c_h - c_l \geq u_h - u_l \geq 0 \end{aligned}$$

- In separating equilibrium we construct, $c_h c_l > u_h u_l > 0$
- Sufficient to ensure local deviations unprofitable

Marginal benefits vs costs of increasing u_l

Marginal benefits vs costs of increasing u_l

Boundary conditions

$$F_l(c_l) = 0$$
 $F_l(\bar{u}_l) = 1$ \rightarrow $F_l(u_l)$

Equal profit condition

$$[1 - \pi + \pi F_l(u_l)] \ \Pi(U_h, u_l) = \overline{\Pi} \quad \rightarrow \quad U_h(u_l)$$

Marginal benefits vs costs of increasing u_l

Boundary conditions

$$F_l(c_l) = 0$$
 $F_l(\bar{u}_l) = 1$ \rightarrow $F_l(u_l)$

Equal profit condition

$$[1 - \pi + \pi F_l(u_l)] \ \Pi(U_h, u_l) = \overline{\Pi} \quad \rightarrow \quad U_h(u_l)$$

Pursue similar construction in other regions of parameter space

Equilibrium Regions in the Middle

Equilibrium Regions in the Middle

More Competition implies *less* pooling

• Gains to cream-skimming increase in π

Milder Adverse Selection (higher μ_h) implies more pooling

- increased incentives to trade high volume
- increased cost of cream-skimming

Price Dispersion

Equilibrium Regions in the Middle

Theorem

For every (π, μ_h) there is a unique equilibrium.

Equilibrium Implications

Positive and Normative Implications

Is improving competition desirable for volume or welfare?

- For high μ_h , monopsony dominates perfect competition
- For low μ_h , perfect competition dominates monopsony
- Will show: for low μ_h , welfare maximized at interior π

Positive and Normative Implications

Is improving competition desirable for volume or welfare?

- For high μ_h , monopsony dominates perfect competition
- For low μ_h , perfect competition dominates monopsony
- Will show: for low μ_h , welfare maximized at interior π
- Is increasing transparency desirable?
 - Allowing insurers, loan officers, dealers to discriminate on observables?
 - Interpret increased transparency as increased spread in μ_h
 - Desirability depends on curvature of welfare function with respect to μ_h
 - Will show: Concavity/Convexity of welfare function depends on π, μ_h

Equilibrium Implications: Competition

Assume μ_h in no cross-subsidization region

Assume μ_h in no cross-subsidization region

Equilibrium Distribution and $U_h(u_l)$ for $\pi = 0.2$

Shaded Region indicates support of F_l

Equilibrium Distribution and $U_h(u_l)$ for $\pi = 0.5$

Shaded Region indicates support of F_I

• Increase in π increases F_l in sense of FOSD

Assume μ_h in no cross-subsidization region

Equilibrium Distribution and $U_h(u_l)$ for $\pi = 0.9$

Shaded Region indicates support of F_l

- Increase in π increases F_l in sense of FOSD
- Driven by increased competition for (abundant) low-quality sellers

How is trade volume related to U_h ?

$$\begin{array}{lll} x_h(u_l) &=& 1 - \frac{U_h(u_l) - u_l}{c_h - c_l} \\ \\ x_h'(u_l) &>& 0 \iff U_h'(u_l) > 1 \end{array}$$

Equilibrium Objects for $\pi = 0.2$

Equilibrium Objects for $\pi = 0.5$

• From low π , increase in π increases volume

Equilibrium Objects for $\pi = 0.9$

• From moderate π , increase in π decreases volume

When no cross-subsidization

$$W(\mu_h,\pi) = (1-\mu_h)(v_l-c_l) + \mu_h(v_h-c_h) \int x_h(u_l) dF(u_l)$$

Competition and Welfare

When no cross-subsidization

$$W(\mu_h,\pi) = (1-\mu_h)(v_l-c_l) + \mu_h(v_h-c_h) \int x_h(u_l) dF(u_l)$$

When no cross-subsidization

$$W(\mu_h,\pi)=(1-\mu_h)(v_l-c_l)+\mu_h(v_h-c_h)\int x_h(u_l)dF(u_l)$$

Why is welfare decreasing?

- μ_h low implies few high types
- Competition less fierce for high types
- Demand from high types relatively inelastic
- Equal profits \Rightarrow greater dispersion in prices
- Implies U'_h(u_l) > 1

Welfare maximized for interior $\boldsymbol{\pi}$

When no cross-subsidization

$$W(\mu_h,\pi) = (1-\mu_h)(v_l-c_l) + \mu_h(v_h-c_h) \int x_h(u_l) dF(u_l)$$

Why is welfare decreasing?

- µ_h low implies few high types
- Competition less fierce for high types
- Demand from high types relatively inelastic
- Equal profits \Rightarrow greater dispersion in prices
- Implies U'_h(u_l) > 1

Welfare maximized for interior $\boldsymbol{\pi}$

With Cross-Subsidization, welfare (weakly) maximized in monopsony outcome

• Full trade \Rightarrow all gains to trade exhausted

Equilibrium Implications: Transparency

Desirability of Transparency

Do the following policies improve welfare ?

- Allowing insurance providers to discriminate based on observables
- Introducing credit scores in loan markets
- Requiring OTC market participants to disclose trades

Do the following policies improve welfare ?

- Allowing insurance providers to discriminate based on observables
- Introducing credit scores in loan markets
- Requiring OTC market participants to disclose trades

In model, interpret increased transparency as mean-preserving spread of μ_h

- Each seller has individual μ_h' ; Buyers know distribution over μ_h'
- Buyers restricted to offering contracts associated with $E[\mu_h']$
- Under transparency, buyers allowed to offer μ_h -specific menus
- Need to compare $E[W(\mu_h',\pi)]$ to $W(E[\mu_h'],\pi)$

Do the following policies improve welfare ?

- Allowing insurance providers to discriminate based on observables
- Introducing credit scores in loan markets
- · Requiring OTC market participants to disclose trades

In model, interpret increased transparency as mean-preserving spread of μ_h

- Each seller has individual μ'_h ; Buyers know distribution over μ'_h
- Buyers restricted to offering contracts associated with $E[\mu'_h]$
- Under transparency, buyers allowed to offer μ_h -specific menus
- Need to compare $E[W(\mu'_h,\pi)]$ to $W(E[\mu'_h],\pi)$

Is Transparency Desirable? Answer: Depends on π !

Do the following policies improve welfare ?

- Allowing insurance providers to discriminate based on observables
- Introducing credit scores in loan markets
- · Requiring OTC market participants to disclose trades

In model, interpret increased transparency as mean-preserving spread of μ_h

- Each seller has individual μ'_h ; Buyers know distribution over μ'_h
- Buyers restricted to offering contracts associated with $E[\mu'_h]$
- Under transparency, buyers allowed to offer μ_h -specific menus
- Need to compare $E[W(\mu_h',\pi)]$ to $W(E[\mu_h'],\pi)$
- Is Transparency Desirable? Answer: Depends on π !
 - W is linear when $\pi = 0$ and $\pi = 1 \Rightarrow$ no effect on welfare
 - W is concave when π is high \Rightarrow bad for welfare

Bertrand: $\pi = 1$

•
$$\mu_h < \bar{\mu}_h \Rightarrow x_h = 0$$
 so that

$$W(\mu_h) = (1-\mu_h)v_l + \mu_h c_h$$

•
$$\mu_h > \bar{\mu}_h \Rightarrow x_h = 1$$
 so that

$$W(\mu_h) = (1-\mu_h)v_l + \mu_h v_h$$

• Welfare is linear in μ_h

Bertrand: $\pi = 1$

•
$$\mu_h < \bar{\mu}_h \Rightarrow x_h = 0$$
 so that

$$W(\mu_h) = (1-\mu_h)v_l + \mu_h c_h$$

•
$$\mu_h > \bar{\mu}_h \Rightarrow x_h = 1$$
 so that

$$W(\mu_h) = (1 - \mu_h) v_l + \mu_h v_h$$

Welfare is linear in μ_h

Bertrand: $\pi = 1$

- $\mu_h < \bar{\mu}_h \Rightarrow x_h$ independent of μ_h
- Implies welfare is linear in μ_h

•
$$\mu_h < \bar{\mu}_h \Rightarrow x_h = 0$$
 so that

$$\mathcal{W}(\mu_h) = (1-\mu_h) v_l + \mu_h c_h$$

•
$$\mu_h > \bar{\mu}_h \Rightarrow x_h = 1$$
 so that

$$W(\mu_h) = (1-\mu_h)v_l + \mu_h v_h$$

Welfare is linear in μ_h

Bertrand: $\pi = 1$

- $\mu_h < \bar{\mu}_h \Rightarrow x_h$ independent of μ_h
- Implies welfare is linear in μ_h

In these cases, welfare is linear in μ_h so that mean-preserving spread (locally) has no impact on welfare

Desirability of Transparency: The general cases

• With cross-subsidization, welfare is concave

 \Rightarrow increases in transparency \underline{harm} welfare

- Without cross-subsidization, welfare is concave only for high $\boldsymbol{\pi}$
 - \Rightarrow increases in transparency \underline{harm} welfare when markets competitive

Methodological contribution

- Imperfect competition and adverse selection with optimal contracts
- Rich predictions for the distribution of observed trades

Substantive insights

- Depending on parameters, pooling and/or separating menus in equilibrium
- Competition, transparency can be bad for welfare

Work in progress

- Generalize to N types, curved utility
- Non-exclusive trading

No cross-subsidization: Price vs quantity (conditional)

x_h

Correlation < 0 for suff. high π

A strategy to infer competitiveness ?

