Screening and Adverse Selection in Frictional Markets

Benjamin Lester
Philadelphia Fed

Venky Venkateswaran
NYU Stern

Ali Shourideh
Wharton

Ariel Zetlin-Jones
Carnegie Mellon University

May 2015

Introduction

Many markets feature adverse selection and imperfect competition

- Examples: insurance, loans, financial securities

Introduction

Many markets feature adverse selection and imperfect competition

- Examples: insurance, loans, financial securities

In these markets, contracts used to screen different types

- Examples: differential coverage, loan amounts, trade sizes

Many markets feature adverse selection and imperfect competition

- Examples: insurance, loans, financial securities

In these markets, contracts used to screen different types

- Examples: differential coverage, loan amounts, trade sizes

A unified theoretical framework is lacking

- Large empirical literature (and some theory)
- But typically restricts contracts and/or assumes perfect competition

Many markets feature adverse selection and imperfect competition

- Examples: insurance, loans, financial securities

In these markets, contracts used to screen different types

- Examples: differential coverage, loan amounts, trade sizes

A unified theoretical framework is lacking

- Large empirical literature (and some theory)
- But typically restricts contracts and/or assumes perfect competition

But many important questions

- Recent push to make these markets more competitive, transparent
- Is this a good idea?

This Paper

A tractable model of adverse selection, screening and imperfect comp.
(1) Complete characterization of the unique equilibrium

This Paper

A tractable model of adverse selection, screening and imperfect comp.
(1) Complete characterization of the unique equilibrium
(2) Explore positive predictions for distribution of contracts

This Paper

A tractable model of adverse selection, screening and imperfect comp.
(1) Complete characterization of the unique equilibrium
(2) Explore positive predictions for distribution of contracts
(3) Policy experiments: changes in competition, transparency

Sketch of Model: Key Ingredients

Sketch of Model: Key Ingredients

- Adverse Selection: sellers have private info about quality
- A fraction μ_{h} have quality h, the rest quality ℓ

Sketch of Model: Key Ingredients

- Adverse Selection: sellers have private info about quality
- A fraction μ_{h} have quality h, the rest quality ℓ
- Screening: Buyers offer general menus of non-linear contracts
- Price-quantity pairs: induce sellers to self-select

Sketch of Model: Key Ingredients

- Adverse Selection: sellers have private info about quality
- A fraction μ_{h} have quality h, the rest quality ℓ
- Screening: Buyers offer general menus of non-linear contracts
- Price-quantity pairs: induce sellers to self-select
- Imperfect Comp: sellers receive either 1 or 2 offers (à la Burdett-Judd)
- Buyer competing with another with prob π, otherwise monopsonist.
- Contract offered before buyers know

What We Know (Equilibrium)

What We Know (Equilibrium)

Perfect competition and "severe adverse selection" \Rightarrow least-cost sep.

What We Know (Equilibrium)

Perfect competition and "mild adverse selection" \Rightarrow Mixed Strategy Eq.

What We Know (Equilibrium)

Monopsony and "severe adverse selection" \Rightarrow No Trade with High Type

What We Know (Equilibrium)

Monopsony and "mild adverse selection" \Rightarrow Full Trade

Objective

Obj: Characterize eqm for any degree of adverse selection and imperfect comp.

Objective

Obj: Characterize eqm for any degree of adverse selection and imperfect comp.

Financial and Insurance markets typically characterized by imperfect comp.

Obj: Characterize eqm for any degree of adverse selection and imperfect comp.

Financial and Insurance markets typically characterized by imperfect comp.

What are the implications of imperfect comp. for....

- Terms of trade
- Welfare
- Policy

Summary of Findings

Methodology

- New techniques to characterize unique eqm for all $\left(\mu_{h}, \pi\right) \in[0,1]^{2}$

Summary of Findings

Methodology

- New techniques to characterize unique eqm for all $\left(\mu_{h}, \pi\right) \in[0,1]^{2}$
- Establish important (and general!) property of all equilibria:
- Strictly rank preserving: offers for ℓ and h ranked exactly the same
- No specialization

Summary of Findings

Methodology

- New techniques to characterize unique eqm for all $\left(\mu_{h}, \pi\right) \in[0,1]^{2}$
- Establish important (and general!) property of all equilibria:
- Strictly rank preserving: offers for ℓ and h ranked exactly the same
- No specialization

Positive Implications

- Equilibrium can be pooling, separating, or mix
- Separation when adverse selection severe, trading frictions mild
- Pooling when adverse selection mild, trading frictions severe

Summary of Findings

Methodology

- New techniques to characterize unique eqm for all $\left(\mu_{h}, \pi\right) \in[0,1]^{2}$
- Establish important (and general!) property of all equilibria:
- Strictly rank preserving: offers for ℓ and h ranked exactly the same
- No specialization

Positive Implications

- Equilibrium can be pooling, separating, or mix
- Separation when adverse selection severe, trading frictions mild
- Pooling when adverse selection mild, trading frictions severe

Normative Implications

- Adverse selection severe: interior π maximizes surplus from trade
- Adverse selection mild: welfare unambiguously decreasing in π
- Increasing transparency/relaxing info frictions can \uparrow or \downarrow welfare

Related Literature

Empirical

- Chiappori and Salanie (2000); Ivashina (2009); Einav et al. (2010); Einav et al. (2012)

Adverse Selection and Screening

- Rothschild and Stiglitz (1976); Dasgupta and Maskin (1986); Rosenthal and Weiss (1984); Mirrlees (1971); Stiglitz (1977); Maskin and Riley (1984); Guerrieri, Shimer and Wright (2010); Many, many others

Imperfect Competition and Selection

- Search Frictions: Burdett and Judd (1983); Garrett, Gomes, and Maestri (2014)
- Specialization: Benabou and Tirole (2014), Mahoney and Weyl (2014), Veiga and Weyl (2015)

Environment

Model Environment

Large number of buyers and sellers

Model Environment

Large number of buyers and sellers

- Each Seller endowed with 1 divisible asset
- Seller values asset at rate c_{i}
- Two types of sellers $i \in\{I, h\}$ with prob. μ_{i}
- Buyer values type i asset at rate v_{i}

Model Environment

Large number of buyers and sellers

- Each Seller endowed with 1 divisible asset
- Seller values asset at rate c_{i}
- Two types of sellers $i \in\{I, h\}$ with prob. μ_{i}
- Buyer values type i asset at rate v_{i}
- If x units sold for transfer t, payoffs are
- Seller: $t+(1-x) c_{i}$
- Buyer: $x v_{i}-t$

Model Environment

Large number of buyers and sellers

- Each Seller endowed with 1 divisible asset
- Seller values asset at rate c_{i}
- Two types of sellers $i \in\{I, h\}$ with prob. μ_{i}
- Buyer values type i asset at rate v_{i}
- If x units sold for transfer t, payoffs are
- Seller: $t+(1-x) c_{i}$
- Buyer: $x v_{i}-t$
- Assumptions:
- Gains to trade: $v_{i}>c_{i}$
- Lemons Assumption: $v_{l}<c_{h}$
- Adverse Selection: Only sellers know asset quality

Model Environment

Screening

- Buyers post arbitrary menus of exclusive contracts
- Screening menus intended to induce self-selection

Model Environment

Screening

- Buyers post arbitrary menus of exclusive contracts
- Screening menus intended to induce self-selection

Search frictions

- Each seller receives 1 offer w.p. $1-\pi$ and both w.p. π
- Refer to seller with 1 offer as Captive
- Refer to seller with 2 offers as non-Captive

Model Environment

Screening

- Buyers post arbitrary menus of exclusive contracts
- Screening menus intended to induce self-selection

Search frictions

- Each seller receives 1 offer w.p. $1-\pi$ and both w.p. π
- Refer to seller with 1 offer as Captive
- Refer to seller with 2 offers as non-Captive

Stylized Model of Trade

- best examples: corporate loans market; securitization (maybe)
- other examples: information-based trading; insurance

Strategies

- Each buyer offers arbitrary menu of contracts $\left\{\left(x_{n}, t_{n}\right)_{n \in \mathcal{N}}\right\}$
- Captive seller's choice: best $\left(x_{n}, t_{n}\right)$ from one buyer
- Non-captive seller's choice: best $\left(x_{n}, t_{n}\right)$ among both buyers

Strategies

- Each buyer offers arbitrary menu of contracts $\left\{\left(x_{n}, t_{n}\right)_{n \in \mathcal{N}}\right\}$
- Captive seller's choice: best $\left(x_{n}, t_{n}\right)$ from one buyer
- Non-captive seller's choice: best $\left(x_{n}, t_{n}\right)$ among both buyers

Revelation Principle

sufficient to consider

- menus with two contracts $\mathbf{z} \equiv\left\{\left(x_{l}, t_{l}\right),\left(x_{h}, t_{h}\right)\right\}$

$$
\left(I C_{j}\right): \quad t_{j}+c_{j}\left(1-x_{j}\right) \geq t_{-j}+c_{j}\left(1-x_{-j}\right) \quad j \in\{h, I\}
$$

- seller j : chooses contract j from available the set of menus available

Equilibrium Price Dispersion

- Suppose $\pi \in(0,1)$: no symmetric pure strategy equilibrium exists
- buyers can guarantee positive profits: trade only with captive types
- in a pure strategy equilibrium: have to share non-captive types

Equilibrium Price Dispersion

- Suppose $\pi \in(0,1)$: no symmetric pure strategy equilibrium exists
- buyers can guarantee positive profits: trade only with captive types
- in a pure strategy equilibrium: have to share non-captive types There is always an incentive to undercut
- Only mixed strategy equilibria possible \Rightarrow equilibrium features price dispersion
\Rightarrow equilibrium described by buyers' distribution over menus

Equilibrium definition

A symmetric equilibrium is a distribution $\Phi(\mathbf{z})$ such that almost all \mathbf{z} satisfy,
(1) Incentive compatibility:

$$
t_{j}+c_{j}\left(1-x_{j}\right) \geq t_{-j}+c_{j}\left(1-x_{-j}\right) \quad j \in\{h, /\}
$$

(2) Seller optimality:

$$
\chi_{i}\left(\mathbf{z}, \mathbf{z}^{\prime}\right) \text { maximizes her utility }
$$

(3) Buyer optimality: for each $z \in \operatorname{Supp}(\Phi)$

$$
\begin{equation*}
\mathbf{z} \in \arg \max _{\mathbf{z}} \sum_{i \in\{1, h\}} \mu_{i}\left(v_{i} x_{i}-t_{i}\right)\left[1-\pi+\pi \int_{\mathbf{z}^{\prime}} \chi_{i}\left(\mathbf{z}, \mathbf{z}^{\prime}\right) \Phi\left(d \mathbf{z}^{\prime}\right)\right] \tag{1}
\end{equation*}
$$

Characterization

Equilibrium described by non-degenerate distribution in 4 dimensions

Characterization

Equilibrium described by non-degenerate distribution in 4 dimensions

Proceed in 4 steps

1. Show that menus can be summarized by a pair of utilities $\left(u_{h}, u_{l}\right)$

- Reduces dimensionality of problem to distribution in 2 dimensions

2. Show there is a 1-1 mapping between u_{l} and u_{h}

- Reduces problem to distribution in 1 dimension + a monotonic function

3. Construct Equilibrium
4. Show that constructed equilibrium is unique

A utility representation

Result (Dasgupta and Maskin (1986))

In all menus offered in equilibrium,

- the low types trades everything: $\quad x_{I}=1$
- $I C_{l}$ binds: $t_{l}=t_{h}+c_{l}\left(1-x_{h}\right)$

Result (Dasgupta and Maskin (1986))

In all menus offered in equilibrium,

- the low types trades everything: $\quad x_{l}=1$
- $I C_{l}$ binds: $t_{l}=t_{h}+c_{l}\left(1-x_{h}\right)$

Result

Equilibrium menus can be represented by $\left(u_{h}, u_{l}\right)$ with corresponding allocations

$$
t_{l}=u_{l} \quad x_{h}=1-\frac{u_{h}-u_{l}}{c_{h}-c_{l}} \quad t_{h}=\frac{u_{l} c_{h}-u_{h} c_{l}}{c_{h}-c_{l}}
$$

A utility representation

Result (Dasgupta and Maskin (1986))

In all menus offered in equilibrium,

- the low types trades everything: $\quad x_{l}=1$
- IC binds: $t_{l}=t_{h}+c_{l}\left(1-x_{h}\right)$

Result

Equilibrium menus can be represented by $\left(u_{h}, u_{l}\right)$ with corresponding allocations

$$
t_{l}=u_{l} \quad x_{h}=1-\frac{u_{h}-u_{l}}{c_{h}-c_{l}} \quad t_{h}=\frac{u_{l} c_{h}-u_{h} c_{l}}{c_{h}-c_{l}}
$$

Since we must have $0 \leq x_{h} \leq 1$,

$$
c_{h}-c_{l} \geq u_{h}-u_{l} \geq 0
$$

A utility representation

Marginal distributions

$$
F_{j}\left(u_{j}\right)=\int_{\mathbf{z}^{\prime}} \mathbf{1}\left[t_{j}^{\prime}+c_{j}\left(1-x_{j}^{\prime}\right) \leq u_{j}\right] d \Phi\left(\mathbf{z}^{\prime}\right) \quad j \in\{h, /\}
$$

A utility representation

Marginal distributions

$$
F_{j}\left(u_{j}\right)=\int_{\mathbf{z}^{\prime}} \mathbf{1}\left[t_{j}^{\prime}+c_{j}\left(1-x_{j}^{\prime}\right) \leq u_{j}\right] d \Phi\left(\mathbf{z}^{\prime}\right) \quad j \in\{h, I\}
$$

Then, each buyer solves

$$
\begin{aligned}
& \Pi\left(u_{h}, u_{l}\right)= \\
& \max _{u_{l} \geq c_{l}, u_{h} \geq c_{h}} \sum_{j \in\{l, h\}} \mu_{j}\left[1-\pi+\pi F_{j}\left(u_{j}\right)\right] \Pi_{j}\left(u_{h}, u_{l}\right) \\
& \text { s.t. } c_{h}-c_{l} \geq u_{h}-u_{l} \geq 0
\end{aligned}
$$

A utility representation

Marginal distributions

$$
F_{j}\left(u_{j}\right)=\int_{\mathbf{z}^{\prime}} \mathbf{1}\left[t_{j}^{\prime}+c_{j}\left(1-x_{j}^{\prime}\right) \leq u_{j}\right] d \Phi\left(\mathbf{z}^{\prime}\right) \quad j \in\{h, I\}
$$

Then, each buyer solves

$$
\begin{aligned}
& \Pi\left(u_{h}, u_{l}\right)= \\
& \max _{u_{l} \geq c_{l}, u_{h} \geq c_{h}} \sum_{j \in\{l, h\}} \mu_{j}\left[1-\pi+\pi F_{j}\left(u_{j}\right)\right] \Pi_{j}\left(u_{h}, u_{l}\right) \\
& \text { s.t. } c_{h}-c_{l} \geq u_{h}-u_{l} \geq 0
\end{aligned}
$$

with $\Pi_{l}\left(u_{h}, u_{l}\right) \equiv v_{l} x_{l}-t_{l}=v_{l}-u_{l}$

$$
\Pi_{h}\left(u_{h}, u_{l}\right) \equiv v_{h} x_{h}-t_{h}=v_{h}-u_{h} \frac{v_{h}-c_{l}}{c_{h}-c_{l}}+u_{l} \frac{v_{h}-c_{h}}{c_{h}-c_{l}}
$$

A utility representation

Marginal distributions

$$
F_{j}\left(u_{j}\right)=\int_{z^{\prime}} \mathbf{1}\left[t_{j}^{\prime}+c_{j}\left(1-x_{j}^{\prime}\right) \leq u_{j}\right] d \Phi\left(\mathbf{z}^{\prime}\right) \quad j \in\{h, /\}
$$

Then, each buyer solves

$$
\begin{aligned}
& \Pi\left(u_{h}, u_{l}\right)= \\
& \max _{u_{l} \geq c_{l}, u_{h} \geq c_{h}} \sum_{j \in\{1, h\}} \mu_{j}\left[1-\pi+\pi F_{j}\left(u_{j}\right)\right] \Pi_{j}\left(u_{h}, u_{l}\right) \\
& \text { s. t. } c_{h}-c_{l} \geq u_{h}-u_{l} \geq 0
\end{aligned}
$$

with $\Pi_{l}\left(u_{h}, u_{l}\right) \equiv v_{l} x_{l}-t_{l}=v_{l}-u_{l}$

$$
\Pi_{h}\left(u_{h}, u_{l}\right) \equiv v_{h} x_{h}-t_{h}=v_{h}-u_{h} \frac{v_{h}-c_{l}}{c_{h}-c_{l}}+u_{l} \frac{v_{h}-c_{h}}{c_{h}-c_{l}}
$$

A utility representation

Marginal distributions

$$
F_{j}\left(u_{j}\right)=\int_{z^{\prime}} \mathbf{1}\left[t_{j}^{\prime}+c_{j}\left(1-x_{j}^{\prime}\right) \leq u_{j}\right] d \Phi\left(\mathbf{z}^{\prime}\right) \quad j \in\{h, /\}
$$

Then, each buyer solves

$$
\begin{aligned}
& \Pi\left(u_{h}, u_{l}\right)= \\
& \max _{u_{l} \geq c_{l}, u_{h} \geq c_{h}} \sum_{j \in\{l, h\}} \mu_{j}\left[1-\pi+\pi F_{j}\left(u_{j}\right)\right] \Pi_{j}\left(u_{h}, u_{l}\right) \\
& \text { s. t. } c_{h}-c_{l} \geq u_{h}-u_{l} \geq 0
\end{aligned}
$$

with $\Pi_{l}\left(u_{h}, u_{l}\right) \equiv v_{l} x_{l}-t_{l}=v_{l}-u_{l}$

$$
\Pi_{h}\left(u_{h}, u_{l}\right) \equiv v_{h} x_{h}-t_{h}=v_{h}-u_{h} \frac{v_{h}-c_{l}}{c_{h}-c_{l}}+u_{l} \frac{v_{h}-c_{h}}{c_{h}-c_{l}}
$$

Need to characterize the two linked distributions F_{I} and F_{h} !

Further Simplifying the Characterization

Result

F_{l} and F_{h} have connected support and are continuous.

- Except for a knife-edge case (see paper)
- Proof more involved than standard case because of interdependencies

Further Simplifying the Characterization

Result

F_{l} and F_{h} have connected support and are continuous.

- Except for a knife-edge case (see paper)
- Proof more involved than standard case because of interdependencies

Result

The profit function $\Pi\left(u_{h}, u_{l}\right)$ is strictly supermodular.

- Intuition: $u_{l} \uparrow \Rightarrow \Pi_{h} \uparrow \Rightarrow$ stronger incentives to attract high types
- $\Rightarrow U_{h}\left(u_{l}\right) \equiv \operatorname{argmax}_{u_{h}} \Pi\left(u_{h}, u_{l}\right) \quad$ is weakly increasing

Strict Rank Preserving

Theorem
 $U_{h}\left(u_{l}\right)$ is a strictly increasing function.

Strict Rank Preserving

Theorem

$U_{h}\left(u_{l}\right)$ is a strictly increasing function.

Idea of Proof

- $U_{h}\left(u_{l}\right)$ increasing due to super-modularity of profit function
- F_{l} and F_{h} have no holes or mass points imply U_{h} is strictly increasing and not a correspondence

Strict Rank Preserving

Theorem

$U_{h}\left(u_{l}\right)$ is a strictly increasing function.

Implications for Characterization

- Rank ordering of equilibrium menus identical across types
- Menus attract same fraction of both types $F_{l}\left(u_{l}\right)=F_{h}\left(U_{h}\left(u_{l}\right)\right)$
- Greatly simplifies the analysis: only have to find $F_{l}\left(u_{l}\right)$ and $U_{h}\left(u_{l}\right)$

Strict Rank Preserving

Theorem

$U_{h}\left(u_{l}\right)$ is a strictly increasing function.

Implications for Characterization

- Rank ordering of equilibrium menus identical across types
- Menus attract same fraction of both types $F_{l}\left(u_{l}\right)=F_{h}\left(U_{h}\left(u_{l}\right)\right)$
- Greatly simplifies the analysis: only have to find $F_{l}\left(u_{l}\right)$ and $U_{h}\left(u_{l}\right)$

Strict Rank Preserving

Theorem

$U_{h}\left(u_{l}\right)$ is a strictly increasing function.

Implications for Characterization

- Rank ordering of equilibrium menus identical across types
- Menus attract same fraction of both types $F_{l}\left(u_{l}\right)=F_{h}\left(U_{h}\left(u_{l}\right)\right)$
- Greatly simplifies the analysis: only have to find $F_{l}\left(u_{l}\right)$ and $U_{h}\left(u_{l}\right)$

Broader Implications

- Buyers do not specialize or attract only a subset of types
- Terms of trade offered to both types are positive correlated

Strict Rank Preserving

Theorem

$U_{h}\left(u_{l}\right)$ is a strictly increasing function.

Implications for Characterization

- Rank ordering of equilibrium menus identical across types
- Menus attract same fraction of both types $F_{l}\left(u_{l}\right)=F_{h}\left(U_{h}\left(u_{l}\right)\right)$
- Greatly simplifies the analysis: only have to find $F_{l}\left(u_{l}\right)$ and $U_{h}\left(u_{l}\right)$

Broader Implications

- Buyers do not specialize or attract only a subset of types
- Terms of trade offered to both types are positive correlated

Robust to any number of types

- Relies only on utility representation and ability to show distributions are well behaved

Constructing Equilibria

Equilibria: The two limit cases

Monopsony: $\pi=0$

Bertrand: $\pi=1$

Equilibria: The two limit cases

Monopsony: $\pi=0$

- $\mu_{h}<\bar{\mu}_{h} \Rightarrow$ Sep. with $x_{h}=0$ and $\Pi_{l}>\Pi_{h}=0$
- No Cross-subsidization
- $\mu_{h} \geq \bar{\mu}_{h} \Rightarrow$ Pooling with $x_{h}=x_{l}=1$ and $\Pi_{h}>0>\Pi_{l}$
- Cross-subsidization

Bertrand: $\pi=1$

Equilibria: The two limit cases

Monopsony: $\pi=0$

- $\mu_{h}<\bar{\mu}_{h} \Rightarrow$ Sep. with $x_{h}=0$ and $\Pi_{l}>\Pi_{h}=0$
- No Cross-subsidization
- $\mu_{h} \geq \bar{\mu}_{h} \Rightarrow$ Pooling with $x_{h}=x_{l}=1$ and $\Pi_{h}>0>\Pi_{l}$
- Cross-subsidization

Bertrand: $\pi=1$

- $\mu_{h}<\bar{\mu}_{h} \Rightarrow$ Sep. with $x_{h}<1, \quad \Pi_{h}=\Pi_{l}=0$
- No Cross-subsidization
- $\mu_{h} \geq \bar{\mu}_{h} \Rightarrow$ Sep. with $x_{h}<1, \Pi=0$, but $\Pi_{h}>0>\Pi_{l}$
- Cross-subsidization

Equilibria: The two limit cases

Monopsony: $\pi=0$

- $\mu_{h}<\bar{\mu}_{h} \Rightarrow$ Sep. with $x_{h}=0$ and $\Pi_{l}>\Pi_{h}=0$
- No Cross-subsidization
- $\mu_{h} \geq \bar{\mu}_{h} \Rightarrow$ Pooling with $x_{h}=x_{l}=1$ and $\Pi_{h}>0>\Pi_{l}$
- Cross-subsidization

Bertrand: $\pi=1$

- $\mu_{h}<\bar{\mu}_{h} \Rightarrow$ Sep. with $x_{h}<1, \quad \Pi_{h}=\Pi_{l}=0$
- No Cross-subsidization
- $\mu_{h} \geq \bar{\mu}_{h} \Rightarrow$ Sep. with $x_{h}<1, \Pi=0$, but $\Pi_{h}>0>\Pi_{\text {I }}$
- Cross-subsidization

Intuition: Higher $\mu_{h} \Rightarrow$ Relaxing $I C^{\prime}$ more attractive

Types of equilibria in the middle

Types of equilibria in the middle

High μ_{h}

- $\Pi_{h}>0>\Pi_{I}$
- All separating, all pooling or a mix

Low μ_{h}

- $\Pi_{l}, \Pi_{h} \geq 0$
- All separating, $U_{h}\left(u_{l}\right) \neq u_{l}$

No cross-subsidization: Characterization

Focus on separating equilibrium in no-cross subsidization region

Recall problem of a buyer:

$$
\begin{aligned}
& \Pi\left(u_{h}, u_{l}\right)= \\
& \max _{u_{l} \geq c_{l}, u_{h} \geq c_{h}} \sum_{j \in\{l, h\}} \mu_{j}\left[1-\pi+\pi F_{j}\left(u_{j}\right)\right] \Pi_{j}\left(u_{h}, u_{l}\right) \\
& \text { s. t. } c_{h}-c_{l} \geq u_{h}-u_{l} \geq 0
\end{aligned}
$$

No cross-subsidization: Characterization

Focus on separating equilibrium in no-cross subsidization region

Recall problem of a buyer:

$$
\begin{aligned}
& \Pi\left(u_{h}, u_{l}\right)= \\
& \max _{u_{l} \geq c_{l}, u_{h} \geq c_{h}} \sum_{j \in\{l, h\}} \mu_{j}\left[1-\pi+\pi F_{j}\left(u_{j}\right)\right] \Pi_{j}\left(u_{h}, u_{l}\right) \\
& \text { s.t. } c_{h}-c_{l} \geq u_{h}-u_{l} \geq 0
\end{aligned}
$$

- In separating equilibrium we construct, $c_{h}-c_{l}>u_{h}-u_{l}>0$
- Sufficient to ensure local deviations unprofitable

No cross-subsidization: Characterization

Marginal benefits vs costs of increasing u_{l}

$$
\underbrace{\frac{\pi f_{l}\left(u_{l}\right) \Pi_{l}}{1-\pi+\pi F_{l}\left(u_{l}\right)}}_{\text {MB of more low types }}+\underbrace{\frac{\mu_{h}}{1-\mu_{h}} \frac{v_{h}-c_{h}}{c_{h}-c_{l}}}_{\mathrm{MB} \text { of relaxing } C_{l}}=\underbrace{1}_{M C}
$$

Marginal benefits vs costs of increasing u_{l}

$$
\underbrace{\frac{\pi f_{l}\left(u_{l}\right) \Pi_{l}}{1-\pi+\pi F_{l}\left(u_{l}\right)}}_{\text {MB of more low types }}+\underbrace{\frac{\mu_{h}}{1-\mu_{h}} \frac{v_{h}-c_{h}}{c_{h}-c_{l}}}_{M B \text { of relaxing } c_{l}}=\underbrace{1}_{M C}
$$

Boundary conditions

$$
F_{l}\left(c_{l}\right)=0 \quad F_{l}\left(\bar{u}_{l}\right)=1 \quad \rightarrow \quad F_{l}\left(u_{l}\right)
$$

Equal profit condition

$$
\left[1-\pi+\pi F_{l}\left(u_{l}\right)\right] \Pi\left(U_{h}, u_{l}\right)=\bar{\Pi} \quad \rightarrow \quad U_{h}\left(u_{l}\right)
$$

Marginal benefits vs costs of increasing u_{l}

$$
\underbrace{\frac{\pi f_{l}\left(u_{l}\right) \Pi_{l}}{1-\pi+\pi F_{l}\left(u_{l}\right)}}_{\text {MB of more low types }}+\underbrace{\frac{\mu_{h}}{1-\mu_{h}} \frac{v_{h}-c_{h}}{c_{h}-c_{l}}}_{\mathrm{MB} \text { of relaxing } C_{l}}=\underbrace{1}_{M C}
$$

Boundary conditions

$$
F_{l}\left(c_{l}\right)=0 \quad F_{l}\left(\bar{u}_{l}\right)=1 \quad \rightarrow \quad F_{l}\left(u_{l}\right)
$$

Equal profit condition

$$
\left[1-\pi+\pi F_{l}\left(u_{l}\right)\right] \Pi\left(U_{h}, u_{l}\right)=\bar{\Pi} \quad \rightarrow \quad U_{h}\left(u_{l}\right)
$$

Pursue similar construction in other regions of parameter space

Equilibrium Regions in the Middle

Equilibrium Regions in the Middle

π

More Competition implies less pooling

- Gains to cream-skimming increase in π

Milder Adverse Selection (higher μ_{h}) implies more pooling

- increased incentives to trade high volume
- increased cost of cream-skimming

Equilibrium Regions in the Middle

More Competition implies less pooling

- Gains to cream-skimming increase in π

Milder Adverse Selection (higher μ_{h}) implies more pooling

- increased incentives to trade high volume
- increased cost of cream-skimming

Theorem

For every $\left(\pi, \mu_{h}\right)$ there is a unique equilibrium.

Equilibrium Implications

Positive and Normative Implications

Is improving competition desirable for volume or welfare?

- For high μ_{h}, monopsony dominates perfect competition
- For low μ_{h}, perfect competition dominates monopsony
- Will show: for low μ_{h}, welfare maximized at interior π

Positive and Normative Implications

Is improving competition desirable for volume or welfare?

- For high μ_{h}, monopsony dominates perfect competition
- For low μ_{h}, perfect competition dominates monopsony
- Will show: for low μ_{h}, welfare maximized at interior π

Is increasing transparency desirable?

- Allowing insurers, loan officers, dealers to discriminate on observables?
- Interpret increased transparency as increased spread in μ_{h}
- Desirability depends on curvature of welfare function with respect to μ_{h}
- Will show: Concavity/Convexity of welfare function depends on π, μ_{h}

Equilibrium Implications: Competition

Competition with No Cross-Subsidization

Assume μ_{h} in no cross-subsidization region

Competition with No Cross-Subsidization

Assume μ_{h} in no cross-subsidization region

Equilibrium Distribution and $U_{h}\left(u_{l}\right)$ for $\pi=0.2$
Shaded Region indicates support of F_{I}

Competition with No Cross-Subsidization

Assume μ_{h} in no cross-subsidization region

Equilibrium Distribution and $U_{h}\left(u_{l}\right)$ for $\pi=0.5$
Shaded Region indicates support of F_{l}

- Increase in π increases F_{l} in sense of FOSD

Competition with No Cross-Subsidization

Assume μ_{h} in no cross-subsidization region

Equilibrium Distribution and $U_{h}\left(u_{l}\right)$ for $\pi=0.9$

$$
\text { Shaded Region indicates support of } F_{l}
$$

- Increase in π increases F_{l} in sense of FOSD
- Driven by increased competition for (abundant) low-quality sellers

Competition with No Cross-Subsidization

How is trade volume related to U_{h} ?

$$
\begin{aligned}
& x_{h}\left(u_{l}\right)=1-\frac{U_{h}\left(u_{l}\right)-u_{l}}{c_{h}-c_{l}} \\
& x_{h}^{\prime}\left(u_{l}\right)>0 \Leftrightarrow U_{h}^{\prime}\left(u_{l}\right)>1
\end{aligned}
$$

Competition with No Cross-Subsidization

Equilibrium Objects for $\pi=0.2$

Competition with No Cross-Subsidization

Equilibrium Objects for $\pi=0.5$

- From low π, increase in π increases volume

Competition with No Cross-Subsidization

Equilibrium Objects for $\pi=0.9$

- From moderate π, increase in π decreases volume

Competition and Welfare

When no cross-subsidization

$$
W\left(\mu_{h}, \pi\right)=\left(1-\mu_{h}\right)\left(v_{l}-c_{l}\right)+\mu_{h}\left(v_{h}-c_{h}\right) \int x_{h}\left(u_{l}\right) d F\left(u_{l}\right)
$$

Competition and Welfare

When no cross-subsidization

$$
W\left(\mu_{h}, \pi\right)=\left(1-\mu_{h}\right)\left(v_{l}-c_{l}\right)+\mu_{h}\left(v_{h}-c_{h}\right) \int x_{h}\left(u_{l}\right) d F\left(u_{l}\right)
$$

Competition and Welfare

When no cross-subsidization

$$
W\left(\mu_{h}, \pi\right)=\left(1-\mu_{h}\right)\left(v_{l}-c_{l}\right)+\mu_{h}\left(v_{h}-c_{h}\right) \int x_{h}\left(u_{l}\right) d F\left(u_{l}\right)
$$

Why is welfare decreasing?

- μ_{h} low implies few high types
- Competition less fierce for high types
- Demand from high types relatively inelastic
- Equal profits \Rightarrow greater dispersion in prices
- Implies $U_{h}^{\prime}\left(u_{l}\right)>1$

Welfare maximized for interior π

Competition and Welfare

When no cross-subsidization

$$
W\left(\mu_{h}, \pi\right)=\left(1-\mu_{h}\right)\left(v_{l}-c_{l}\right)+\mu_{h}\left(v_{h}-c_{h}\right) \int x_{h}\left(u_{l}\right) d F\left(u_{l}\right)
$$

Why is welfare decreasing?

- μ_{h} low implies few high types
- Competition less fierce for high types
- Demand from high types relatively inelastic
- Equal profits \Rightarrow greater dispersion in prices
- Implies $U_{h}^{\prime}\left(u_{l}\right)>1$

Welfare maximized for interior π

With Cross-Subsidization, welfare (weakly) maximized in monopsony outcome

- Full trade \Rightarrow all gains to trade exhausted

Equilibrium Implications: Transparency

Desirability of Transparency

Do the following policies improve welfare ?

- Allowing insurance providers to discriminate based on observables
- Introducing credit scores in loan markets
- Requiring OTC market participants to disclose trades

Desirability of Transparency

Do the following policies improve welfare ?

- Allowing insurance providers to discriminate based on observables
- Introducing credit scores in loan markets
- Requiring OTC market participants to disclose trades

In model, interpret increased transparency as mean-preserving spread of μ_{h}

- Each seller has individual μ_{h}^{\prime}; Buyers know distribution over μ_{h}^{\prime}
- Buyers restricted to offering contracts associated with $E\left[\mu_{h}^{\prime}\right]$
- Under transparency, buyers allowed to offer μ_{h}-specific menus
- Need to compare $E\left[W\left(\mu_{h}^{\prime}, \pi\right)\right]$ to $W\left(E\left[\mu_{h}^{\prime}\right], \pi\right)$

Desirability of Transparency

Do the following policies improve welfare ?

- Allowing insurance providers to discriminate based on observables
- Introducing credit scores in loan markets
- Requiring OTC market participants to disclose trades

In model, interpret increased transparency as mean-preserving spread of μ_{h}

- Each seller has individual μ_{h}^{\prime}; Buyers know distribution over μ_{h}^{\prime}
- Buyers restricted to offering contracts associated with $E\left[\mu_{h}^{\prime}\right]$
- Under transparency, buyers allowed to offer μ_{h}-specific menus
- Need to compare $E\left[W\left(\mu_{h}^{\prime}, \pi\right)\right]$ to $W\left(E\left[\mu_{h}^{\prime}\right], \pi\right)$

Is Transparency Desirable? Answer: Depends on π !

Desirability of Transparency

Do the following policies improve welfare ?

- Allowing insurance providers to discriminate based on observables
- Introducing credit scores in loan markets
- Requiring OTC market participants to disclose trades

In model, interpret increased transparency as mean-preserving spread of μ_{h}

- Each seller has individual μ_{h}^{\prime}; Buyers know distribution over μ_{h}^{\prime}
- Buyers restricted to offering contracts associated with $E\left[\mu_{h}^{\prime}\right]$
- Under transparency, buyers allowed to offer μ_{h}-specific menus
- Need to compare $E\left[W\left(\mu_{h}^{\prime}, \pi\right)\right]$ to $W\left(E\left[\mu_{h}^{\prime}\right], \pi\right)$

Is Transparency Desirable? Answer: Depends on π !

- W is linear when $\pi=0$ and $\pi=1 \Rightarrow$ no effect on welfare
- W is concave when π is high \Rightarrow bad for welfare

Desirability of Transparency: The two limit cases

Monopsony: $\pi=0$

Bertrand: $\pi=1$

Desirability of Transparency: The two limit cases

Monopsony: $\pi=0$

- $\mu_{h}<\bar{\mu}_{h} \Rightarrow x_{h}=0$ so that

$$
W\left(\mu_{h}\right)=\left(1-\mu_{h}\right) v_{l}+\mu_{h} c_{h}
$$

- $\mu_{h}>\bar{\mu}_{h} \Rightarrow x_{h}=1$ so that

$$
W\left(\mu_{h}\right)=\left(1-\mu_{h}\right) v_{l}+\mu_{h} v_{h}
$$

- Welfare is linear in μ_{h}

Bertrand: $\pi=1$

Desirability of Transparency: The two limit cases

Monopsony: $\pi=0$

- $\mu_{h}<\bar{\mu}_{h} \Rightarrow x_{h}=0$ so that

$$
W\left(\mu_{h}\right)=\left(1-\mu_{h}\right) v_{l}+\mu_{h} c_{h}
$$

- $\mu_{h}>\bar{\mu}_{h} \Rightarrow x_{h}=1$ so that

$$
W\left(\mu_{h}\right)=\left(1-\mu_{h}\right) v_{l}+\mu_{h} v_{h}
$$

- Welfare is linear in μ_{h}

Bertrand: $\pi=1$

- $\mu_{h}<\bar{\mu}_{h} \Rightarrow x_{h}$ independent of μ_{h}
- Implies welfare is linear in μ_{h}

Desirability of Transparency: The two limit cases

Monopsony: $\pi=0$

- $\mu_{h}<\bar{\mu}_{h} \Rightarrow x_{h}=0$ so that

$$
W\left(\mu_{h}\right)=\left(1-\mu_{h}\right) v_{l}+\mu_{h} c_{h}
$$

- $\mu_{h}>\bar{\mu}_{h} \Rightarrow x_{h}=1$ so that

$$
W\left(\mu_{h}\right)=\left(1-\mu_{h}\right) v_{l}+\mu_{h} v_{h}
$$

- Welfare is linear in μ_{h}

Bertrand: $\pi=1$

- $\mu_{h}<\bar{\mu}_{h} \Rightarrow x_{h}$ independent of μ_{h}
- Implies welfare is linear in μ_{h}

In these cases, welfare is linear in μ_{h} so that mean-preserving spread (locally) has no impact on welfare

Desirability of Transparency: The general cases

- With cross-subsidization, welfare is concave
\Rightarrow increases in transparency harm welfare
- Without cross-subsidization, welfare is concave only for high π
\Rightarrow increases in transparency harm welfare when markets competitive

Conclusion

Methodological contribution

- Imperfect competition and adverse selection with optimal contracts
- Rich predictions for the distribution of observed trades

Substantive insights

- Depending on parameters, pooling and/or separating menus in equilibrium
- Competition, transparency can be bad for welfare

Work in progress

- Generalize to N types, curved utility
- Non-exclusive trading

No cross-subsidization: Price vs quantity (conditional)

$$
\pi=0.2
$$

Correlation <0 for suff. high π

A strategy to infer competitiveness ?

