On-the-job Training and On-the-job Search: Wage-Training Contracts in a Frictional Labor Market

SEUNG-GYU (ANDREW) SIM

UNIVERSITY OF TOKYO

December, 2014

	On-the-job Trainin	g and On-the-job Search	
INTRODUCTION	The Model	QUANTITATIVE ANALYSIS	Conclusion

INTRODUCTION

Motivation Previous Literature

The Model Primitives Steady State Equilibrium Efficiency Analysis

QUANTITATIVE ANALYSIS STEADY STATE COMPARATIVE STATICS

Conclusion

On-the-job Training and On-the-job Search			
INTRODUCTION	The Model	QUANTITATIVE ANALYSIS	Conclusion

MOTIVATION

- Human Capital Accumulation (post schooling)
 - the major contributor individual wage growth and economic growth
 - the first best outcome: Workers should pay for the cost of general training.
 - In reality,
 - $\cdot~$ only firms can provide general training in many cases and
 - $\cdot~$ workers cannot commit to staying with the training firms
 - This paper studies the coexistence of On-the-job Training and Search
 - · Do productive firms provide more training?
 - $\cdot~$ Do firms provide the efficient level of training?
 - $\cdot~$ Do firms provide more training, as search friction is mitigated?

	On-the-job Training and On-the-job Search		
INTRODUCTION	The Model	QUANTITATIVE ANALYSIS	Conclusion

Illustrative Examples

• Becker (1964): Perfect Competition

$$egin{array}{lll} x^B \in rg\max -x + f(x) \ w_2 = y + f(x^B) & w_1 = y - x^B \ \pi_2 = 0 & \pi_1 = 0 \end{array}$$

• Under perfect competition, the firm provides the efficient level of training, and the worker pays the training cost through lower wage during training.

ILLUSTRATIVE EXAMPLES

• Acemoglu (1997): exogenous job-turnover shock

$$x^A \in rg \max -x + (1 - lpha) f(x)$$

 $w_2 = \phi(y + f(x^A))$ $w_1 = \phi(y - x^A)$
 $\pi_2 = (1 - lpha)(1 - \phi)(y + f(x^A))$ $\pi_1 = (1 - \phi)(y - x^A)$
 $\pi^p = lpha(1 - \phi)(y + f(x^A))$

• positive externality for subsequent poaching firms (free rider problem)

	On-the-job Training	g and On-the-job Search	
INTRODUCTION	The Model	QUANTITATIVE ANALYSIS	Conclusion

PREVIOUS LITERATURE

- Moen and Rosen (2004)
 - no on-the-job search by unskilled workers
 - no skilled unemployed workers
 - no productivity differential
- Fu (2011)
 - incorporates the piece rate sharing rule into Burdett and Mortensen (1998)
 - ends up with inefficient level of training
- Sanders and Taber (2012)
 - over-investment on job specific human capital
 - under-investment on general human capital

INTRODUCTION THE MODEL QUANTITATIVE ANALYSIS CONCLUSIO	N

INTRODUCTION MOTIVATION PREVIOUS LITERATURE

The Model

Primitives Steady State Equilibrium Efficiency Analysis

QUANTITATIVE ANALYSIS STEADY STATE COMPARATIVE STATICS

Conclusion

- Burdett and Mortensen (1998) with productivity differentials
- a unit measure of risk neutral (lifetime income maximizing) workers
 - A newly born worker enters the labor market as unskilled and unemployed.
 - The unemployed worker gets employed at rate $\lambda^0.$
 - The employed worker finds another job at rate λ^1 and gets laid off at rate δ .
 - The employed worker acquires (general) skills at rate μx through training.
 - All workers retire at rate ρ and they are replaced with newly born workers.
- a unit measure of heterogenous firms $(p \sim H(p))$
 - Each firm maintains one vacancy at every instant.
 - The recruiting firm with p posts $(E_u(p),E_s(p))=((w_u(p),x(p),E_s^t(p)),(w_s(p))).$
 - It meets an employed searcher at rate λ^1 and unemployed searcher at rate λ^0 .
- ε -measure of noise firms
 - They offer only skilled wages from $\hat{F}_n:[\underline{p}+s,\overline{p}+s]\to[0,1].$

- Unemployed Workers
 - retire at rate ρ , and get employed at rate λ^0 .

 $rU_i = b - \rho U_i + \lambda^0 \int \max\{z - U_i, 0\} dF_i(z), \text{ for each } i \in \{u, s\}$

- Skilled Employed Workers
 - retire at rate ρ , get laid off at rate δ , and find offers at rate λ^1 .

$$rE_s(p) = w_s - \rho E_s(p) + \delta(U_s - E_s(p)) + \lambda^1 \int \max\{z - E_s(p), 0\} dF_s(z)$$

- Unskilled Employed Workers
 - retire at rate ρ , get laid off at rate δ , find offers at rate λ^1 , and
 - acquire (general) skills at rate μx .

$$\begin{aligned} r E_u(p) &= w_u - \rho E_u(p) + \delta(U_u - E_u(p)) + \lambda^1 \int \max\{z - E_u(p), 0\} dF_u(z) \\ &+ \mu x (E_s^t - E_u(p)) \end{aligned}$$

- Operating Firms with Skilled Matches
 - deliver the committed values through ...

 $rJ_s(p) = p + s - w_s(p) - [\rho + \delta + \lambda^1(1 - F_s(E_s(p)))]J_s(p)$

- Operating Firms with Unskilled Matches
 - deliver the committed values through \ldots

$$rJ_{u}(p) = \max_{w_{u}, x, E_{s}^{t}} p - w_{u} - c(x) - [\rho + \delta + \lambda^{1}(1 - F_{u}(E_{u}(p)))]J_{u}(p) + \mu x(J_{s}(p) - J_{u}(p))$$

subject to the promise-keeping constraint on $E_u(p)$.

- F.O.C.
 - $\cdot w_s^t(p) = p + s$

$$\cdot \quad c'(x) = \mu(E_s^t(p) - E_u(p) - J_u(p))$$

 $\cdot~$ The promise keeping constraint determines unskilled wages.

On-the-job Training and On-the-job Search			
INTRODUCTION	The Model	QUANTITATIVE ANALYSIS	Conclusion

- Recruiting Firms
 - post $(E_u(p), E_s(p))$ to maximize

 $[\lambda^0 u_s + \lambda^1 G_s(E_s)]J_s(E_s, p) + [\lambda^0 u_u + \lambda^1 G_u(E_u)]J_u(E_u, p)$

Given firms' productivity distribution H(p), a steady state equilibrium with on-the-job training and on-the-job search consists of value equations $\{U_i, E_i, J_i\}$ compensation packages $\{(w_u(p), x(p), E_s^t(p)), (w_s(p))\}$ and steady state measures $\{F_i, G_i, u_i\}$ that jointly satisfy the following conditions. (*i*) Given F_i , workers make optimal job turnover decision. (*ii*) Given $\{F_i, E_i\}$, operating firms optimally deliver the committed values. (*iii*) Given $\{G_i, u_i\}$, recruiting firms post their contract to maximize their profit. (*iv*) $\{F_i, G_i, u_i\}$ are stationary and consistent with the behavior of each agents.

On-the-job Training and On-the-job Search				
INTRODUCTION	The Model	QUANTITATIVE ANALYSIS	Conclusion	

STEADY STATE EQUILIBRIUM

- Proposition 1 The optimal training intensity is characterized by $\begin{aligned} c'(x(p))(r+\rho+\delta)/\mu + x(p)c'(x(p)) - c(x(p)) &= s + \delta(U_s - U_u) \\ &+ \lambda^1 \int_{E_s^t(p)}^{\overline{E}_s} [z - E_s^t(p)] dF_s(z) - \lambda^1 \int_{E_u(p)}^{\overline{E}_u} [z - E_u(p) - J_u(p)] dF_u(z) \end{aligned}$
- In particular, $x(\overline{p}) < x(p)$ for any $p \in [\underline{p},\overline{p})$ if and only if

$$\int_{E_s^t(p)}^{\overline{E}_s} [z - E_s^t(p)] dF_s(z) > \int_{E_u(p)}^{\overline{E}_u} [z - E_u(p) - J_u(p)] dF_u(z)$$

On-the-job Training and On-the-job Search			
INTRODUCTION	The Model	QUANTITATIVE ANALYSIS	Conclusion

Efficiency Benchmarks

- Constrained Social Planner
 - maximizes the present value of the expected output flow throughout the life of a newly born worker in the steady state equilibrium.

$$(r+\rho)S_{s}^{*}(p) = p + s + \delta(U_{s}^{*} - S_{s}^{*}) + \lambda^{1}\int_{p}^{\overline{p}}[S_{s}^{*}(p') - S_{s}^{*}(p)]dH(p')$$

$$(r+\rho)S_{u}^{*}(p) = p - c(x^{*}(p)) + \delta(U_{u}^{*} - S_{u}^{*}) + \mu x^{*}(p)(S_{s}^{*}(p) - S_{u}^{*}(p))$$

$$+\lambda^{1}\int_{p}^{\overline{p}}[S_{u}^{*}(p') - S_{u}^{*}(p)]dH(p')$$

$$(r+\rho)U_{i}^{*}(p) = b + \lambda^{0}\int_{p}^{\overline{p}}[S_{i}^{*}(p') - U_{i}^{*}(p)]dH(p')$$

• chooses the training intensity such that $c'(x^*(p)) = \mu(S^*_s(p) - S^*_u(p))$ $(vs \quad c'(x(p)) = \mu(E^t_s(p) - E_u(p) - J_u(p)))$

On-the-job Training and On-the-job Search			
INTRODUCTION	The Model	QUANTITATIVE ANALYSIS	Conclusion

Efficiency Benchmarks

• Proposition 2 The training intensity in the social planner's problem is characterized by

 $c'(x^*(p))(r+\rho+\delta)/\mu + x^*(p)c'(x^*(p)) - c(x^*(p)) = s + \delta(U_s^* - U_u^*)$

• In particular, $dx^*/dp=0,\,dx^*/d\lambda^1=0,\,{\rm and}\,\,dx^*/d\lambda^0>0$

On-the-job Training and On-the-job Search			
INTRODUCTION	The Model	QUANTITATIVE ANALYSIS	Conclusion

Efficiency Benchmarks

• In the market equilibrium,

$$\begin{aligned} c'(x(p))(r+\rho+\delta)/\mu+x(p)c'(x(p))-c(x(p))&=s+\delta(U_s-U_u)\\ +\lambda^1\int_{E_s^t(p)}^{\overline{E}_s}[z-E_s^t(p)]dF_s(z)-\lambda^1\int_{E_u(p)}^{\overline{E}_u}[z-E_u(p)-J_u(p)]dF_u(z)\end{aligned}$$

• In the social planner's problem,

$$c'(x^*(p))(r+
ho+\delta)/\mu+x^*(p)c'(x^*(p))-c(x^*(p))=s+\delta(U_s^*-U_u^*)$$

EFFICIENCY BENCHMARKS

Figure 2: Training Intensity

	On-the-job Training and	On-the-job Search	
Introduction	The Model	QUANTITATIVE ANALYSIS	Conclusion

INTRODUCTION MOTIVATION PREVIOUS LITERATURE

The Model Primitives Steady State Equilibrium Efficiency Analysis

QUANTITATIVE ANALYSIS

STEADY STATE Comparative Statics

Conclusion

	On-the-job Training	and On-the-job Search	
INTRODUCTION	The Model	QUANTITATIVE ANALYSIS	Conclusion

BASELINE SIMULATION

Table 1	:	Parameter	Values
---------	---	-----------	--------

$[p, \overline{p}] = [0.75, 1.75]$	the productivity support
$\eta = 1.0$	the shape parameter of $H(p)$
<i>s</i> = 0.25	productivity improvement through training
$\gamma=2.0$	cost function parameter
<i>r</i> = 0.012	interest rate
ho= 0.008	retirement rate
$\delta = 0.064$	separation rate
$\lambda^0=1.35$	job finding rate by unemployed workers
$\lambda^1=$ 0.45	job finding rate by employed workers

Productivity Distribution:
$$H(p) = \frac{1 - (\underline{p}/p)^{\eta}}{1 - (\underline{p}/\overline{p})^{\eta}}$$

cost function: $c(x) = x^{\gamma}$

On-the-job Training and On-the-job Search				
INTRODUCTION	The Model	QUANTITATIVE ANALYSIS	Conclusion	

BASELINE SIMULATION

FIGURE 3: THE BASELINE SIMULATION RESULT I

Figure 4: Training Intensity

	unskilled workers	skilled workers	training cost	total output	Net output
ME	0.6001	0.3492	0.0159	1.3859	1.3700
PP	0.6027	0.3467	0.0156	1.3862	1.3707
ME/PP	0.9958	1.0073	1.0191	0.9997	0.9995

ME: the market equilibrium outcome PP: the planner's solution ME/PP: the ratio of ME to PP

Table 2: The Outcome of the Baseline Simulation

 On-the-job Training and On-the-job Search

 Introduction
 The Model
 Quantitative Analysis
 Conclusion

Comparative Statics

FIGURE 5: TRAINING INTENSITY

FIGURE 6: TRAINING INTENSITY

Ŭ	N-THE-JOB TRAINING AND	On-the-job Search	
INTRODUCTION	The Model	QUANTITATIVE ANALYSIS	Conclusion

INTRODUCTION MOTIVATION PREVIOUS LITERATURE

The Model Primitives Steady State Equilibrium Efficiency Analysis

QUANTITATIVE ANALYSIS STEADY STATE COMPARATIVE STATICS

CONCLUSION

On-the-job Training and On-the-job Search			
INTRODUCTION	The Model	QUANTITATIVE ANALYSIS	Conclusion

CONCLUSION

- Human Capital Accumulation (post schooling)
 - the major contributor individual wage growth and economic growth
 - the first best outcome: Workers should pay for the cost of general training.
 - In reality,
 - $\cdot~$ only firms can provide general training in many cases and
 - $\cdot~$ workers cannot commit to staying with the training firms
 - This paper studies the coexistence of On-the-job Training and Search
 - \cdot Hump-shaped training intensity
 - $\cdot \,$ over-intensified general training
 - $\cdot~$ Mitigating search friction intensifies training but improves net output.

INTRODUCTION THE MODEL QUANTITATIVE ANALYSIS CONCLU	JSION

Thanks for listening!

Seung-Gyu (Andrew) Sim

University of Tokyo

sgsim@e.u-tokyo.ac.jp