Technology Shocks and Hours Revisited: A Supply-Side Interpretation

Hikaru Saijo

University of California, Santa Cruz

Dec 26 2014, End of Year Tokyo Conference, CIGS

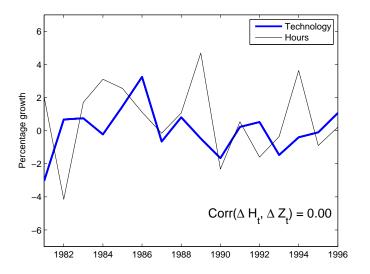
Introduction

- Two views of business cycle: RBC and New Keynesian.
- Gali (1999)'s empirical finding: Positive technology shock reduces aggregate hours. → Evidence in favor of NK.
- This paper: When household heterogeneity taken into account, evidence in favor of RBC.

Introduction

- Intertemporal substitution of labor supply central to modern business cycle theories.
 - Households' ability to transfer wealth across periods critical.
- More than half of the U.S. households do not participate in the asset market.
- Suggests theory overstates the intertemporal substitution effect.
- Verifies this hypothesis using micro data.

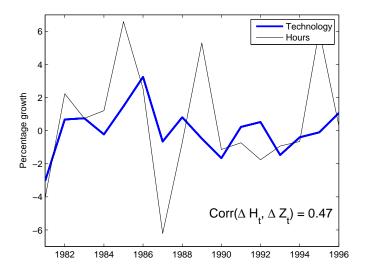
- Consumer Expenditure Survey (CEX) collected by BLS.
- Interview survey since 1980.
- Sample size \approx 5,000 households.


CEX Data

- Financial information collected: Amounts in
 - Checking accounts, brokerage accounts and other similar accounts"
 - Savings accounts at banks, savings and loans, credit unions, etc"
 - 3 "Stocks, bonds, mutual funds and other such securities"
 - **4** "U.S. savings bonds"
- Refer to households with positive responses to "Stocks, bonds, mutual funds and other such securities" as asset holders.
- According to this definition, 85% of households are asset holders.
- Later check alternative definitions.

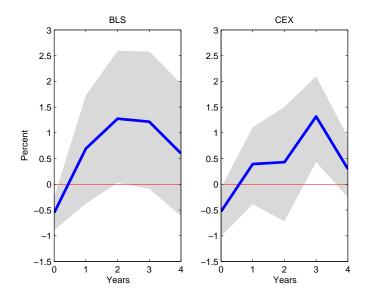

Technology Shock

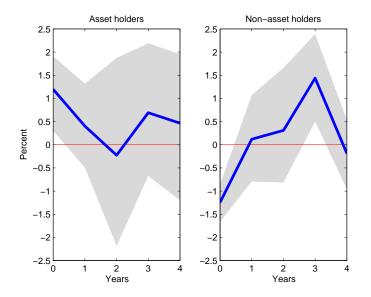
- Measure technology shocks using the "purified" Solow residuals constructed in Basu, Fernald, and Kimball (2006).
- Control for non-technological effects in measured TFP such as utilization, nonconstant returns, and imperfect competition.


All Households

Non-Asset Holders

Asset Holders


Measuring Impulse Responses


• Run a regression on current and lagged technology:

$$\Delta H_t = a + \sum_{j=0}^4 c_j \Delta Z_{t-j} + e_t$$

 Obtain impulse responses in levels by cumulating coefficients on the technology growth (the c_j's).

Aggregate Impulse Response: BLS vs. CEX Data

- When technology improves,
 - Asset holders increase hours.
 - Non-asset holders reduce hours.
- Within asset holders, the hours increase is larger for households with larger asset holdings.
- Results robust to
 - $\checkmark\,$ Including lagged dependent variables.
 - \checkmark Controlling for other macro shocks.

- Results mixed if other definitions are used to split households.
 - Savings accounts. IRF
 - U.S. savings bonds. IRF

Interpretation

- Return on these assets less correlated with technology.
- People hold these assets mainly for precautionary reasons / long-term savings (e.g., retirements).
- Liquidity constraints unlikely to explain the finding. (Details in paper)

Structural Estimation

- Estimate a DSGE model using the impulse response to a technology shock.
- Full asset market participation model estimated with aggregate IRF only → Substantial nominal rigidities.
- Limited asset market participation model estimated with aggregate and household IRF → Flexible prices and wages.

Model

- DSGE model with limited asset market participation.
- $(1-\chi)$ fraction of households participate in the stock and bond market and the remaining χ fraction do not.
- When $\chi = 0$, standard model.

Model

• Asset holders:

$$\max_{\{C_t^a, H_t^a, S_t^a, B_t^a\}} E_0 \sum_{t=0}^{\infty} \beta^t \bigg[\ln(C_t^a - bC_{t-1}^a) - \frac{(H_t^a)^{1+\eta}}{1+\eta} \bigg],$$

subject to

$$P_t C_t^a + P_t^E S_t^a + B_t^a \le W_t H_t^a + (D_t^E + P_t^E) S_{t-1}^a + R_{t-1} B_{t-1}^a + T_t^a.$$

• Non-asset holders:

$$\max_{\{C_t^n, H_t^n\}} E_0 \sum_{t=0}^{\infty} \beta^t \bigg[\ln(C_t^n - bC_{t-1}^n) - \frac{(H_t^n)^{1+\eta}}{1+\eta} \bigg],$$

subject to

 $P_t C_t^n \le W_t H_t^n + T_t^n.$

Model

1 Intermediate goods firms

- $\checkmark\,$ Monopolistically competitive, maximize dividends.
- ✓ Price adjustment cost, investment adjustment cost, variable capital utilization.
- ✓ Technology shock: $\ln z_t = \bar{z} + \ln z_{t-1} + \epsilon_t$.
- Pinal goods firms
 - ✓ Perfectly competitive, produce final goods by combining intermediate goods.

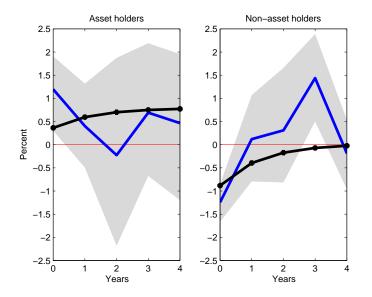
Ø Wage setting

- $\checkmark\,$ Households sell differentiated labor service to "labor packer".
- ✓ Wage adjustment cost.
- ④ Central bank
 - $\checkmark\,$ Taylor-type rule responding to inflation and output growth.

Estimation

- Some parameters are pre-fixed. The participation rate is set to 15% (source: CEX).
- Minimum distance method: Match the model IRF with the data.
- Variables used: IRF of

Output, consumption, investment, hours (all households), hours (asset holders), hours (non-asset holders), real wage, inflation, FF rate, utilization rate.


Estimation

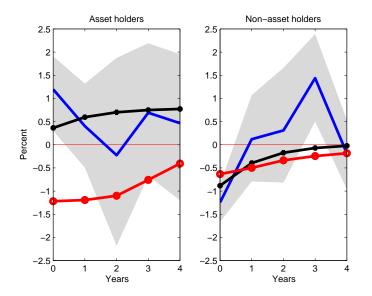
	Description	Baseline	Full participation
δ_2/δ_1	Utilization curvature	0.00	0.00
η	Inverse Frisch elasticity	(0.000) 0.03	(0.007) 0.00
b	Consumption habit	(0.002) 0.83	(0.001) 0.84
κ	Investment adj. cost	(0.003) 0.00	(0.028) 0.00
φ	Elasticity of labor b/w	(0.005) 8.44	(0.013)
ϕ_P	asset and non-asset holders Price adj. cost	(0.003) 0.04	33.74
ϕ_W	Wage adj. cost	(0.002) 0.00	(0.013) 200.00
ρ_R	Taylor rule smoothing	(0.002) 0.07	0.90
ϕ_{π}	Taylor rule inflation	(0.002) 1.00	2.38
ϕ_Y	Taylor rule output	(0.000) 0.88	(0.008) 1.10
$100\sigma_z$	Technology shock	(0.002) 0.55	(0.016) 0.54
-		(0.072)	(0.036)

Estimation

	Description	Baseline	Full participation
δ_2/δ_1	Utilization curvature	0.00	0.00
η	Inverse Frisch elasticity	(0.000) 0.03	(0.007) 0.00
b	Consumption habit	(0.002) 0.83	(0.001) 0.84
κ	Investment adj. cost	(0.003) 0.00	(0.028) 0.00
φ	Elasticity of labor b/w	(0.005) 8.44	(0.013)
ϕ_P	asset and non-asset holders Price adj. cost	(0.003) <mark>0.04</mark>	33.74
ϕ_W	Wage adj. cost	(0.002) <mark>0.00</mark>	(0.013) 200.00
ρ_R	Taylor rule smoothing	(0.002) 0.07	0.90
ϕ_{π}	Taylor rule inflation	(0.002) 1.00	2.38
ϕ_Y	Taylor rule output	(0.000) 0.88	(0.008) 1.10
$100\sigma_z$	Technology shock	(0.002) 0.55	(0.016) 0.54
-		(0.072)	(0.036)

Impulse Response, Baseline Model

Other variables


• Positive technology shock \longrightarrow Higher wages and return on investment.

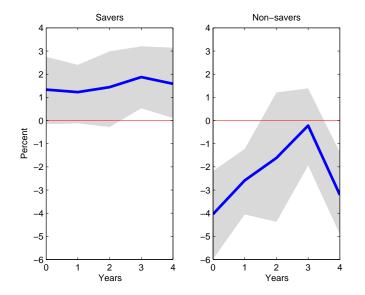
- Positive technology shock \longrightarrow Higher wages and return on investment.
- Asset holders increase hours to reap the benefit of the higher return.

- Positive technology shock \longrightarrow Higher wages and return on investment.
- Asset holders increase hours to reap the benefit of the higher return.
- Non-asset holders reduce hours because of the income effect.

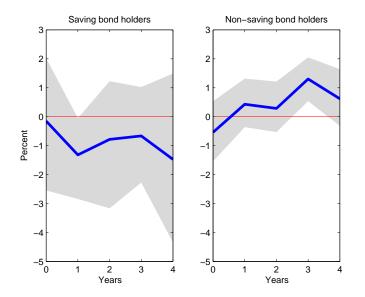
- Positive technology shock \longrightarrow Higher wages and return on investment.
- Asset holders increase hours to reap the benefit of the higher return.
- Non-asset holders reduce hours because of the income effect.
- Most households non-asset holders \longrightarrow In the aggregate, hours fall.

Impulse Response, Increasing Price and Wage Stickiness

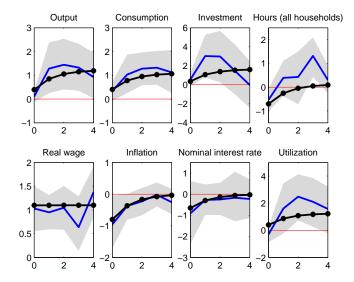
• Positive technology shock \longrightarrow Higher markups in the short run.


- Positive technology shock \longrightarrow Higher markups in the short run.
- Lower wages and return on investment.

- Positive technology shock \longrightarrow Higher markups in the short run.
- Lower wages and return on investment.
- Asset holders reduce hours.


Conclusion

- Exploit cross-sectional heterogeneity at the household level.
- Finding: Negative response of aggregate hours to technology shocks driven by the income effect.
- RBC with limited asset market participation consistent with data.
- New Keynesian model inconsistent with micro evidence.


Backup slides

▶ Return

Impulse Response, Baseline Model

