Deflation and debt:

A neoclassical framework for monetary policy analysis

Keiichiro Kobayashi Keio University/CIGS

June 25, 2013 at CIGS Very Preliminary. Comments Welcome.

Can New Keynesian (NK) model account for Japan's Deflation?

- Deflation continued for more than a decade in Japan from 1998–present.
- New Keynesian models are not fully satisfactory in analyzing decade-long deflation.
 - Was the price stickiness a problem in Japan's 1990s and in the global crises?

What is necessary for a framework of monetary policy analysis

- Can we consider an alternative framework without price stickiness?
- Three features in the New Keynesian model
 - Suboptimality of the Friedman rule: zero or moderate inflation maximizes social welfare.
 - Phillips curve:

a positive correlation between inflation and output.

Liquidity effects:

a negative correlation between nominal interest rate and output (or money supply).

What we do in this paper

- Construct a neoclassical model with flexible prices, which has the following features:
 - Suboptimality of the Friedman rule: input-smoothing effect
 - Suppose that firms with loose constraints and tight constraints coexist.
 Distortionary tax on loosely-constrained firms can be welfare enhancing (input-smoothing effect).
 - Inflation works as a device for input-smoothing effect.
 - 2 Phillips curve
 - Liquidity effect
- These features are generated from heterogeneous financial constraints.
- Our model may provide a new account for a decade-long deflation in Japan.

Overview of the model

- Closed economy, representative consumer, heterogeneous firms (firms 1, firms 2), central bank (CB).
- Heterogeneity in financial constraints
 - Consumer can transfer cash to firm 1 as internal funds.
 - Consumer is owner-manager of firm 1.
 - Consumer cannot transfer cash to firm 2.
 - Consumer is owner but not manager of firm 2. The manager of firm 2 can divert cash for private purposes without getting penalty.
- CB can choose intra-period interest rate (nominal rate), *j*, and the amount of intra-period loan, Δ.
- The policy (*j*, Δ) decides the inflation rate π as an equilibrium outcome.

Introduction

2 Model Economy

- Setup
- Steady-state equilibrium
- Suboptimality of the Friedman rule
- Phillips curve and the liquidity effect
- The Fisherian Deflation

Conclusion

Setup

- Time is discrete: $t = 0, 1, 2, \cdots$.
- Closed economy with representative consumer who owns two types of firms: firm 1 and firm 2.
- Firms can produce y_t from labor L_t :

$$y_t = A_t L_t^{\alpha},$$

where the wage $w_t L_t$ must be financed by cash and/or credit subject to a liquidity constraint, described later.

- The measure of consumers is normalized to one.
- There are continuum of firms 1 with measure φ and continuum of firms 2 with measure 1 – φ.

Setup – Consumer

- A consumer can invest his cash in firm 1 as internal funds, while he cannot invest cash in firm 2.
 - The manager of firm 2 can divert cash for private purposes without getting penalty if the consumer invests cash in firm 2.
- Optimization of a consumer is

$$\begin{split} \max \sum \beta^{t} [\ln c_{t} + \gamma \ln(1 - l_{t})], \\ \text{s.t. } c_{t} + \phi m_{t} + b_{t} \leq w_{t} l_{t} + \phi \Pi \left(\frac{m_{t-1}}{\pi_{t}} + \Delta_{t}\right) + (1 - \phi) \Pi(0) - (1 + j_{t}) \phi \Delta_{t} + (1 + r_{t}) b_{t-1}, \end{split}$$

where $\Pi(m)$ is the profit from his own firm with internal funds *m*.

- Consumer can invest cash, $\phi \left\{ \frac{m_{t-1}}{\pi_t} + \Delta_t \right\}$, in his own firm 1.
 - m_{t-1} is the real money carried over from t-1,
 - $\pi_t = P_t / P_{t-1}$ is the inflation from t 1 to t,
 - Δ_t is intra-period loan from Central Bank, for which j_t is interest rate.

Setup – Firm 1

- Cash $\frac{m_{t-1}}{\pi_t} + \Delta_t$ is transferred from its owner (the consumer).
- Given $\frac{m_{t-1}}{\pi_t} + \Delta_t$, the firm solves

$$V_{t-1}^{1} = \beta E_{t-1} \left[\frac{\lambda_{t}}{\lambda_{t-1}} \left\{ \max_{L_{1t}} [AL_{1t}^{\alpha} - w_{t}L_{1t}] + \frac{m_{t-1}}{\pi_{t}} + \Delta_{t} + V_{t}^{1} \right\} \right],$$

s.t. $w_{t}L_{1t} \leq \frac{m_{t-1}}{\pi_{t}} + \Delta_{t} + \theta V_{t}^{1}$ (μ_{1})

where
$$\Pi\left(\frac{m_{t-1}}{\pi_t} + \Delta_t\right) = AL_{1t}^{\alpha} - w_t L_{1t} + \frac{m_{t-1}}{\pi_t} + \Delta_t.$$

Setup – Firm 1 (cont'd)

Liquidity constraint

$$wL_{1t} \le \frac{m_{t-1}}{\pi_t} + \Delta_t + \theta V_t^1 \tag{(\mu_1)}$$

is derived from the commitment problem (Kiyotaki and Moore 1997, Jermann and Quadrini 2012):

- Before production, firm 1 pays cash to the worker and promises to pay the remaining wage after production.
- After production, if the firm breaks the promise, the worker destroys the firm with probability θ , in which case the firm cannot operate from t + 1 on.
- As the firm loses the expected value θV_t^1 by breaking the promise, it can credibly pay the remaining wage as long as it is less than θV_t^1 .

Setup – Firm 2

The firm solves

$$V_{t-1}^{2} = \beta E_{t-1} \left[\frac{\lambda_{t}}{\lambda_{t-1}} \{ \max_{L_{2t}} [AL_{2t}^{\alpha} - w_{t}L_{2t}] + V_{t}^{2} \} \right],$$

s.t. $w_{t}L_{2t} \le \theta V_{t}^{2}$ (μ_{2})

where $\Pi(0) = AL_{2t}^{\alpha} - w_t L_{2t}$.

Setup – Government or Central Bank

- This time, we do not specify the objective of the government. We assume the following assumption.
 - Government follows the exogenous policy rule:

 $j_t = J(A_t, \theta_t; I_t),$ $\Delta_t = D(A_t, \theta_t; I_t),$

where I_t is all information available at t.

• The government is subject to the budget constraint:

$$(1+r_t)B_{t-1} + \frac{M_{t-1}}{\pi_t} = B_t + M_t + j_t \phi \Delta_t,$$

where B_t and M_t are supplies of bonds and cash. The upper case variables do not represent nominal variables, but they are real variables.

Setup – Summary

Consumer:
$$\max \sum \beta^{t} [\ln c_{t} + \gamma \ln(1 - l_{t})],$$

s.t. $c_{t} + \phi m_{t} + b_{t} \le w_{t} l_{t} + \phi \Pi \left(\frac{m_{t-1}}{\pi_{t}} + \Delta_{t}\right) + (1 - \phi) \Pi(0) - (1 + j_{t}) \phi \Delta_{t} + (1 + r_{t}) b_{1t-1}, \quad (\lambda_{1t})$

$$\begin{aligned} \text{Firm 1:} \quad V_{t-1}^{1} &= \beta E_{t-1} \left[\frac{\lambda_{t}}{\lambda_{t-1}} \left\{ \max_{L_{1t}} [AL_{1t}^{\alpha} - w_{t}L_{1t}] + \frac{m_{t-1}}{\pi_{t}} + \Delta_{t} + V_{t}^{1} \right\} \right], \\ \text{s.t.} \quad w_{t}L_{1t} &\leq \frac{m_{t-1}}{\pi_{t}} + \Delta_{t} + \theta V_{t}^{1} \end{aligned} \qquad (\mu_{1}) \\ \text{Firm 2:} \quad V_{t-1}^{2} &= \beta E_{t-1} \left[\frac{\lambda_{t}}{\lambda_{t-1}} \{ \max_{L_{2t}} [AL_{2t}^{\alpha} - w_{t}L_{2t}] + V_{t}^{2} \} \right], \\ \text{s.t.} \quad w_{t}L_{2t} &\leq \theta V_{t}^{2} \end{aligned} \qquad (\mu_{2})$$

Government: $(1+r_t)B_{t-1} + \frac{M_{t-1}}{\pi_t} = B_t + M_t + j_t\phi\Delta_t$

Equilibrium conditions

Equilibrium conditions

$$c = Y = \phi A L_1^{\alpha} + (1 - \phi) A L_2^{\alpha},$$

$$l = \phi L_1 + (1 - \phi) L_2,$$

$$\phi m = M,$$

$$b = B.$$

 Nominal interest rate: The consumer's FOCs wrt Δ and m_t, and the envelope condition for Π(m) imply that

$$j_t = \mu_{1t}.$$

The short-term nominal interest rate j_t equals the tightness of liquidity constraint for firm 1.

Model Economy

Setup

Steady-state equilibrium

- Suboptimality of the Friedman rule
- Phillips curve and the liquidity effect

The Fisherian Deflation

Conclusion

Steady-state equilibrium

Given policy parameters (j, Δ) , the steady-state equilibrium is given as a solution to the following 14 equations for 14 unknowns $(c, w, l, L_1, L_2, \pi, \mu_2, m, V^1, V^2, r, b, M, B)$.

$$w = \frac{\gamma c}{1 - l},\tag{3}$$

$$1 + j = 1 + \mu_1 = \frac{\pi}{\beta},$$
 (4)

$$wL_1 = \frac{\alpha A L_1^{\alpha}}{1 + \mu_1},\tag{5}$$

$$wL_1 = \frac{m}{\pi} + \Delta + \theta V^1, \tag{6}$$

$$V^{1} = \frac{\beta A L_{1}^{\alpha}}{1 - (1 - \theta)\beta},\tag{7}$$

$$wL_2 = \theta V^2, \tag{8}$$

Steady-state equilibrium

$$V^2 = \frac{\beta A L_2^{\alpha}}{1 - (1 - \theta)\beta},\tag{9}$$

$$wL_2 = \frac{\alpha A L_2^{\alpha}}{1 + \mu_2},\tag{10}$$

$$Y = c = \phi A L_1^{\alpha} + (1 - \phi) A L_2^{\alpha},$$
(11)

$$l = \phi L_1 + (1 - \phi) L_2, \tag{12}$$

$$1 + r = \beta^{-1},$$
 (13)

$$rB = \left(1 - \frac{1}{\pi}\right)M + \phi j\Delta,\tag{14}$$

$$b = B, \tag{15}$$

$$\phi m = M. \tag{16}$$

Characteristics of the steady-state equilibrium

- The degree of inefficiency is pinned down by π. The other policy variable (Δ) determines the value of *m*.
 - Variables (w, L₁, L₂, Y, V¹, V²) depend only on π, and independent of Δ.
 The value of w is given by

$$w^{\frac{1}{1-\alpha}} = \gamma \phi A^{\frac{1}{1-\alpha}} \left\{ \left(\frac{\alpha\beta}{\pi}\right)^{\frac{1}{1-\alpha}} + \left(\frac{\alpha\beta}{\pi}\right)^{\frac{\alpha}{1-\alpha}} \right\} + (1-\phi)\gamma A^{\frac{1}{1-\alpha}} \left\{ \left(\frac{\theta\beta}{1-(1-\theta)\beta}\right)^{\frac{1}{1-\alpha}} + \left(\frac{\theta\beta}{1-(1-\theta)\beta}\right)^{\frac{\alpha}{1-\alpha}} \right\}.$$
(17)

- Redundancy of Δ :
 - Δ does not affect the welfare.
 - There are continuously infinite combinations of (m, Δ) for given π .

Welfare analysis on the steady state

- We focus on the deterministic steady-state equilibrium in which j and Δ are constant.
- Inflation rate π is pinned down by

$$1 + j = 1 + \mu_1 = \frac{\pi}{\beta}.$$

• Tightness of constraint for firm 2 does not depend on monetary policy:

$$1+\mu_2=\frac{\{1-(1-\theta)\beta\}\alpha}{\theta\beta}.$$

• We define the social welfare W by

$$W = \frac{1}{1-\beta}U(c,l) = \frac{1}{1-\beta}\{\ln c + \gamma \ln(1-l)\}.$$

Welfare analysis on the steady state (cont'd)

Parameter values are

α	β	φ	γ	A	θ
0.89	0.95	0.25	1.8	1	0.2

- As shown in the next slide, *W* is maximized by the policy: j = 0.11, which implies $\pi = 1.0552$.
 - \Rightarrow A moderate inflation is optimal!

Model Economy

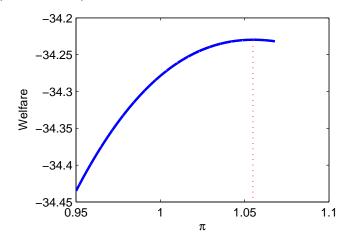
- Setup
- Steady-state equilibrium
- Suboptimality of the Friedman rule
- Phillips curve and the liquidity effect

The Fisherian Deflation

Conclusion

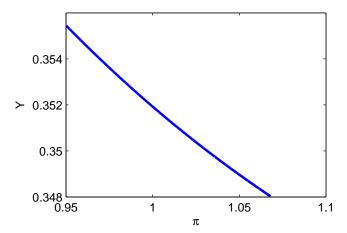
Suboptimality of the Friedman rule

• The welfare level in the steady state is maximized at $\Delta = 0, \ \pi^* = 1.0552, \ Y^* = 0.349$:



Suboptimality of the Friedman rule

• Output is maximized at the Friedman rule.



Why is the Friedman rule suboptimal?

- In the equilibrium,
 - all monetary distortion, which is represented by μ_1 , can be completely eliminated by setting j = 0 (or $\pi = \beta$) because $j = \mu_1$ in equilibrium.
 - The Friedman rule seems to be optimal...
- ... But it turns out that the Friedman rule is suboptimal in our model.

Rigorous derivation of suboptimality of the Friedman rule

• Social welfare is $W = U/(1 - \beta)$, where

$$U = \ln Y + \gamma \ln(1 - L),$$

$$Y = \phi A L_1^{\alpha} + (1 - \phi) A L_2^{\alpha},$$

$$L_1 = \left(\frac{\alpha \beta A}{w(\pi)\pi}\right)^{\frac{1}{1-\alpha}},$$

$$L_2 = \left(\frac{\theta \beta A}{\{1 - (1 - \theta)\beta\}w(\pi)}\right)^{\frac{1}{1-\alpha}},$$

• We can show for the elasticity of wage rate wrt inflation $\varepsilon(\pi)$,

$$0 < \varepsilon(\pi) < 1$$
, that

$$\frac{dU}{d\pi} = [(1 - \phi)\varepsilon(\pi)\mu_2 L_2 - (1 - \varepsilon(\pi))\phi\mu_1 L_1]\frac{w}{(1 - \alpha)\pi Y}.$$

• Suboptimality of the Friedman rule: $\frac{dU}{d\pi} > 0$ at $\mu_1 = 0$.

Economic intuition: input-smoothing effect

Inflation tax on firm 1 is welfare enhancing: Input-smoothing effect

- Inflation tax is imposed selectively on firm 1, not on firm 2.
 - Firm 1 can use cash to relax the liquidity constraint.
 - Firm 2 cannot use cash to relax the liquidity constraint.
- Input-smoothing effect:
 - Inflation tax on firm 1 reduces firm 1's demand for labor and decreases the wage rate w, which in turn increases firm 2's demand for labor.
 - MPL of firm 2 > MPL of firm 1.
 - Decrease in total output is moderate compared to the decrease in labor.
 - Thus the inflation tax reduces disutility from labor more than utility from consumption of the goods.
 - Overall effect is welfare enhancing.

Economic intuition: input-smoothing effect (cont'd)

- Inflation: second-best policy to reallocate labor from firm 1 to firm 2.
 - If there exists a policy that can reallocate labor from firm 1 to firm 2 without reducing total labor, it should be better than inflation.
 - Inflation reduces total labor.
 - Inflation reallocate the labor from firm 1 to firm 2.
 - The second effect dominates the first and improve total welfare.
- Firm 1 represents old and traditional sectors, and firm 2 young and emerging industries.
 - Old firms have easy access to funds, while young firms do not.
 - Inflation reallocates resources from old firms to young firms.

Model Economy

- Setup
- Steady-state equilibrium
- Suboptimality of the Friedman rule
- Phillips curve and the liquidity effect
- The Fisherian Deflation

Conclusion

Stochastic shocks

• We consider two stochastic shocks in the economy.

- A_t : the productivity shock.
- θ_t : the financial shock (Jermann and Quadrini 2012).
- Given the policy rules:

$$j_t = \mu_{1t} = J(A_t, \theta_t; I_t),$$
$$\Delta_t = D(A_t, \theta_t; I_t),$$

we can calculate the dynamic response of the economy to these shocks (A_t, θ_t) .

Dynamics

$$w_t = \frac{\gamma c_t}{1 - l_t},$$

$$w_t L_{1t} = \frac{\alpha A_t L_{1t}^{\alpha}}{1 + j_t},$$
(18)
(19)

$$w_t L_{2t} = \frac{\alpha A_t L_{2t}^{\alpha}}{1 + \mu_{2t}},$$
(20)

$$w_t L_{1t} - \frac{m_{t-1}}{\pi_{t-1}} - \Delta_t = \theta_t V_t^1, \tag{21}$$

$$w_t L_{2t} = \theta_t V_t^2, \tag{22}$$

$$V_{t}^{1} = \beta E_{t} \left[\frac{c_{t}}{\tilde{c}_{t+1}} \left\{ \tilde{A}_{t+1} \tilde{L}_{1t+1}^{\alpha} - \tilde{w}_{t+1} \tilde{L}_{1t+1} + \frac{m_{t}}{\tilde{\pi}_{t}} - \tilde{j}_{t+1} \tilde{\Delta}_{t+1} + \tilde{V}_{t+1}^{1} \right\} \right],$$
(23)
$$V^{2} = \beta E_{t} \left[\frac{c_{t}}{\tilde{c}_{t+1}} \left\{ \tilde{A}_{t+1} \tilde{L}_{2t+1}^{\alpha} - \tilde{w}_{t+1} \tilde{L}_{2t+1} + \tilde{V}_{t+1}^{2} \right\} \right],$$
(24)

Dynamics (cont'd)

$$Y_t = c_t = \phi A_t L_{1t}^{\alpha} + (1 - \phi) A_t L_{2t}^{\alpha},$$
(25)

$$l_t = \phi L_{1t} + (1 - \phi) L_{2t}, \tag{26}$$

$$(1+r_t)B_{t-1} + \frac{M_{t-1}}{\pi_{t-1}} = B_t + M_t + j_t \phi \Delta_t,$$
(27)

$$1 = \beta E_t \left[\frac{c_t}{\tilde{c}_{t+1}} \frac{(1+\tilde{j}_{t+1})}{\tilde{\pi}_t} \right],$$
 (28)

$$1 = \beta E_t \left[\frac{c_t}{\tilde{c}_{t+1}} (1 + \tilde{r}_{t+1}) \right],$$
(29)

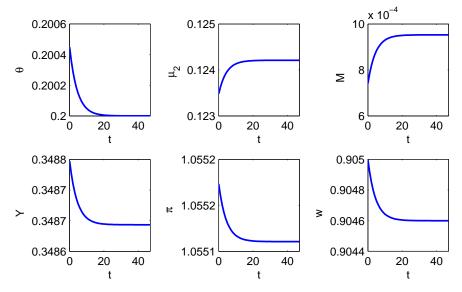
$$M_t = \phi m_t, \tag{30}$$

$$B_t = b_t. ag{31}$$

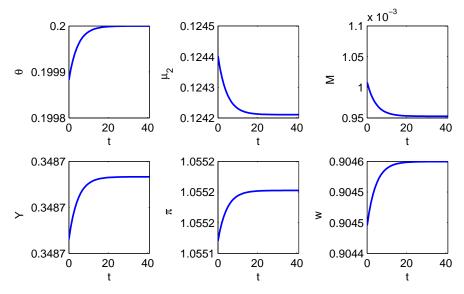
Phillips curve

- Consider the dynamic response of the model in which
 - θ_t changes exogenously,
 - (j_t, Δ_t) are kept at steady-state values $(j_t = \mu_{1t} = \bar{\mu}_1, \Delta = 0)$.

Phillips curve



Phillips curve



Intuition for the Phillips curve

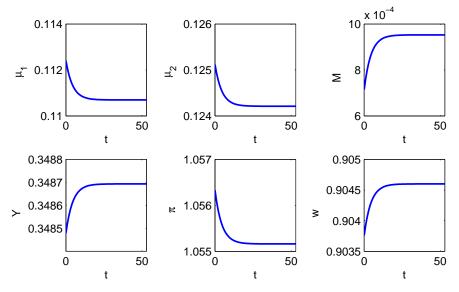
 Phillips curve relationship is an artifact generated by the responses of output and inflation to the financial shocks.

$$\begin{array}{ccc} \theta \uparrow \Longrightarrow Y \uparrow & \text{and} & \theta \uparrow \Longrightarrow \pi \uparrow \\ \theta \downarrow \Longrightarrow Y \downarrow & \text{and} & \theta \downarrow \Longrightarrow \pi \downarrow \end{array}$$

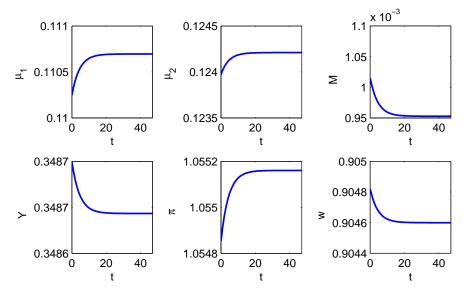
Liquidity effect

- Consider the dynamic response of the model in which
 - there is no exogenous shock: θ_t and A_t are constant,
 - $j_t = \mu_{1t}$ is changed by monetary policy,
 - Δ_t is kept at the steady-state value ($\Delta_t = 0$).

Liquidity effect



Liquidity effect



Intuition for the liquidity effect

- As $j_t = \mu_{1t}$ increases, liquidity constraints for firms 1 become tighter.
- Output decreases as liquidity constraints become tighter.
- Money demand decreases as the nominal short-term rate j_t increases.

$$j_t \uparrow \Longrightarrow Y \downarrow$$
 and $j_t \uparrow \Longrightarrow M \downarrow$
 $j_t \downarrow \Longrightarrow Y \uparrow$ and $j_t \downarrow \Longrightarrow M \uparrow$

Introduction

Model Economy

- Setup
- Steady-state equilibrium
- Suboptimality of the Friedman rule
- Phillips curve and the liquidity effect

The Fisherian Deflation

Conclusion

Accounting for decade-long deflation

• A simple explanation: The Fisher relation in the steady state

$$1+j=\pi(1+r)=\frac{\pi}{\beta}.$$

- If *j* is fixed at zero, then the inflation rate should be negative ($\pi < 1$), as the real rate of interest $r = \beta^{-1} 1$ is positive.
- If the following Ricardian expectations on fiscal policy prevail, then permanent deflation is compatible with increasing money supply.
 - Ricardian expectations:

In the far futre, tax will be increased so that the government budget constraint is satisfied under permanent ZIRP.

Why deflation is associated with low output?

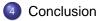
- In response to a negative financial shock the zero nominal interest rate policy (ZIRP, i.e., the Friedman rule) can maximize the output by relaxing the liquidity constraint.
- If the negative financial shock is permanent,
 - ZIRP can maximize the output of firm 1, while the level of total output is permanently lower than in the initial steady state,
 - ZIRP creates the equilibrium deflation by the Fisher relation,
 - ZIRP is not the long-run "optimal" policy. (ZIRP maximizes output, while it does not maximize welfare.)
- Permanent financial shock may represent structural changes in financial sector or in financial regulations.

Introduction

Model Economy

- Setup
- Steady-state equilibrium
- Suboptimality of the Friedman rule
- Phillips curve and the liquidity effect

The Fisherian Deflation



Conclusion

- We construct a flexible-price model for monetary policy analysis.
- The model features
 - suboptimality of the Friedman rule due to the input-smoothing effect,
 the Phillips curve created by equilibrium response to financial shocks,
 the liquidity effect.
- ZIRP (i.e., the Friedman rule) enhances efficiency by relaxing the liquidity constraint, whereas it generates the equilibrium deflation in the long run by the Fisher relation.