| Introduction | Model | Model Mechanisms | Dynamics | Conclusion |
|--------------|-------|------------------|----------|------------|
|              |       |                  |          |            |
|              |       |                  |          |            |

# Structural Change in an Open Economy

## Kei-Mu Yi Federal Reserve Bank of Minneapolis

### Jing Zhang University of Michigan

## May 28, 2012<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>The views expressed here are those of the authors are are not necessarily reflective of views of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

| Introduction   | Model | Model Mechanisms | Dynamics | Conclusion |
|----------------|-------|------------------|----------|------------|
|                |       |                  |          |            |
| Structural Cha | nge   |                  |          |            |

### Share of employment (16 advanced nations)

| Sector        | 1870 | 1960 | 1987 |
|---------------|------|------|------|
| Agriculture   | 0.49 | 0.17 | 0.06 |
| Services      | 0.24 | 0.44 | 0.63 |
| Manufacturing | 0.27 | 0.39 | 0.30 |

Source: Maddison (1991)

- Agriculture share declines over time.
- Services share rises over time.
- Manufacturing share first rises and then declines over time.

| Introduction | Model          | Model Mechanisms | Dynamics | Conclusion |
|--------------|----------------|------------------|----------|------------|
| Global integ | gration, Strue | ctural Change    |          |            |
|              |                |                  |          |            |

- World's economies increasingly interlinked via trade.
  - In past 30-40 years many emerging market countries have globalized
- Manufacturing labor shares are declining in developed nations, and rising (although not permanently) in emerging market countries.
  - Trade with emerging markets has been blamed for declining manufacturing employment in developed countries.
- In most countries, manufacturing has the highest productivity growth.

| Introduction | Model | Model Mechanisms | Dynamics | Conclusion |
|--------------|-------|------------------|----------|------------|
|              |       |                  |          |            |

### U.S. and South Korea Manufacturing Employment Share



#### Labor Productivity Growth (1970-2005)

| Country     | Agriculture | Manufacturing | Services |
|-------------|-------------|---------------|----------|
| U.S.        | 1.5%        | 3.8%          | 0.7%     |
| South Korea | 4.9%        | 7.0%          | 1.7%     |



### South Korea's Manufacturing Net Exports As Share of GDP

#### Manufacturing Net Exports as a Share of GDP 0.20 0.02 0.15 0.01 0.00 0.10 0.05 -0.010.00 -0.02 -0.05 -0.03 -0.10 -0.04 Korea, left axis USA, right axis -0.15 -0.05 1962 1967 1972 1977 1982 1987 1992 1997 2002



Figure: Manufacturing Net Exports and Manufacturing Employment



| Introduction   | Model       | Model Mechanisms | Dynamics | Conclusion |
|----------------|-------------|------------------|----------|------------|
| Services Emplo | yment and T | rade             |          |            |

$$I_{ist} = \beta_0 + \beta_1 trade_{it} + \beta_2 gdppc_{it} + \gamma_i + \epsilon_{it}$$

- *i*: country; *t*: period
- *l<sub>ist</sub>*: services employment share
- *trade<sub>it</sub>*: exports+imports as a share of GDP
- *gdppc<sub>it</sub>*: GDP per capita in 2005 international dollars

|                           | trade <sub>it</sub> | gdppc <sub>it</sub>  | β                 | $R^2$ | Obs |
|---------------------------|---------------------|----------------------|-------------------|-------|-----|
| Fixed Effect <sup>a</sup> | 0.0801<br>(0.0289)  | 1.23e-5<br>(1.12e-6) | 0.369<br>(0.0251) | 0.67  | 379 |

Table: Trade and Services Labor Share

| Introduction | Model | Model Mechanisms | Dynamics | Conclusion |
|--------------|-------|------------------|----------|------------|
| Key Question |       |                  |          |            |

• What is the effect of international trade on the process of structural change?

| Introduction | Model | Model Mechanisms | Dynamics | Conclusion |
|--------------|-------|------------------|----------|------------|
| Our Approach |       |                  |          |            |

• We develop a two-country, three-sector model with inter- and intra-sector Ricardian trade

| Introduction | Model | Model Mechanisms | Dynamics | Conclusion |
|--------------|-------|------------------|----------|------------|
| Our Approach |       |                  |          |            |

- We develop a two-country, three-sector model with inter- and intra-sector Ricardian trade
- We study the channels by which trade affects structural change:

| Introduction | Model | Model Mechanisms | Dynamics | Conclusion |
|--------------|-------|------------------|----------|------------|
| Our Approach |       |                  |          |            |

- We develop a two-country, three-sector model with inter- and intra-sector Ricardian trade
- We study the channels by which trade affects structural change:
  - Trade delinks sectoral production and sectoral expenditure:

Closed: labor share = expenditure share

Open: labor share = expenditure share + net export share

| Introduction | Model | Model Mechanisms | Dynamics | Conclusion |
|--------------|-------|------------------|----------|------------|
| Our Approach |       |                  |          |            |

- We develop a two-country, three-sector model with inter- and intra-sector Ricardian trade
- We study the channels by which trade affects structural change:
  - Trade delinks sectoral production and sectoral expenditure:

Closed: labor share = expenditure share

**Open:** labor share = expenditure share + net export share

- Trade allows countries to specialize, affecting net export shares
- Trade changes relative prices, affecting expenditure shares

| Introduction | Model | Model Mechanisms | Dynamics | Conclusion |
|--------------|-------|------------------|----------|------------|
| Our Approach |       |                  |          |            |

- We develop a two-country, three-sector model with inter- and intra-sector Ricardian trade
- We study the channels by which trade affects structural change:
  - Trade delinks sectoral production and sectoral expenditure:

Closed: labor share = expenditure share

**Open:** labor share = expenditure share + net export share

- Trade allows countries to specialize, affecting net export shares
- Trade changes relative prices, affecting expenditure shares
- We demonstrate two ways in which open economy can generate hump pattern in manufacturing employment

| Introduction   | Model | Model Mechanisms | Dynamics | Conclusion |
|----------------|-------|------------------|----------|------------|
| Related Resear | ch    |                  |          |            |

- Models of structural change:
  - Closed-economy models: Kongsamut, Rebelo and Xie (2001) and Ngai and Pissarides (2007)
  - Open economy models:
    - Matsuyama (2009): an example with Ricardian framework
    - Coleman (2007): model in which large emerging market country integrates with rest of world
- Models of Ricardian trade: Eaton and Kortum (2002)

### Two Groups of Theories of Structural Change

- Non-homothetic preferences:
  - Engel (1895)
  - Kongsamut et. al (2001)
- Sector-biased productivity growth:
  - Baumol (1967)
  - Ngai and Pissarides (2007)

Closed economy frameworks

| Introduction | Model | Model Mechanisms | Dynamics | Conclusion |
|--------------|-------|------------------|----------|------------|
| Model Set Up |       |                  |          |            |

- Two countries
- Three sectors: agriculture, manufacturing, services
  - Agriculture and manufactured goods are tradable
  - Services are nontradable
- One factor: labor with exogenous supply
  - Mobile across sectors, but immobile across countries
- Productivity growth differs across sectors and countries
- Free trade: based on Ricardian comparative advantage

| mitroduction Mo | del Wodel Wechanis | ms Dynamics | Conclusion |
|-----------------|--------------------|-------------|------------|
| Technologies    |                    |             |            |

- Services: a single good  $Y_{ist} = A_{ist}L_{ist}$
- Agriculture and manufacturing: a continuum of goods

$$y_{imt}(z) = A_{imt}(z)L_{imt}(z)$$
  $z \in [0,1]$   
 $y_{iat}(z) = A_{iat}(z)L_{iat}(z)$   $z \in [0,1]$ 

- A is distributed as Fréchet:  $F_{iqt}(z) = \exp(-T_{iqt}z^{-\theta})$
- Goods are combined to yield composite goods for consumption

| Introduction | Model | Model Mechanisms | Dynamics | Conclusion |
|--------------|-------|------------------|----------|------------|
| Prices       |       |                  |          |            |

• Perfect competition in goods and factor markets

• Service good price: 
$$P_{ist} = \frac{w_{it}}{A_{ist}}$$

• Agricultural good price:

$$p_{iat}(z) = \min\left\{\frac{w_{1t}}{A_{1at}(z)}, \frac{w_{2t}}{A_{2at}(z)}\right\}$$

• Manufacturing good price:

$$p_{imt}(z) = \min\left\{\frac{w_{1t}}{A_{1mt}(z)}, \frac{w_{2t}}{A_{2mt}(z)}\right\}$$



• Tradable sector composite goods: elasticity of substitution  $\eta$ 

$$C_{iqt} = (\int_0^1 c_{iqt}(z)^{\frac{\eta-1}{\eta}} dz)^{\frac{\eta}{\eta-1}}$$

• Intratemporal utility: elasticity of substitution  $\epsilon$ 

$$C_{it} = \left(\omega_{a}C_{iat}^{\frac{\epsilon-1}{\epsilon}} + \omega_{m}C_{imt}^{\frac{\epsilon-1}{\epsilon}} + \omega_{s}C_{ist}^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}}$$

- Intertemporal utility:  $\sum_{t=0}^{\infty} \beta^t U(C_{it})$
- Budget constraint (period-by-period):

$$P_{it}C_{it} = P_{iat}C_{iat} + P_{imt}C_{imt} + P_{ist}C_{ist} = w_{it}L_{it}$$

| Introduction | Model  | Model Mechanisms | Dynamics | Conclusion |
|--------------|--------|------------------|----------|------------|
| Expenditure  | Shares |                  |          |            |

• Expenditure share:

$$X_{iqt} = \frac{P_{iqt} C_{iqt}}{w_{it} L_{it}} = \omega_q^{\epsilon} \left(\frac{P_{iqt}}{P_{it}}\right)^{1-\epsilon}$$

• Aggregate price:

$$P_{it} = \left(\omega_a^{\epsilon} P_{iat}^{1-\epsilon} + \omega_m^{\epsilon} P_{imt}^{1-\epsilon} + \omega_s^{\epsilon} P_{ist}^{1-\epsilon}\right)^{\frac{1}{1-\epsilon}}$$

• Sectoral composite good price:

$$P_{iqt} = \left(\int_0^1 p_{iqt}(z)^{\frac{\eta}{\eta-1}} dz\right)^{\frac{\eta-1}{\eta}}$$

| Market Clea  | ring Conditi | one              |          |            |
|--------------|--------------|------------------|----------|------------|
|              |              |                  |          |            |
| Introduction | Model        | Model Mechanisms | Dynamics | Conclusion |

• Labor markets:

$$L_{it} = L_{ist} + \int_0^1 L_{imt}(z) dz + \int_0^1 L_{iat}(z) dz, \qquad i = \{1, 2\}$$

• Services good markets:

$$Y_{ist} = C_{ist}, \qquad i = \{1, 2\}$$

• Agriculture goods markets:

$$\sum_{i=1}^{2} y_{iat}(z) = \sum_{i=1}^{2} c_{iat}(z) \qquad \forall z \in [0,1]$$

• Manufacturing goods markets:

$$\sum_{i=1}^{2} y_{imt}(z) = \sum_{i=1}^{2} c_{imt}(z) \qquad \forall z \in [0,1]$$

### **Open-Economy Equilibrium**

A competitive equilibrium is a sequence of goods and factor prices  $\{p_{iat}(z), p_{imt}(z), P_{iat}, P_{imt}, P_{ist}, P_{it}, w_{it}\}_{t=0}^{\infty}$  and allocations  $\{l_{iat}(z), l_{imt}(z), L_{iat}, L_{imt}, L_{ist}, y_{iat}(z), y_{imt}(z), Y_{ist}, c_{iat}(z), c_{imt}(z), C_{iat}, C_{imt}, C_{ist}, C_{it}\}_{t=0}^{\infty}$  for  $z \in [0, 1]$  and i = 1, 2, such that given prices, the allocations solve the firms' maximization problems and the household's maximization problem, and satisfy the market clearing conditions.

| Introduction | Model      | Model Mechanisms | Dynamics | Conclusion |
|--------------|------------|------------------|----------|------------|
| Closed Econo | my Equilib | rium             |          |            |

• Sectoral labor share = sectoral expenditure share

$$I_{qt} = \frac{L_{qt}}{L_t} = \frac{w_t L_{qt}}{w_t L_t} = \frac{P_{qt} C_{qt}}{P_t C_t} = X_{qt}$$

• Expenditure share:

$$X_{qt} = \omega_q^{\epsilon} \left(\frac{P_{qt}}{P_t}\right)^{1-\epsilon}$$

• Prices: 
$$P_{qt} = \frac{w_t}{A_{qt}}$$
, where  $A_{qt} = T_{qt}^{1/\theta} / \gamma$ .

| Introduction | Model | Model Mechanisms | Dynamics | Conclusion |
|--------------|-------|------------------|----------|------------|
|              |       |                  |          |            |
| Closed Econo |       | ics              |          |            |

$$\hat{L}_{qt} = \hat{X}_{qt} = (1 - \epsilon) \left( \hat{P}_{qt} - (X_{at}\hat{P}_{at} + X_{mt}\hat{P}_{mt} + X_{st}\hat{P}_{st}) \right)$$

$$= (\epsilon - 1) \left( \hat{A}_{qt} - (X_{at}\hat{A}_{at} + X_{mt}\hat{A}_{mt} + X_{st}\hat{A}_{st}) \right)$$

• 
$$\epsilon = 1$$
: no structural change

- $\epsilon < 1$ : labor moves from the highest productivity growth sector to the lowest productivity growth sector
- $\epsilon > 1$ : labor moves from the lowest productuviity growth sector to the highest productivity growth sector

| Introduction    | Model       | Model Mechanisms | Dynamics | Conclusion |
|-----------------|-------------|------------------|----------|------------|
| Key Implication | ons of Clos | ed Economy       |          |            |

- Preferences play a major role in labor allocation across sectors.
- Structural change does not occur if the elasticity of substitution equals one.
- With elasticity of substitution less than one:
  - The high productivity growth sectors experience declining relative prices, expenditure shares and labor shares.
  - Labor moves from the most productive sector to the least productive sector.

| Introduction N  | Nodel       | Model Mechanisms | Dynamics | Conclusion |
|-----------------|-------------|------------------|----------|------------|
| Key Ingredients | of Open Eco | nomy             |          |            |

- Trade based on comparative advantage (Ricardian)
- Assume country 1 has a comparative advantage in manufacturing.

That is, under free trade,

$$\frac{A_{1mt}}{A_{2mt}} > \frac{A_{1at}}{A_{2at}}.$$

• Under free trade, the LOOP holds:  $p_{1qt}(z) = p_{2qt}(z)$ .

 Tradable composite good prices are equalized across countries: P<sub>1qt</sub> = P<sub>2qt</sub>.

| Introduction | Model    | Model Mechanisms | Dynamics | Conclusion |
|--------------|----------|------------------|----------|------------|
| Open Economy | : Prices |                  |          |            |

• Under Fréchet distribution (and free trade):

$$P_{iqt} = \left[ \left( \frac{w_{it}}{A_{iqt}} \right)^{-\theta} + \left( \frac{w_{jt}}{A_{jqt}} \right)^{-\theta} \right]^{-\frac{1}{\theta}}$$
$$\frac{P_{iqt}}{w_{it}} = \frac{1}{A_{iqt}} \left[ 1 + \left( \frac{w_{jt}}{w_{it}} \frac{A_{iqt}}{A_{jqt}} \right)^{-\theta} \right]^{-\frac{1}{\theta}}$$

• Services price:  $\frac{P_{ist}}{w_{it}} = \frac{1}{A_{ist}}$ 

| Introduction | Model         | Model Mechanisms | Dynamics | Conclusion |
|--------------|---------------|------------------|----------|------------|
| Prices in O  | pen vs. Close | ed Economy       |          |            |
|              |               |                  |          |            |

• 
$$\frac{P_{iat}}{w_{it}}$$
 and  $\frac{P_{imt}}{w_{it}}$  are lower in open economy

• 
$$\frac{P_{ist}}{w_{it}}$$
 is the same

• 
$$\frac{P_{it}}{w_{it}}$$
 is lower in open economy

• Welfare is higher in open economy

• 
$$\frac{P_{ist}}{P_{it}}$$
 rises,  $\frac{P_{1at}}{P_{1t}}$  and  $\frac{P_{2mt}}{P_{2t}}$  declines in open economy  
•  $\frac{P_{1mt}}{P_{1at}}$  is higher in the open economy

| Introduction   | Model        | Model Mechanisms  | Dynamics | Conclusion |
|----------------|--------------|-------------------|----------|------------|
| Expenditure Sh | ares in Open | vs. Closed Econom | y        |            |

- Relative prices and the elasticity of substitution play key role in determining expenditure shares X<sub>iqt</sub>.
- With elasticity less than one, in both countries in open economy,
  - services expenditure shares are higher;
  - expenditure share of the sector with comparative disadvantage is lower;
  - expenditure share of the sector with comparative advantage is ambiguous.

| Introduction | Model        | Model Mechanisms | Dynamics | Conclusion |
|--------------|--------------|------------------|----------|------------|
| Open Econor  | ny: Intra-So | ector Trade      |          |            |
|              |              |                  |          |            |

In addition to (sectoral) expenditure shares, another share matters: the share of sectoral spending that is on imports:

• Share of country 1's expenditure on sector *q* goods from country 2 (under free trade):

$$\pi_{12qt} = \frac{(w_{2t}/A_{2qt})^{-\theta}}{(w_{2t}/A_{2qt})^{-\theta} + (w_{1t}/A_{1qt})^{-\theta}} = \frac{1}{1 + (\frac{w_{1t}/A_{1qt}}{w_{2t}/A_{2qt}})^{-\theta}}$$

•  $\pi_{12qt}$  rises as  $w_{2t}/A_{2qt}$  decreases relative to  $w_{1t}/A_{1qt}$ 

- The rise is larger with larger  $\theta$  (a low productivity dispersion)
- Comparative advantage implies  $\pi_{12mt} < \pi_{12at}$

Putting together these two shares:

• Manufacturing net exports of country 1 as share of its GDP:

$$N_{1mt} = \frac{\pi_{21mt} X_{2mt} w_{2t} L_{2t}}{w_{1t} L_{1t}} - \pi_{12mt} X_{1mt}$$

- Comparative advantage implies  $N_{1mt} > 0$  and  $N_{1at} < 0$ .
- The net export ratio of the sector with comparative advantage is positive in each country.

| Introduction | Model        | Model Mechanisms | Dynamics | Conclusion |
|--------------|--------------|------------------|----------|------------|
|              |              |                  |          |            |
|              |              |                  |          |            |
| Open Econ    | omv: Labor A | Allocation       |          |            |

- Services labor share:  $I_{ist} = L_{ist}/L_{it} = X_{ist}$
- Manufacturing labor share of country i:

$$I_{imt} = \frac{L_{imt}}{L_{it}} = X_{imt} + N_{imt}$$

- Direct contribution of trade: N<sub>imt</sub>
  - Country 1 has a comparative advantage in manufacturing
  - $N_{1mt} > 0$  and  $N_{2mt} < 0$
- Indirect contribution of trade: X<sub>imt</sub>
- Similarly for agriculture labor share

| Introduction | Model | Model Mechanisms | Dynamics | Conclusion |
|--------------|-------|------------------|----------|------------|
| Labor Dynar  | nics  |                  |          |            |

• Growth in manufacturing labor share:

$$\hat{l}_{1mt} = rac{X_{1mt}}{l_{1mt}}\hat{X}_{1mt} + rac{N_{1mt}}{l_{1mt}}\hat{N}_{1mt}$$

- First term: the expenditure effect
- Second term: the trade or net export effect
- Positive growth in manufacturing net export share contributes positively to labor share.
- To focus on trade effect, consider case with elasticity of substitution across sectors = 1; hence, X<sub>1mt</sub> = 0





| Introduction | Model | Model Mechanisms | Dynamics | Conclusion |
|--------------|-------|------------------|----------|------------|
|              |       |                  |          |            |

### Productivity Growth and Hump Pattern in Manufacturing

- Necessary condition for  $\hat{N}_{1mt} > 0$ :  $\hat{A}_{mt} > \hat{A}_{at}$ ,  $(A_{qt} = \frac{A_{1qt}}{A_{2qt}})$
- Under free trade, manufacturing labor share equation:

$$U_{1mt} = \omega_m \pi_{11m} \left( \frac{w_t L_{1t} + L_{2t}}{w_t L_{1t}} \right)$$

- $\pi_{11m} = \pi_{21m}$ : specialization term
- Reciprocal of GDP share: country-size term
- As manufacturing productivity grows, specialization term contributes positively to manufacturing labor share, while country-size term contributes negatively.
  - Each country buys more of its manufactured goods from country 1 (e.g., South Korea).
  - If  $\hat{A}_{at} > 0$ , country 1 relative wage grows, country 2 (e.g., United States) purchasing power falls. Country 1 needs less labor to meet country 2 demand.

### Productivity Growth and Hump Pattern in Manufacturing

- Initially, specialization term is dominant.
- Eventually, country-size term dominates.
  - Once manufacturing becomes close to completely specialized, employment growth from specialization effect becomes small.
  - In limiting case, country 2 buys all its manufactured goods from country 1, but country 2 has zero mass, so the global economy is effectively just country 1.
  - Country 1 employment share declines until it equals expenditure share.

### Structural Change in Open Economy: Example 1

|                                                | Preferences                                    |                                                |
|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| $\epsilon = 0.5$                               | $\sigma^* = 1.0$                               |                                                |
| $\omega_{s}=1/3$                               | $\omega_m = 1/3$                               | $\omega_s=1/3$                                 |
|                                                | Labor Endowment                                |                                                |
| $L_{10}=1$                                     | $L_{20} = 10$                                  | $\hat{L}_{1t}=\hat{L}_{1t}=1.0$                |
|                                                | Sectoral Productivities                        |                                                |
| $\theta = 4.0$                                 |                                                |                                                |
| $A_{1a0} = 1.0$                                | $A_{1m0} = 1.0$                                | $A_{1s0} = 1.0$                                |
| $A_{2a0} = A_{1a0} (L_{20}/L_{10})^{1/\theta}$ | $A_{2m0} = A_{1m0} (L_{20}/L_{10})^{1/\theta}$ | $A_{2s0} = A_{1s0} (L_{20}/L_{10})^{1/\theta}$ |
| $\hat{A}_{1at} = 1.01$                         | $\hat{A}_{1mt} = 1.02$                         | $\hat{A}_{1st} = 1.0$                          |
| $\hat{A}_{2at} = 1.02$                         | $\hat{A}_{2mt} = 1.01$                         | $\hat{A}_{2st} = 1.0$                          |

### Structural Change in Country 1

### Figure: Employment Shares, Closed and Open



### **Structural Change in Country 2**

#### Figure: Employment Shares, Closed and Open



| Introduction | Model | Model Mechanisms | Dynamics | Conclusion |
|--------------|-------|------------------|----------|------------|
|              |       |                  |          |            |
| Import Share | a c   |                  |          |            |

#### Figure: Import Shares





### Figure: Wages, Prices, and Welfare



| Introduction | Model       | Model Mechanisms | Dynamics | Conclusion |
|--------------|-------------|------------------|----------|------------|
| Structural C | hange and T | Trade Costs      |          |            |

- Introduce iceberg trade costs
  - Prices:

$$P_{iqt} = \left[ \left( w_{it}/A_{iqt} \right)^{-\theta} + \left( \tau_{qt} w_{jt}/A_{jqt} \right)^{-\theta} \right]^{-\frac{1}{\theta}}$$

Import shares:

$$\pi_{ijqt} = \frac{(\tau_{qt} w_{jt}/A_{jqt})^{-\theta}}{(\tau_{qt} w_{jt}/A_{jqt})^{-\theta} + (w_{it}/A_{iqt})^{-\theta}}.$$

• Decline in  $\tau_{qt}$  affects  $P_{iqt}$  and  $\pi_{ijqt}$  like increase in  $A_{jqt}$ 

• Decline in trade costs can also generate structural change, even in absence of biased sectoral productivity growth

- Suppose country 1 has comparative advantage in manufacturing and is small relative to country 2.
  - Productivity levels are constant over time
- As trade costs decline, specialization increases (manufacturing net export surplus grows) and country 1 relative wage rises
- Initially, specialization effect dominates country-size effect, so manufacturing labor share in country 1 rises
- Eventually, country 1 labor used to satisfy country 2 manufacturing demand declines, so manufacturing labor share in country 1 falls

### Structural Change in Open Economy: Example 2

|                                           | Preferences                               |                                           |
|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| $\epsilon = 0.5$                          | $\sigma^*=$ 1.0                           |                                           |
| $\omega_{a}=1/3$                          | $\omega_m = 1/3$                          | $\omega_s=1/3$                            |
|                                           | Labor Endowment                           |                                           |
| $L_{10} = 1$                              | $L_{20} = 10$                             | $\hat{L}_{1t}=\hat{L}_{1t}=1.0$           |
|                                           | Sectoral Productivities                   |                                           |
| $\theta = 4.0$                            |                                           |                                           |
| $A_{1a0} = 1.5$                           | $A_{1m0} = 2.0$                           | $A_{1s0} = 1.0$                           |
| $A_{2a0} = 2.0 (L_{20}/L_{10})^{1/	heta}$ | $A_{2m0} = 1.5 (L_{20}/L_{10})^{1/	heta}$ | $A_{2s0} = 1.0 (L_{20}/L_{10})^{1/	heta}$ |
| $\hat{A}_{1at} = 1.0$                     | $\hat{A}_{1mt} = 1.0$                     | $\hat{A}_{1st} = 1.0$                     |
| $\hat{A}_{2at} = 1.0$                     | $\hat{A}_{2mt} = 1.0$                     | $\hat{A}_{2st} = 1.0$                     |
|                                           | Trade Costs                               |                                           |
| $	au_{q0} = 2.5$                          | $	au_{qt}-1$ declines at 3% pe            | er period                                 |

### Structural Change in Country 1

### Figure: Employment Shares, Closed and Open



| Conclusion | Introduction | Model | Model Mechanisms | Dynamics | Conclusion |
|------------|--------------|-------|------------------|----------|------------|
| Conclusion | Conclusion   |       |                  |          |            |

- International trade provides environment in which sectoral output and sectoral expenditure need not be equal
- With neoclassical trade, comparative advantage interacts with global sectoral demand to determine patterns of expenditure, trade, production, and employment
- We study structural change in an open economy with model that highlights these themes
- Model yields rich insights and can potentially better explain patterns in data
- Extending model to include non-homothetic preferences, intermediate goods, and trade costs does not alter the main implications
- Companion project: quantitative assessment

| Introduction | Model    | Model Mechanisms | Dynamics | Conclusion |
|--------------|----------|------------------|----------|------------|
| Accounting:  | the U.S. |                  |          |            |

| Year   | I <sub>mt</sub> | X <sub>mt</sub> | N <sub>mt</sub> | $X_{mt} + N_{mt}$ |
|--------|-----------------|-----------------|-----------------|-------------------|
| 1970   | 25.6%           | 27.9%           | -1.1%           | 26.8%             |
| 2000   | 14.5%           | 21.6%           | -4.8%           | 16.8%             |
| Change | -11.1%          | -6.3%           | -3.7%           | -10.0%            |

• The direct trade effect accounts for one third of the decline in US manufacturing labor share.

| Introduction | Model    | Model Mechanisms | Dynamics | Conclusion |
|--------------|----------|------------------|----------|------------|
| Accounting:  | the U.K. |                  |          |            |

| Year   | I <sub>mt</sub> | X <sub>mt</sub> | N <sub>mt</sub> | $X_{mt} + N_{mt}$ |
|--------|-----------------|-----------------|-----------------|-------------------|
| 1970   | 34.6%           | 31.0%           | 2.4%            | 33.4%             |
| 2000   | 16.8%           | 22.9%           | -7.8%           | 15.1%             |
| Change | -17.8%          | -8.1%           | -10.2%          | -18.3%            |

• The direct trade effect accounts for more than one half of the decline in British manufacturing labor share.



### Manufacturing Labor Share and Income

