## **Financial Markets and Unemployment**

Tommaso Monacelli

Vincenzo Quadrini Bocconi University University of Southern California

> Antonella Trigari Bocconi University

> > May 27, 2012

#### WHY FINANCIAL MARKETS?

Strong comovement unemployment and debt flows Recessions more severe and long-lasting with banking crisis.



# **POSSIBLE LINKS?**

- As a consequence of a credit contraction, employers lack the liquidity for investment and hiring:
  - Credit Channel.

- As a consequence of a credit contraction, employers face weaker bargaining conditions with workers.
  - Bargaining channel.

## THEORETICAL INTUITION

- Suppose that there are only two periods. No discounting.
  - **Period 1**: The firm issues debt b and hires a worker.
  - **Period 2**: The firm produces z and splits the net surplus:

Wage 
$$= \frac{1}{2}(z-b)$$
, Dividend  $= \frac{1}{2}(z-b)$ 

• The value of hiring a worker in period 1 (Value of a Match) is:

$$b + \frac{1}{2}(z - b)$$

## MODEL

- Agents have utility  $\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t c_t$ .
  - They could be employed or unemployed.
  - They are the owners of firms. The interest rate is  $r = 1/\beta 1$ .
- A firm is created when a vacancy is filled with an unemployed worker.
  - The cost of posting a vacancy is  $\kappa$ .
  - A vacancy is filled with probability  $q_t = m(v_t, u_t)/v_t$ .
  - An unemployed worker finds a job with probability  $p_t = m(v_t, u_t)/u_t$ .
  - The match is separated with probability  $\lambda$ .
- Wages are determined through bargaining ( $\eta$ =Workers' Power).

## MODEL

- Agents have utility  $\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t c_t$ .
  - They could be employed or unemployed.
  - They are the owners of firms. The interest rate is  $r = 1/\beta 1$ .
- A firm is created when a vacancy is filled with an unemployed worker.
  - The cost of posting a vacancy is  $\kappa$ .
  - A vacancy is filled with probability  $q_t = m(v_t, u_t)/v_t$ .
  - An unemployed worker finds a job with probability  $p_t = m(v_t, u_t)/u_t$ .
  - The match is separated with probability  $\lambda$ .
- Wages are determined through bargaining ( $\eta$ =Workers' Power).
- Added features:
  - 1. Firms can issue debt  $b_t$  and pay dividends  $d_t = z_t w_t + \frac{b_{t+1}}{B} b_t$ .
  - 2. There are credit shocks  $(\phi_t)$  that affect the borrowing limit.

## TIMING FOR INCUMBENTS Standard model





### TIMING FOR INCUMBENTS Standard model with added features



### **BORROWING LIMIT**

Firm's value:

$$J_t(b_t) = d_t + \beta(1-\lambda)\mathbb{E}_t J_{t+1}(b_{t+1})$$

**Enforcement constraint:** 

 $\phi_t \mathbb{E}_t J_{t+1}(b_{t+1}) \ge b_{t+1}$ 

#### WAGE BARGAINING

**Bargaining problem:** 

$$\max_{w_t} \left\{ \hat{J}_t(\boldsymbol{b_t}, w_t)^{1-\eta} \left[ \hat{W}_t(\boldsymbol{b_t}, w_t) - U_t \right]^{\eta} \right\}$$

Wage equation:

$$w_t = \eta \cdot (z_t - \mathbf{b}_t) + \eta \cdot \left\{ \frac{[p_t + (1 - \lambda)\phi_t]\kappa}{q_t(1 + \phi_t)(1 - \lambda)} \right\}$$

## CHOICE OF DEBT

$$J_{t} = \max_{b_{t+1}} \left\{ z_{t} - w_{t} - b_{t} + \frac{b_{t+1}}{R} + \beta(1-\lambda)(1-\eta)\mathbb{E}_{t}S_{t+1}(b_{t+1}) \right\}$$

subject to

$$(1-\eta)\phi_t \mathbb{E}_t S_{t+1}(b_{t+1}) \ge b_{t+1}$$

#### First order condition



**RESULT:** Borrowing constraint binding if  $\eta > 0$ .

## TIMING FOR NEW FIRMS AND JOB CREATION



#### FREE ENTRY AND JOB CREATION

$$q_t Q_t = \kappa$$

- $q_t$  = Probability of finding a worker.
- $Q_t =$ Value of a filled vacancy.
- $\kappa = \text{Cost of posting a vacancy.}$

## SENSITIVITY OF $Q_t$ to credit shock

$$\frac{\partial Q_t}{\partial \phi_t} = \eta \cdot \left[ \frac{\beta \mathbb{E}_t J_{t+1}(b_{t+1})}{1 + \phi_t (1 - \eta)} \right]$$

### NUMERICAL IMPULSE RESPONSES

| Description                                | Value |
|--------------------------------------------|-------|
| Discount factor for entrepreneurs, $\beta$ | 0.990 |
| Matching parameter, $\bar{\xi}$            | 0.773 |
| Matching parameter, $\alpha$               | 0.649 |
| Relative bargaining power, $\eta$          | 0.672 |
| Probability of separation, $\lambda$       | 0.049 |
| Cost of posting vacancy, $\kappa$          | 0.711 |
| Utility flow unemployed, $a$               | 0.468 |
| Enforcement parameter, $\bar{\phi}$        | 3.637 |

#### **Response credit shock**



#### **EXTENSION: Monopolistic competition**

• Each firm is a monopolistic producer of differentiated goods,  $y_i$ .

• Aggregate production: 
$$Y = \left(\int_0^N y_i^{\varepsilon} \mathrm{d}i\right)^{\frac{1}{\varepsilon}}$$

• Demand function: 
$$P_i = Y^{1-\varepsilon} y_i^{\varepsilon-1}$$

• Production:  $y_i = zl_i$ ; Cost:  $\frac{Al_i^{1+\varphi}}{1+\varphi}$ .

**IN REDUCED FORM**: Replace 
$$z_t$$
 with  $\tilde{z}_t N_t^{\nu}$ .

#### PARAMETERS

• Price mark-up,  $\frac{1}{\varepsilon} - 1 = 0.33$ .

• Elasticity of intensive margin  $\frac{1}{\varphi} = 1$ .

#### **Response credit shock**



## STRUCTURAL ESTIMATION

- Three AR(1) shocks:
  - 1. Productivity,  $z_t$
  - 2. Credit,  $\phi_t$
  - 3. Matching,  $\xi_t$
- Three empirical variables in first differences:
  - 1. Log-GDP,  $Y_t$
  - 2. Log-employment,  $N_{t+1}$
  - 3. New debt over GDP in business sector,  $\frac{B_{t+1}-B_t}{Y_t}$
- Three parameters are pre-determined:  $\beta$ ,  $\lambda$ ,  $\kappa$ .

### PARAMETERS

|                                                   |                    |       | Posterior thresholds |           |
|---------------------------------------------------|--------------------|-------|----------------------|-----------|
| Estimated parameter                               | Prior[mean,std]    | Mode  | Below 5%             | Below 95% |
|                                                   |                    |       |                      |           |
| Productivity shock persistence, $ ho_z$           | Beta[0.5,0.20]     | 0.944 | 0.937                | 0.968     |
| Productivity shock volatility, $\sigma_z$         | IGamma[0.001,0.05] | 0.005 | 0.004                | 0.006     |
| Credit shock persistence, $ ho_{\phi}$            | Beta[0.5,0.20]     | 0.965 | 0.954                | 0.970     |
| Credit shock volatility, $\sigma_{\phi}$ $^{'}$   | IGamma[0.001,0.05] | 0.143 | 0.135                | 0.155     |
| Matching shock persistence, $ ho_{\mathcal{E}}$   | Beta[0.5,0.20]     | 0.983 | 0.977                | 0.987     |
| Matching shock volatility, $\sigma_{\mathcal{E}}$ | IGamma[0.001,0.05] | 0.056 | 0.052                | 0.062     |
| Matching share parameter, $\dot{lpha}$            | Beta[0.5,0.1]      | 0.650 | 0.638                | 0.656     |
| Bargaining power workers, $\eta$                  | Beta[0.5,0.1]      | 0.674 | 0.676                | 0.696     |
| Utility flow unemployed, $a$                      | Beta[0.4,0.1]      | 0.470 | 0.433                | 0.463     |
| Mean enforcement parameter, $ar{\phi}$            | IGamma[8,5]        | 3.621 | 3.607                | 3.654     |
| Mark-up parameter, $arepsilon$                    | Beta[0.8,0.05]     | 0.937 | 0.932                | 0.954     |
| Elasticity of effort, $arphi$                     | Beta[1,0.2]        | 1.033 | 1.002                | 1.035     |

## VARIANCE DECOMPOSITION

|                 | TFP<br>shock<br>z | Credit<br>shock $\phi$ | Matching<br>shock<br>ξ |
|-----------------|-------------------|------------------------|------------------------|
| Output          | 46.2              | 29.2                   | 24.6                   |
| Employment      | 0.4               | 54.1                   | 45.5                   |
| New debt/output | 0.1               | 66.7                   | 33.1                   |
| Hourly wage     | 12.0              | 57.0                   | 31.0                   |



#### Quarter-by-quarter decomposition

# TESTING THE BARGAINING CHANNEL Quadrini & Sun (2012)

- We start from an industry dynamics model.
- Model is an extension of the previous model:
  - Multi-workers firms.
  - Firm-level idiosyncratic shocks to productivity and credit.
  - Collectively bargaining of wages.
  - The bargaining power of workers  $\eta$  differ across firms.
  - Partial equilibrium analysis.

### **Optimality condition for hiring**

$$\beta \left[ (1-\eta) \mathbb{E}_t \bar{s}_{t+1} + \frac{\eta g_{t+1}^B b_t}{g_{t+1}^N} \right] = \Upsilon' \left( g_{t+1}^N - 1 + \lambda \right)$$

### LINEARIZED OPTIMALITY CONDITION

$$g_{t+1}^N = \alpha_c + \alpha_s \cdot \mathbb{E}_t \bar{s}_{t+1} + \alpha_b \cdot b_t + \alpha_g(\eta) \cdot g_{t+1}^B$$

where

$$\begin{aligned} \alpha_s &= \frac{(1-\eta)\gamma(g^N - 1 + \lambda)g^N}{[\eta\gamma(g^N - 1 + \lambda)/g^N + \eta(1-\gamma) + (1-\eta)(1-\gamma)(1+\xi)/\xi]bg^B}, \\ \alpha_b &= \frac{\eta\gamma(g^N - 1 + \lambda)}{[\eta\gamma(g^N - 1 + \lambda)/g^N + \eta(1-\gamma) + (1-\eta)(1-\gamma)(1+\xi)/\xi]b}, \\ \alpha_g(\eta) &= \frac{\eta\gamma(g^N - 1 + \lambda)}{[\eta\gamma(g^N - 1 + \lambda)/g^N + \eta(1-\gamma) + (1-\eta)(1-\gamma)(1+\xi)/\xi]g^B} \end{aligned}$$

## **TESTING HYPOTHESIS**

The sensitivity of employment to credit increases with the bargaining power of workers.

#### **EMPIRICAL EQUATION**

$$\begin{split} \Delta employ_{it} &= \beta_{1} \cdot union_{cic,t} \cdot \Delta debt_{it} + \\ \beta_{2} \cdot union_{cic,t} + \\ \beta_{3} \cdot \Delta debt_{it} + \\ \beta_{4} \cdot leverage_{it-1} + \\ \beta_{5} \cdot \log(employ_{it-1}) + \\ \beta_{6} \cdot Q_{it} + \\ \beta_{7} \cdot cashflow_{it} + \nu_{i} + \tau_{t} + \varepsilon_{it} \end{split}$$

|                                         |                             | Unionization Rate |           |
|-----------------------------------------|-----------------------------|-------------------|-----------|
|                                         |                             | High              | Low       |
| $union_{cic\ t} \cdot \Delta debt_{it}$ | 0.252***                    |                   |           |
|                                         | (0.087)                     |                   |           |
| $union_{cic,t}$                         | -0.009                      |                   |           |
| $\Delta debt_{it}$                      | (0.111)<br><b>0.051</b> *** | 0.092***          | 0.051***  |
|                                         | (0.010)                     | (0.011)           | (0.009)   |
| $everage_{it-1}$                        | -0.038                      | 0.003             | -0.088**  |
|                                         | (0.025)                     | (0.031)           | (0.038)   |
| $\log(employ_{t-1})$                    | -0.314***                   | -0.352***         | -0.292*** |
|                                         | (0.022)                     | (0.047)           | (0.028)   |
| $\mathcal{Q}_{it}$                      | 0.018                       | 0.034             | 0.011     |
| a a la flacu                            | (0.007)                     | (0.013)           | (0.009)   |
| $cash f low_{it}$                       | (0.025)                     | (0.048)           | (0.029)   |
| Firm Fixed Effects                      | Yes                         | Yes               | Yes       |
| ear Dummies                             | Yes                         | Yes               | Yes       |
| Adjusted $R^2$                          | 0.40                        | 0.41              | 0.39      |
| Observations                            | 9,148                       | 4,441             | 4,707     |

# CONCLUSION

- We have proposed a mechanism through which leverage affects the hiring decision of employers.
- The mechanism is not based on the typical credit channel but on the wage determination process.
- This may explain why in a tight credit market firms do not invest and hire even if they are not short of cash.
- The mechanism finds empirical support at the micro level.