WEALTH AND VOLATILITY

Jonathan Heathcote Minneapolis Fed

Fabrizio Perri University of Minnesota and Minneapolis Fed

Canon Institute for Global Studies, May 2012

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Sources of Business Cycles

 Many feature of Great Recession (Little productivity change, international dimension) brought back old idea: business cycles can be driven by self-fulfilling waves of optimism or pessimism

Sources of Business Cycles

 Many feature of Great Recession (Little productivity change, international dimension) brought back old idea: business cycles can be driven by self-fulfilling waves of optimism or pessimism

(ロ) (同) (三) (三) (三) (○) (○)

• Problem: why now? why not 20 years ago?

Sources of Business Cycles

- Many feature of Great Recession (Little productivity change, international dimension) brought back old idea: business cycles can be driven by self-fulfilling waves of optimism or pessimism
- Problem: why now? why not 20 years ago?
- Our idea: extent to which these waves can generate fluctuations depends on the level of household wealth and/or financial frictions
- We will argue that decline in asset prices/increase in financial frictions left US economy fragile and susceptible to a confidence-driven recession

Sunspot-driven fluctuations

- Rise in expected unemployment
 - \rightarrow consumers reduce demand
 - ightarrow firms reduce hiring
 - \rightarrow higher unemployment
- For a wave of pessimism to be self-fulfilling need high sensitivity of demand to expected unemployment
- Sensitivity of demand depends inversely on level of household wealth
- High wealth or cheap credit

 → demand less sensitive to expectations
 → no sunspot-driven fluctuations
- Low wealth and costly credit
 - \rightarrow demand more sensitive to expectations
 - \rightarrow confidence-driven recessions possible

- 1. Some suggestive evidence on the relation between wealth and fluctuations
- 2. A stylized model of confidence driven recessions
- 3. Micro evidence on the mechanism
- 4. Policy: Govt spending and unemployment insurance. The role of wealth is important in shaping policy.

Household net worth in the long run

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Household net worth in the long run

Mian, Rao and Sufi (2012): similar evidence for county cross section

э.

Wealth & GDP Volatility

Note: Standard deviation of GDP growth are computed over 40 quarters rolling windows. Observations for net worth are average over the same windows

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 の々で

Stylized Model (related to *Farmer* 2010, *Chamley* 2011, *Guerrieri and Lorenzoni* 2009)

- Non-durable consumption good
- Used for consumption or government spending
- Produced by competitive firms using labor with a linear technology

$$c + g = y = n$$

(ロ) (同) (三) (三) (三) (○) (○)

where n is mass of workers employed

- Durable housing h, in fixed supply with relative price p
- Each representative household contains continuum of potential workers

Timing

- 1. Households co-ordinate expectations on current unemployment, distributions of future unemployment rates
- 2. Representative household sends out workers with consumption order c_t , assets $p_t h_t$, reservation wage w_t^*
- 3. Representative firm randomly meets potential workers sequentially, decides whether to hire them
- 4. Firms pay wages $w_t = w_t^*$, workers pay for consumption must borrow if unemployed and $c_t > p_t h_t - d$
- 5. Household regroups, net resources determine h_{t+1} .

Optimal firm strategy: hire worker iff aggregate order c_t not yet filled and $w_t^* \leq 1$

Optimal household strategy: set $w_t^* = 1$

Household Problem

$$\max_{\{c_t,h_{t+1}\}} E \sum_{t=0}^{\infty} \beta^t \left(\log c_t + \phi h_t\right)$$

s.t.

$$c_t + p_t(h_{t+1} - h_t) = (1 - u_t)w_t - \frac{\psi}{2}u_t \min\{(p_t h_t - d - c_t), 0\}^2 + T_t$$

- ϕ : preference weight on housing
- ψ : cost of credit

d : part of home value that cannot be used as collateral

- u_t : fraction of household workers unemployed
- T_t : lump-sum rebate of credit costs

Frictions

- Labor market friction: No role for labor supply in determining allocations ⇒ output demand-driven, equilibrium unemployment
 - Workers cannot affect the probability of meeting a firm by asking a lower wage, and when they meet they ask for the reservation wage.

Frictions

- Labor market friction: No role for labor supply in determining allocations ⇒ output demand-driven, equilibrium unemployment
 - Workers cannot affect the probability of meeting a firm by asking a lower wage, and when they meet they ask for the reservation wage.
- 2. Credit friction: Unemployed with low wealth must use expensive credit ⇒ precautionary motive
- Consumption commitment friction: Consumption chosen before unemployment status known ⇒ precautionary motive sensitive to expected unemployment

Equilibrium Conditions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- $w_t = w_t^* = 1$
- $h_t = 1$
- $T_t = \psi u_t \min \{(p_t d c_t), 0\}^2$

•
$$c_t = n_t = 1 - u_t$$

Equilibrium Conditions

- $w_t = w_t^* = 1$
- $h_t = 1$

•
$$T_t = \psi u_t \min \{ (p_t - d - c_t), 0 \}^2$$

•
$$c_t = n_t = 1 - u_t$$

$$p_{t}\frac{1}{c_{t}} \times \frac{1}{(1 - \psi u_{t} \min\{(p_{t}h_{t} - d - c_{t}), 0\})} = \beta E_{t}\left[\phi + \frac{p_{t+1}}{c_{t+1}}\right]$$

Agenda for Theory

- Characterize paths for unemployment that satisfy the inter-temporal FOC and the condition $c_t = 1 u_t$
- · Especially interested in expectations-driven multiplicity

- Multiple Steady States
- Multiple Paths leading to Steady State
- Sunspots

Role of Asset Prices

- Introduce "marginal investor" with same preferences that faces no risk ($c = \overline{c} = 1$) and is measure zero
- In equilibrium no housing trade between the two types
- Marginal investor establishes a floor *p* for house prices:

$$p_t \ge \underline{p} = \frac{\beta}{1-\beta}\phi\bar{c}$$

 Will see that marginal investor rules out equilibria with very high unemployment

Strong Housing demand \Rightarrow full employment

$$\phi \ge \bar{\phi} = (1+d)\frac{1-\beta}{\beta}$$

then the only steady state is p = p and u = 0

Logic:
$$\phi \ge \bar{\phi} \Rightarrow \underline{p} - d \ge c_{max} = 1$$

... so even the unemployed never needs credit

Absent credit constraints,

lf

$$p = \frac{\beta(1-u)}{1-\beta}\phi \le \underline{p} = \frac{\beta}{1-\beta}\phi$$

But marginal investor implies $p \ge \underline{p}$, so $p = \underline{p}$, u = 0High wealth \Rightarrow High consumption demand \Rightarrow Full Employment

Steady state: high prices

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Weak housing demand \Rightarrow positive unemployment

If $\phi < \bar{\phi}$ and

$$\psi \ge \bar{\psi} = \frac{(1-\beta)^2}{(1-\beta)(1+d) - \beta\phi}$$

then

- 1. There is (still) a steady state with p = p and u = 0
- 2. There is another steady state with p = p and u > 0
 - Intuition: $p = \underline{p} \& u > 0 \Rightarrow$ asset has liquidity value $\Rightarrow c > p d$
- 3. There are additional steady states with p > p and u > 0.

Low housing prices: Multiple steady state *u*, given p

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Low housing prices: Multiple steady state *p*

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Constraints and multiplicity

• When credit constraint not binding:

$$p\frac{1}{c} = \beta \left[\phi + \frac{p}{c}\right]$$
$$p = \frac{\beta(1-u)}{1-\beta}\phi = p_f(u), \quad p'_f(u) < 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Constraints and multiplicity

• When credit constraint not binding:

$$p\frac{1}{c} = \beta \left[\phi + \frac{p}{c}\right]$$
$$p = \frac{\beta(1-u)}{1-\beta}\phi = p_f(u), \quad p'_f(u) < 0$$

• When credit constraint binding:

$$p\frac{1}{c}\frac{1}{\left[1+\psi u\left(c-(p-d)\right)\right]} = \beta\left[\phi+\frac{p}{c}\right]$$

Liquidity discount
$$p = p_f(u)\frac{1-\beta}{1/\left[1+\psi u\left(c-(p-d)\right)\right]-\beta} = p_f(u)\Psi(u)$$

- $\Psi(u)$ is the liquidity premium
- Key to multiple u, given $p, p'_f(u) < 0, \Psi'(u) > 0$.

Multiplicity 2: many paths to a steady state pair (p, u)

- Suppose $p_t = p > p \Rightarrow$ constraint always binding
- Difference equation defining equilibrium is

$$\frac{p}{(1-u_t)} \times \frac{1}{(1-\psi u_t \left[p-d-(1-u_t)\right])} = \beta \phi + \beta p E_t \left[\frac{1}{1-u_{t+1}}\right]$$

Assume no uncertainty / sunspots / expectational errors:

$$\frac{1}{1 - u_{t+1}} = E_t \left[\frac{1}{1 - u_{t+1}} \right]$$

A numerical example

$$\psi = 1 \ \beta = 0.96 \ \phi = 0.05 \ d = 0.75$$

1. $\psi > \overline{\psi} = 0.7$ (credit expensive)

- 2. $\phi < \bar{\phi} = 0.12$ (housing demand weak)
- 3. Chosen to match observed net worth to income ratio, unemployment ranges

Unemployment Dynamics

Intuition for Differential Local Dynamics

- Consider a hypothetical rise in unemployment starting from steady state
- Low unemployment stable steady state
 - Each unemployed worker borrows a lot ⇒ high marginal credit cost ⇒ optimal to cut consumption sharply even though recovery expected
 - Expected consumption growth during recovery offsets stronger precautionary motive ⇒ stable demand for savings
- High unemployment unstable steady state
 - Each unemployed worker borrows little ⇒ low marginal credit cost from rise in unemployment ⇒ a sharp cut in consumption not consistent with expected recovery

Multiplicity 3: Sunspot

- Low unemployment steady state is dynamically stable ⇒ possibility of "sunspots"
- Define sunspot shock v_{t+1}

$$v_{t+1} = \frac{1}{1 - u_{t+1}} - E_t \left[\frac{1}{1 - u_{t+1}} \right]$$

where v_{t+1} is *iid* over time with mean zero and a support that ensures we stay in the stable region

Range of equilibrium u decreasing in p

<ロ> <0</p>

Review: Asset Prices and Macro Volatility

- High asset prices ⇒ credit constraint does not bind ⇒ unique full employment equilibrium
- Lower asset prices ⇒ constraint binds ⇒ range of equilibrium unemployment rates larger the lower is the asset price

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Using the model to capture The Great Recession

- 1. Fall in demand for housing (fall in ϕ) reduces <u>p</u> so that economy becomes fragile
- 2. Sunspot (Lehman Brothers?) triggers jump in unemployment
- 3. Slow recovery to low unemployment steady state

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Graphically

Great recession and slow recovery

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Why is the recovery slow?

 Large demand driven recession is driven by a large fall in consumption demand

- Large fall in consumption demand only happens if persistent fall in income is expected (PIH logic)
- Large fall <-> Slow recovery
- Consistent with data from Michigan Consumers
 Expectation

Micro Evidence for the Mechanism

- Key mechanism: Elasticity of demand wrt unemployment risk is larger when wealth is low
- Natural test: Did wealth-poor households reduce consumption more than rich households as unemployment rose during the Great Recession?

Differential Sensitivity in the Model

. 90

Consumer Expenditure Survey

- Households aged 25-60 with 4 quarters of consumption data
- Sort households by wealth (net financial wealth plus home equity) relative to consumption
- Compare consumption growth of top and bottom halves of wealth distribution

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

CE Survey versus NIPA

Characteristics of Rich versus Poor

	Wealth Group	
	0-50	50-100
Sample size	8,864	8,873
Average age of head	41.4	46.9
Heads with college	25.7%	40.5%
Average household size	2.9	2.8
Net wealth p.c. (2005\$)		
Mean	1,498	119,796
Median	238	63,162
Mean after-tax income p.c. (2005\$)	22,117	32,811
Mean consumption p.c. (2005\$)	9,353	11,252

Consumption Growth: Rich versus Poor

Consumption vs. Income Growth

	Wealth Group		
	0-50	50-100	
Mean growth income p.c.	-0.3%	-1.0%	
Mean growth cons. p.c.	-5.6%	-3.1%	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Consumption Rates: Rich versus Poor

200

Micro Evidence: summary

 Low wealth households reduce consumption much more during recession, despite facing similar increase in unemployment/income risk

Policy 1: Tax and Spend

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

- Reduces elasticity of aggregate demand to expectations
- Also reduces asset values (credit constraint more binding)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Can narrow/expand range of equilibrium unemployment
- Welfare implications depend on utility from G
- Not necessarily effective!

Policy 2: Unemployment benefit *b* financed by proportional tax τ on earnings

Policy 2: Review

- Policy reduces need for costly credit ⇒ shrinks range of possible unemployment rates
- Unique full employment equilibrium if

$$b \geq \frac{\psi\left((d+1) + \frac{\beta}{(\beta-1)}\phi\right) + (\beta-1)}{(\beta-1) + \psi}$$

• ... which implies $b \ge 0.61$ in our numerical example

Conclusions

- Model in which macroeconomic stability threatened by low asset values or tight credit markets
- Great Recession: Decline in home values + costly credit left economy vulnerable to wave of pessimism
- Macro evidence of a link between level of wealth and aggregate volatility
- Micro evidence that low wealth households reduced consumption most sharply
- Can evaluate effectiveness of policies geared toward stabilization of these fluctuations