Financing Health Care in Japan:

A Fast Aging Population and the Dilemma of Reforms

Minchung Hsu National Graduate Institute for Policy Studies

> Tomoaki Yamada Meiji University

May 29th, 2012 CIGS Conference

Background

- ► Population aging:
 - A global trend of aging
 - ▶ Observed: European countries, Japan, Asia tigers, etc.
 - Expected: Many developing countries, e.g., China, Malaysia, Thailand, etc.
 - A fast aging population in Japan old-age dependency ratio will reach near 80% in 2050 from current 35%.
- ► Impacts:
 - 1. Fewer workers/tax payers
 - 2. Higher medical care demand

Dependency Ratio

Background (cont.)

- Universal health insurance (UHI):
 - UHI is provided in most developed countries
 - ▶ Many others are pursuing it, e.g., the US, Mexico, Turkey...
- Japan has a public UHI system
- ► The health care provided by the UHI in Japan is financed by (in 2002)
 - 1. Premium (a payroll tax): 51.7%
 - 2. Government general tax revenue: 33.0%
 - 3. Co-payment: 15.3%

Questions

- How does the fast population aging affect the cost of Japan's health care system?
- How large is the corresponding impact on tax burden?
 - the old need much more medical care the young
 - shrinking working population
 - tax distortion
- Any policy that can reduce the negative impact of aging and improve welfare?
 - ▶ UHI policy reform: an increase in co-payment
 - ► Financing policy reform: an increase in consumption tax

What We Do

- Construct a dynamic stochastic general-equilibrium life-cycle model to study impacts of aging
- Policy experiments
 - 1. UHI policy reform: changes in the UHI co-payment
 - Financing policy reform: using consumption tax to prevent high labor tax burden
- Welfare analysis
 - 1. Steady state comparison Welfare implications for future generations
 - 2. Transition Welfare implications for *current* households and the likelihood of implementing the potential reforms.

Main Results - Impact of Aging

- ▶ Impacts of aging on PUHI cost
 - ▶ If medical price is constant:
 - An additional 8.9% labor tax will be needed with the 2050 age structure compared with the tax rate in 2010
 - ▶ If annual medical price growth rate 0.6%:
 - ▶ An additional 13.7% labor tax with the 2050 age structure

Main Results - Policy Experiments

- ▶ Both UHI policy reform (raising co-payment) and Financing policy reform (raising consumption tax) improve welfare significantly in the future steady state (2050 age structure).
- Transition and Welfare for Current Generation
 - 1. Only very young people have welfare gains
 - 2. An increase in co-payment causes a huge loss for the old
 - higher out-of-pocket expenditure
 - more risk
 - no time for preparation in advance
 - Low agreement rates for both reforms the tax reform gets more support

Previous Studies

- ► Health insurance (Theoretical/Quantitative)
 - Attanasio, Kitao, and Violante (2010), Jeske and Kitao (2009)
- Health insurance and medical expenses (Empirical)
 - French (2005), French and Jones (2007), De Nardi, French and Jones (2009), Finkelstein (2007)
- Health care in Japan (Empirical)
 - Kan and Suzuki (2005), Iwamoto (2010), Kondo and Shigeoka (2011)

Road Map

- 1. Introduction
- 2. Model
- 3. Calibration
- 4. Results Steady state comparison
- 5. Results Transition
- 6. Conclusion

Model

- ▶ A general equilibrium life cycle model with following features:
- 1. A continuum of finitely-lived individuals
- 2. Individuals face three uncertainties
 - (i) labor productivity, (ii) medical expenditure, and (iii) mortality
- 3. Incomplete market (borrowing constraint)
- 4. Public health insurance provides universal coverage

Demographic Structure

- ▶ An agent lives for at most J periods. Age $j \in \{20, ..., 65, ..., 100\}$
 - facing survival probability ρ_i from age j to j+1
 - $\rho_J = 0$
 - choosing labor supply until $j^{ss} = 65$
- ▶ Size of cohort, measured by μ_i for age j, grows at a rate g

$$\mu_{j+1} = \frac{\rho_j}{1+g} \mu_j$$

$$\sum_{i=1}^{J} \mu_j = 1$$

Shocks

- 1. Labor productivity: z
 - ► labor income: wη;zn
 - η_i : age specific efficiency; n: labor hours
- 2. Medical expenditure: $q \cdot x_i(h)$, $h \in \{h_g, h_f, h_b\}$
 - q: relative price of medical care
- 3. Survival probability: ρ_j

Health insurance

- ▶ Public UHI
 - ω_i : coverage rate of health insurance (age-dependent)
- Out-of-pocket medical care payment

$$(1-\omega_j) \mathit{qx}_j(\mathit{h})$$

Preferences

Period utility function of a household:

$$u(c,n) = \frac{\left[c^{\sigma}(1-n)^{1-\sigma}\right]^{1-\gamma}}{1-\gamma}$$

- c: consumption, n: hours worked
- $ightharpoonup \gamma$: parameter for ies/risk aversion, σ : utility parameter of leisure
- β: discount factor

Household's Problem

- ▶ State vector: s = (j, a, z, h)
- A household's problem can be expressed by:

$$V(s) = \max_{c,n,a'} \left\{ u(c,n) + \rho_j \beta \mathbb{E} \left[V(s') \right] \right\}$$

s.t. constraints

Constraints

Constraints

$$\begin{split} (1+\tau_c)c+a' &= W+T, \\ W &\equiv y(n,j,z) + (1+(1-\tau_k)\,r)\,(a+b) - \left(1-\omega_j\right)qx, \\ y(n,j,z) &= (1-\tau_l-\tau_{ss}-p^{\rm med})w\eta_jzn + ss(j) \\ T &= \max\{0,(1+\tau_c)\underline{c}-W\} \\ ss_j &= \left\{ \begin{array}{ll} ss & \text{if } j \geq j^{ss}, \\ 0 & \text{otherwise}. \end{array} \right. \end{split}$$

Accidental bequest b:

$$b' = \frac{\int (1 - \rho_j) a' d\Phi(s)}{1 + g}$$

Production

▶ A representative firm's production function:

$$Y = F(K, L) = AK^{\theta}L^{1-\theta}$$

- ► *A*: TFP
- \triangleright θ : capital share
- Aggregate capital and labor

$$L=\int \eta_j z n(s) d\Phi(s),~K=\int ad\Phi(s)$$

where $\Phi(s)$ is the population distribution over the sate variables.

Government Budget Constrains

- Government spendings consist of:
 - 1. Public UHI
 - 2. *G*: government consumption (exogenous)
 - 3. Social security system: PAYG

Government Budget Constrains

► Government's budget constraint:

$$\underbrace{\int [\tau_l w \eta_j z n + \tau_k r(a+b) + \tau_c c] d\Phi(s)}_{\text{Tax Revenue}} = \underbrace{\psi \int (\omega_j q x) d\Phi(s)}_{\text{PUHI subsidy}} + \int T d\Phi(s) + G$$

- ψ : a fraction of UHI cost is financed by government revenue
- National health care system:

$$\underbrace{\int (p^{\mathsf{med}} w \eta_j z n) d\Phi(s)}_{\mathsf{Premium}} = (1 - \psi) \int (\omega_j q x) d\Phi(s)$$

Government Budget Constrains (cont.)

Social security system (self-financed):

$$\int (au_{ss} w \eta_j z n) d\Phi(s) = \int s s_j d\Phi(s).$$

Recursive Competitive Equilibrium

- 1. Households' optimization problem is solved
- 2. Firm's optimization problem is solved
- 3. Government's budget constraints are satisfied
- 4. All markets (goods, capital and labor) clear
- 5. Distribution of population over sate space $\Phi(s)$ is stationary (in a steady state)

Idiosyncratic Wage Risk

► Approximate wage shock z by AR(1) process

$$\ln z_{j+1} = \lambda \ln z_j + \varepsilon_j, \ \varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$$

- \triangleright λ : persistence of shock
- Adopted form Abe and Yamada (2009)

Demographic Structure

- ▶ Survival rate $\{\rho_{i,t}\}$
 - The National Institute of Population and Social Security Research (IPSR)
 - Projection from 2005–2055

Demographic Structure in 2010

Demographic Structure in 2050

Medical Expenditure

- ► Transition of medical expenditure: Kan and Suzuki (2005)
 - individual health insurance claim data
 - studying transition of medical expenditure in 5 age groups
- Aggregate medical expenditure: Estimates of National Medical Care Expenditures (Ministry of Health, Labour, and Welfare)
- ▶ Medical expenditure: $x_j(h)$, $h \in \{h_g, h_f, h_b\}$ (bottom 50%, middle 40%, top 10% in each j)
- ▶ Adjust the level such that X/Y ratio matches the data

Medical Expenditure: Transition Probabilities

Medical Expenditure: Health Status

Public Universal Health Insurance/Tax System

- Co-payment rate depends on age (benchmark)
 - 1. $\omega_j = 30\%$: $j \in \{20, ..., 69\}$
 - 2. $\omega_j = 20\%$: $j \in \{70, \dots, 74\}$
 - 3. $\omega_j = 10\%$: $j \in \{75, \dots, 100\}$
- Tax system
 - $\tau^c = 5\%$: consumption tax (benchmark)
 - $\tau^k = 39.8\%$: capital income tax (İmrohoroğlu and Sudo)
 - $\tau_t^{ss} \in \{16.058\%, \dots, 18.3\%\}$ social security has to be self-financed based on the tax.

Parameters

Parameters		Value
Discount factor	β	0.98
Intertemporal elasticity of substitution	γ	2.0
Share of labor supply	σ	0.33
Capital share	θ	0.377
Depreciation rate	δ	0.08
Persistence of labor productivity shock	λ	0.98
Std. dev. of labor productivity shock	σ_{ε}	0.09
Government share of PUHI cost	ψ	0.25
G/Y		12.5%
Price of medical expenditure	q	$\{1, 1.27\}$

Welfare Measure

- ► How to evaluate welfare change?
 - Certainty equivalent consumption variation (CEV)
- Social welfare measure:
 - ► Measure 1: *ex-ante* value

$$SW1 = \int V(j, h, a, z) d\Phi(j, h, a, z | j = 20, a = 0)$$

► Measure 2: social average

$$SW2 = \int V(j, h, a, z) d\Phi(j, h, a, z)$$

Result: Steady State Comparison

	Benchmark	Only Price	Only Aging	Aging & Price
Age structure	2010	2010	2050	2050
Medical price	q = 1	q = 1.27	q = 1	q = 1.27
Change in K	0.00%	-1.47%	-0.52%	-4.67%
Change in L	0.00%	-0.18%	-16.63%	-17.23%
K/Y	2.52	2.50	2.81	2.75
X/Y	7.1%	9.1%	12.1%	15.7%
Tax burden				
1) Labor tax: τ_l	7.6%	8.7%	12.2%	14.1%
2) Premium: p ^{med}	5.5%	7.1%	9.8%	12.7%
1)+2): $\tau_l + p^{\text{med}}$	13.1%	15.7%	22.0%	26.8%
Increased burden	-	2.6%	8.9%	13.7%

Result: UHI Policy Reform

	Current	UHI I	policy
	system	ω_i	
		30%	35%
Change in K	0.00%	14.00%	19.10%
Change in L	0.00%	2.01%	2.79%
K/Y	2.75	2.95	3.02
Tax burden			
1) Labor tax: τ_I	14.1%	13.3%	13.0%
2) Premium: p ^{med}	12.7%	10.0%	9.1%
1)+2): $\tau_I + p^{\text{med}}$	26.8%	23.2%	22.1%
Welfare comparison			
CEV(new-born, h = good)	0.00%	9.65%	12.63%
CEV(new-born, $h = fair$)	0.00%	9.67%	12.63%
CEV(new-born, h = bad)	0.00%	9.73%	12.64%
CEV(all population)	0.00%	1.29%	2.02%

Result: Financing Policy

	Current	Financi	ng Policy
	system	$ au_{c}$	
		10%	15%
Change in K	0.00%	5.20%	10.26%
Change in L	0.00%	1.07%	1.99%
K/Y	2.75	2.81	2.89
Tax burden			
Labor tax: τ_I	14.1%	9.9%	5.7%
Premium: p ^{med}	12.7%	12.4%	12.1%
Total: $\tau_l + p^{med}$	26.8%	22.3%	17.9%
Welfare comparison			
CEV(new-born, h = good)	0.00%	3.68%	7.02%
CEV(new-born, $h = fair$)	0.00%	3.69%	7.04%
CEV(new-born, h = bad)	0.00%	3.74%	7.12%
CEV(all population)	0.00%	1.19%	2.14%

Decomposition of Welfare

- ▶ Decompose the welfare effect into
 - 1. Distribution effect:

Keep average c and n the same as in the benchmark, only the allocations over life cycle change.

2. Level effect:

Average c and n change to new steady state level.

Decomposition of Welfare(cont.)

Table: Decomposition of welfare change

	UHI policy reform Co-payment rate	Financing policy $ au_c$
	30%	10%
CEV (total)	9.66%	3.65%
Level	4.93%	1.64%
Only c	5.90%	2.43%
Only n	-0.92%	-0.78%
Distribution	4.86%	2.03%
Only c	3.41%	1.53%
Only n	1.44%	0.50%

Transition Dynamics

- Compute transition paths from 2010 to 2200:
- New policy implemented in 2011
- Policy experiment plans:
 - Policy 1(Immediate UHI reform): Co-payment rate increases to 30% suddenly in 2011
 - Policy 2(gradual UHI reform): Co-payment rate increases 1% per year to 30%.
 - Policy 3(immediate financing policy reform): Consumption tax increases to 10%
 - 4. Policy 4(gradual financing policy reform): Consumption tax increases 1% per year to 10% .

Welfare Implications

- ► Welfare implications
 - 1. Redistribution between the young and the old
 - Co-payment increase: forcing the old to share more UHI cost and face more risk
 - Consumption tax increase: milder impact on the old (c is smoother than x over age)
 - 2. Redistribution between the healthy and the unhealthy
 - Co-payment increase: forcing the unhealthy to share more UHI cost and face more risk
 - Consumption tax increase: the healthy share more (they have higher c than the unhealthy)

Transition Dynamics: Health = good

Transition Dynamics: Health = fair

Transition Dynamics: Health = bad

Agreement Rate

Tax Burden: Labor Tax + Premium

Concluding Remarks

- Impact of population aging
 - Additional 9 14% of labor tax will be needed to finance the Public UHI if the population age structure is like in 2050.
- Policy implications
 - 1. Welfare for future generation:
 - Both the UHI reform (co-payment increase) and financing policy reform (τ_c increase) improve social welfare.
 - 2. Implication for implementation of reforms:
 - ► The majority will face welfare losses.
 - Immediate reforms will hurt current old people a lot.
 - 3. Suggestion and discussion
 - Reforms that reduce tax burden on the young are necessary, but compensation is needed.
 - ► How?