# Knowledge, Diffusion and Reallocation

Hugo A. Hopenhayn

UCLA

May 28, 2012

Hugo A. Hopenhayn (UCLA)

Knowledge, Diffusion and Reallocation

May 28, 2012 1 / 42

- Quantitatively important
- Contributes to productivity and diffusion of new ideas
- Recent contributions: barriers to reallocation very costly
- Results are very sensitive to assumptions about returns to scale or demand elasticity.

Returns to scale and knowledge transmission

- Fixed factors.vs. replication
- Links to knowledge transmission in general costly to replicate.
- What is fixed or not may depend on incentives for knowledge transmission
- Develop a deeper theory of replication/knowledge transmission



э

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Background: example on reallocation and returns to scale
Theory of learning and replication of knowledge

- Background: example on reallocation and returns to scale
- O Theory of learning and replication of knowledge
- Policy experiment sensitive to incentives for knowledge accumulation

- Background: example on reallocation and returns to scale
- On Theory of learning and replication of knowledge
- 9 Policy experiment sensitive to incentives for knowledge accumulation
- Links to firm dynamics.

• firm *i* has technology  $q_i = z_i n_i^{\alpha}$ 

Hugo A. Hopenhayn (UCLA)

#### Example: gains to reallocation and returns to scale

- firm *i* has technology  $q_i = z_i n_i^{\alpha}$
- $z_1 = 1, z_2 = z > 1$

Hugo A. Hopenhayn (UCLA)

Total labor endowment = 2

- firm *i* has technology  $q_i = z_i n_i^{\alpha}$
- $z_1 = 1$ ,  $z_2 = z > 1$ Total labor endowment = 2
- Initial situation:  $n_1 = n_2 = 1$ , q = 1 + zafter reallocation marginal products equalized.

- firm *i* has technology  $q_i = z_i n_i^{\alpha}$
- $z_1 = 1$ ,  $z_2 = z > 1$ Total labor endowment = 2
- Initial situation:  $n_1 = n_2 = 1$ , q = 1 + zafter reallocation marginal products equalized.
- Upper bound for gains:  $\alpha = 1$  $n_1 = 0$ ,  $n_2 = 2$  and q = 2z.

- firm *i* has technology  $q_i = z_i n_i^{\alpha}$
- $z_1 = 1$ ,  $z_2 = z > 1$ Total labor endowment = 2
- Initial situation:  $n_1 = n_2 = 1$ , q = 1 + zafter reallocation marginal products equalized.
- Upper bound for gains:  $\alpha = 1$  $n_1 = 0$ ,  $n_2 = 2$  and q = 2z.
- $\alpha < 1$ , then smaller gains.

-

Image: A match a ma

- Gains depend on returns to scale and speed of reallocation.
- Maximum with CRS (case  $\alpha = 1$ )
- Models explicitly or implicitly make assumptions about this.

| Hopenhayn and Rogerson | 5%        | eliminate layoff costs  |
|------------------------|-----------|-------------------------|
| Eaton and Kortum       | 3.5%      | loss going to autharky  |
| Burstein Monge         | 8% to 15% | zero cost to FDI        |
| Ramondo                | 50%       | zero costs to FDI       |
| McGrattan and Prescott | 30%       | form union 20 countries |

# A model of learning and diffusion

• GE economy, fixed labor endowment *L*, representative agent – preferences: balanced growth

$$U = \int e^{-rt} \frac{c(t)^{1-\theta}}{1-\theta} dt$$
  
$$r = \rho + \theta g$$

- Technology: Solow (vintage model) meets Lucas (adjustment cost)
- Basic component: knowledge capital pair (z, k) : z is knowledge embodied in this k
- production technology zf(k, n), CRS

• 
$$f(k, n) = \min(k, n)$$
 and  $\theta = 1$  for this talk.

- $\dot{k}(z)$  has cost  $C\left(\frac{k}{k}\right)zk$ , depreciation  $\delta k$ .
- $C(\cdot)$  increasing, convex.
- CRS in *k*, *k*
- More costly to replicate better knowledge

Hugo A. Hopenhayn (UCLA)

#### • v(z, t) value of one unit of k(z) at time t

- v(z, t) value of one unit of k(z) at time t
- Bellman equation:  $(r + \delta) v (z, t) =$  $z - w(t) + (\max_{k} v(z, t) \dot{k} - C(\dot{k}) z) + v_2(z, t)$

- v(z, t) value of one unit of k(z) at time t
- Bellman equation:  $(r + \delta) v(z, t) = z w(t) + (\max_{k} v(z, t) \dot{k} C(\dot{k}) z) + v_2(z, t)$
- Optimal replication:

- v(z, t) value of one unit of k(z) at time t
- Bellman equation:  $(r + \delta) v(z, t) = z w(t) + (\max_{k} v(z, t) \dot{k} C(\dot{k}) z) + v_2(z, t)$
- Optimal replication:

• 
$$v(z,t) = C'(\dot{k})z$$

- v(z, t) value of one unit of k(z) at time t
- Bellman equation:  $(r + \delta) v(z, t) = z w(t) + (\max_{k} v(z, t) \dot{k} C(\dot{k}) z) + v_2(z, t)$
- Optimal replication:

• 
$$v(z,t) = C'(\dot{k})z$$

•  $\dot{k}(z) / k(z)$  increasing in z

## Rates of replication





Hugo A. Hopenhayn (UCLA)

Knowledge, Diffusion and Reallocation

э May 28, 2012

Image: A match a ma

æ

- Technological frontier  $\gamma\left(t
  ight)=e^{gt}$
- Technology for entry: one worker  $ightarrow k_{0}$  units of knowledge capital of type  $x\gamma\left(t
  ight)$
- $x \in [0,1] \sim F(dx)$
- Heterogeneity in productivity within a cohort
- Coexistence of several cohorts

- g = 0
- Fixed labor endowment L
- Initial distribution k(z) with highest  $\bar{z}$
- Converge to steady state:  $k(\bar{z}) = L$  (if C'(0) = 0)
- Complete reallocation: all resources flow to most productive

• 
$$w(t) = w_0 \gamma(t)$$

Hugo A. Hopenhayn (UCLA)

Image: A math a math

•  $w(t) = w_0 \gamma(t)$ 

• knowledge capital z is discontinued when w(t) > z



イロト 不得 トイヨト イヨト 二日

•  $w(t) = w_0 \gamma(t)$ 

• knowledge capital z is discontinued when w(t) > z



• Can normalize all to frontier  $\gamma\left(t
ight)$ 

イロト 不得下 イヨト イヨト 二日

•  $w(t) = w_0 \gamma(t)$ 

• knowledge capital z is discontinued when w(t) > z



• Can normalize all to frontier  $\gamma\left(t
ight)$ 

• Normalized z(t) value falls at the rate of technological progress g.

•  $w(t) = w_0 \gamma(t)$ 

• knowledge capital z is discontinued when  $w\left(t
ight)>z$ 



- Can normalize all to frontier  $\gamma\left(t
  ight)$
- Normalized z(t) value falls at the rate of technological progress g.
- Vintage is active and producing while z (t) > w<sub>0</sub>. When z (t) = w<sub>0</sub> it is discontinued and the stock k (t) lost.

- Innovator starts with  $k_0$  units of knowledge capital  $z_0 \in [0,1]$  ,  $\gamma(t) = 1$
- Active only if  $z_0 > w(t)$ .
- Replicates at declining rate
- Shut down after s periods when  $z_{0}=e^{gs}w\left(t
  ight)$

# Life cycle of innovation



Technologies and Knowledge Capital (path when all mass of F is at 1)

May 28, 2012 17 / 42

э

-

Image: A math a math

#### Stationary distribution of knowledge capital

- Normalize  $\gamma(t) = 1$
- constant flow of entry m
- Steady state stationary distribution k(z)

Path of knowledge capital for different initial z<sub>0</sub>'s



Hugo A. Hopenhayn (UCLA)

Hugo A. Hopenhayn (UCLA)

• Invariant measure linear in m

-

Image: A match a ma

- Invariant measure linear in m
- Labor demand for production  $L_P$  linear in m.

19 / 42

- Invariant measure linear in m
- Labor demand for production  $L_P$  linear in m.

• 
$$w(t) = w_0 e^{gt} = w_0 \gamma(t)$$

Hugo A. Hopenhayn (UCLA)
- Invariant measure linear in m
- Labor demand for production  $L_P$  linear in m.

• 
$$w(t) = w_0 e^{gt} = w_0 \gamma(t)$$

$$w_{0}=k_{0}\int v\left(z,w_{0}\right)F\left(dz\right)$$

- Invariant measure linear in m
- Labor demand for production  $L_P$  linear in m.

• 
$$w(t) = w_0 e^{gt} = w_0 \gamma(t)$$

$$w_{0}=k_{0}\int v\left(z,w_{0}\right)F\left(dz\right)$$

•  $L_R + L_P = L$ 

- Invariant measure linear in m
- Labor demand for production  $L_P$  linear in m.

• 
$$w(t) = w_0 e^{gt} = w_0 \gamma(t)$$

$$w_{0}=k_{0}\int v\left(z,w_{0}\right)F\left(dz\right)$$

- $L_R + L_P = L$
- flow of entry  $m = k_0 L_R$

- Invariant measure linear in m
- Labor demand for production  $L_P$  linear in m.

• 
$$w(t) = w_0 e^{gt} = w_0 \gamma(t)$$

$$w_{0}=k_{0}\int v\left(z,w_{0}\right)F\left(dz\right)$$

- $L_R + L_P = L$
- flow of entry  $m = k_0 L_R$
- Total labor demand linear in  $L_R$ .

- An increase in k<sub>0</sub> (productivity of frontier research)
  - Increases w<sub>0</sub>
  - Lowers  $v\left(z, w_{0}
    ight)$  and thus  $\dot{k}\left(z
    ight)/k$  for all z
  - Decreases lifetime of vintages and slows down diffusion
- Similar effect for improvement in F

## Reallocation and the incentives for replication

Higher rate of technological advance

- increase in rate of obsolescence
- Decreases  $w_0$  (ratio  $w(t) / \gamma(t)$ )
- Increases  $v(z, w_0)$  for low z/s but reduces it for high z's.



Intuition: Low z discounts more the future (when wage will be higher)
Flattens replication profile and lowers gain of drawing better z's = ->

Hugo A. Hopenhayn (UCLA)

Knowledge, Diffusion and Reallocation

May 28, 2012 21 / 42

#### Reallocation and the incentives for replication Higher cost of replication

- $\gamma C\left(\dot{k}
  ight)$  , increase in  $\gamma$
- Bigger direct impact on higher z's (envelope argument)
- w<sub>0</sub> decreases
- Again, flatten  $v(z, w_0)$  profile.
- Lower replication.

- Static allocation:  $\ln n = A + \frac{1}{1-\alpha} \ln z$ Higher elasticity of *n* with respect to *z* iff higher  $\alpha$
- Consider n (z, a) = k (z, a) employment of one original unit of type z after a periods
- $\partial \ln k(z, a) / \partial \ln z = \frac{\dot{k}(z) \dot{k}(ze^{-ga})}{g}$
- For case  $C(\dot{k}) = c\dot{k}^2/2$  equals  $\left[\frac{v(z)}{z} \frac{v(ze^{-ga})}{ze^{-ga}}\right]/gc$
- Elasticity falls with c.

- Tax on investment  $tC\left(\dot{k}\left(z\right)\right)z$
- Tax decreases investment and reallocation from less to more productive
- Impact: depends on importance of reallocation
- 3 scenarios: baseline, high adjustment cost, high g

- Baseline, high adjustment cost, high g
- $C(\dot{k})$  quadratic;
- r = 5%,  $\delta = 5\%$ , g = 3%; baseline  $w_0 = 0.5$  (Bartelsman and Domes)

• 
$$F(z) = rac{1 - \exp(-\lambda z)}{1 - \exp(-\lambda)}$$
,  $\lambda = 2$ 

- Higher taxes reduce the incentive to invest.
- lowers equilibrium wage
- Less turnover of knowledge chains
- Lower average productivity

|         | Base case      |       | high adj. cost |       | high g         |       |
|---------|----------------|-------|----------------|-------|----------------|-------|
|         | w <sub>0</sub> | prod  | w <sub>0</sub> | prod  | w <sub>0</sub> | prod  |
| t = 0   | 100            | 100   | 93.7           | 93.7  | 83.9           | 80.7  |
| t = 0.5 | -6.5%          | -2.1% | -3.5%          | -0.9% | -3.9%          | -0.8% |
| t = 1.0 | -9.8%          | -4.1% | -6.1%          | -2%   | -6.4%          | -1.7% |

3

・ロト ・回ト ・ヨト

- Above considers only allocations. Data is based on firms/plants.
- Quantitative discipline
- Help explain some facts?
- Recent paper Luttmer motivation: explaining the rapid growth of large firms.
- How can we take this model to the data?

- Large degree of reallocation: 10% yearly job creation and destruction (Davis, Haltiwanger, Schuh)
- Fairly large changes in firm size over 10 year horizon period.
- Growth rate independent of sizes ( Gibrat's law)
- Growth rate decreasing in age
- Productivity differences are persistent (Bartelsman and Doms)
- Low productivity helps predict exit.
- Entry and exit play an important role (15% of yearly job creation and 20% of job destruction.)

#### Size distribution - Zipf's law





May 28, 2012 30 / 42

3

Counterfactual implications:

- Firms grow at different rates
- No heterogeneity in the long run

- If firms homogeneous (standard vintage model)
  - strong firm life-cycle
  - death increases with age
- Sources of heterogeneity:
  - Initial draws
  - I random success in staying at the frontier/upgrading

- Distribution F(s)
- Depreciates relative to the frontier at rate g
- Exit rates and age: more flexibility but increases at some point
- Older firms tend to be larger
- Productivity decreases with age in some range.
- Still some strong life cycle effects

- Potential way of getting firms to grow fast for longer time
- Indivisibility? What is a firm?
  - A firm as specialized knowledge capital.
  - Frontier could move randomly, perhaps drastic
  - Or smoother: pieces of knowledge capital may fail to learn
- Promising road

- Lots of R&D done in existing firms
- State of the firm  $(z_1, k_1, z_2, k_2..., z_n, k_n)$ , new draws arrival rate m.
- Firm grows or contracts. When number of *z*'s in operation goes to zero, consider an exit. Substituted by a draw from an outsider.
- Simple aggregation procedure no change in behavior.

# Firm's life-cycle



May 28, 2012 36 / 42

• F point mass (standard vintage model)

- F point mass (standard vintage model)
- Problem: too little turnover

- F point mass (standard vintage model)
- Problem: too little turnover
  - Productivity of lower end = 0.5

- F point mass (standard vintage model)
- Problem: too little turnover
  - Productivity of lower end = 0.5
  - Growth rate g = 0.03

- F point mass (standard vintage model)
- Problem: too little turnover
  - Productivity of lower end = 0.5
  - Growth rate g = 0.03
  - $\Longrightarrow$  24 years to go from frontier to 0.5

- F point mass (standard vintage model)
- Problem: too little turnover
  - Productivity of lower end = 0.5
  - Growth rate g = 0.03
  - $\implies$  24 years to go from frontier to 0.5
  - Expected turnover = 1/24 = 4% is too small *even without resampling*.

Stochastic draws (distribution F)

- Very few *free* parameters: λ, w<sub>0</sub>, g, m where w<sub>0</sub> and g are pinned down.
- Growth and size: Gibrat's law (sort of)

### Table 1. growth vs size and age

| Variable | Estimate | Standard<br>error | t-value |
|----------|----------|-------------------|---------|
| constant | 0.07     | 0.002384          | 29.1    |
| size     | 0.002    | 0.001098          | 1.6     |
| age      | -0.002   | 0.000088          | -27.5   |

• Growth declines with age

Stochastic draws (distribution F)

Very few *free* parameters: λ, w<sub>0</sub>, g, m where w<sub>0</sub> and g are pinned down.

Table 1. growth vs size and age

• Growth and size: Gibrat's law (sort of)

| Variable | Estimate | Standard<br>error | t-value |
|----------|----------|-------------------|---------|
| constant | 0.07     | 0.002384          | 29.1    |
| size     | 0.002    | 0.001098          | 1.6     |
| age      | -0.002   | 0.000088          | -27.5   |

• Growth declines with age

Stochastic draws (distribution F)

- Very few *free* parameters: λ, w<sub>0</sub>, g, m where w<sub>0</sub> and g are pinned down.
- Growth and size: Gibrat's law (sort of)

## Table 1. growth vs size and age

| Variable | Estimate | Standard<br>error | t-value |
|----------|----------|-------------------|---------|
| constant | 0.07     | 0.002384          | 29.1    |
| size     | 0.002    | 0.001098          | 1.6     |
| age      | -0.002   | 0.000088          | -27.5   |

• Growth declines with age

• *Survival:* Firms running more vintages are less likely to exit - also tend to be larger.

|                               | model | US  |
|-------------------------------|-------|-----|
| size of entrants/incumbents   | 45%   | 35% |
| Rate of entry/exit (annual)   | 5%    | 7%  |
| job creation/destruction rate | 7%    | 10% |
| Share of entry/exit           | 30%   | 20% |
|                               |       |     |

#### Age, size, productivity and growth

| age          | size/avg | average z | growth | B&D  |
|--------------|----------|-----------|--------|------|
| less than 5  | 0.3      | 0.71      | 8.6%   | 7.7% |
| 5 to 10      | 0.6      | 0.69      | 5.7%   | 3.7% |
| 10 to 15     | 0.9      | 0.65      | 2.6%   | 2.9% |
| 15 to 25     | 1.1      | 0.60      | 0.1%   |      |
| 25 to 50     | 1.0      | 0.61      | 0.4%   |      |
| more than 50 | 1.1      | 0.60      | -0.2%  |      |
| total        | 1.0      | 0.61      | 2.0%   |      |

## Size distribution

#### • Zipf's law: $(1 - F(size)) = size^{-1}$



Firm Size Distribution

3 41 / 42 May 28, 2012

- ∢ ≣ →

Image: A math a math

### Size distribution

#### • Zipf's law: $(1 - F(size)) = size^{-1}$



Firm Size Distribution

• Fails in our benchmark (too few large firms)

Hugo A. Hopenhayn (UCLA)

May 28, 2012 41 / 42

3 x 3

## Size distribution

### • Zipf's law: $(1 - F(size)) = size^{-1}$



Firm Size Distribution

- Fails in our benchmark (too few large firms)
- With lower C0, "missing middle".

Hugo A. Hopenhayn (UCLA)

May 28, 2012 41 / 42

- The study of diffusion through replication of knowledge important area.
- Important to understand the gains from reallocation and overall productivity.
- Reduced-form returns to scale have implicit assumptions about replication.
- Incentives to replicate may vary significantly across economies, time and space
- Need for deeper models to understand overall process and incentives for knowledge transmission across time and space.
- The study of diffusion through replication of knowledge important area.
- Important to understand the gains from reallocation and overall productivity.
- Reduced-form returns to scale have implicit assumptions about replication.
- Incentives to replicate may vary significantly across economies, time and space
- Need for deeper models to understand overall process and incentives for knowledge transmission across time and space.

- The study of diffusion through replication of knowledge important area.
- Important to understand the gains from reallocation and overall productivity.
- Reduced-form returns to scale have implicit assumptions about replication.
- Incentives to replicate may vary significantly across economies, time and space
- Need for deeper models to understand overall process and incentives for knowledge transmission across time and space.

- The study of diffusion through replication of knowledge important area.
- Important to understand the gains from reallocation and overall productivity.
- Reduced-form returns to scale have implicit assumptions about replication.
- Incentives to replicate may vary significantly across economies, time and space
- Need for deeper models to understand overall process and incentives for knowledge transmission across time and space.

- The study of diffusion through replication of knowledge important area.
- Important to understand the gains from reallocation and overall productivity.
- Reduced-form returns to scale have implicit assumptions about replication.
- Incentives to replicate may vary significantly across economies, time and space
- Need for deeper models to understand overall process and incentives for knowledge transmission across time and space.