Monetary Independence and Rollover Crises

Javier Bianchi¹ Jorge Mondragon²

¹Minneapolis Fed ²University of Minnesota

- Investors refuse to rollover \Rightarrow liquidity problems for govt....
- Liq. problems \Rightarrow govt. default \Rightarrow investors don't rollover...

 \Rightarrow self-fulfilling rollover crisis

- Investors refuse to rollover \Rightarrow liquidity problems for govt....
- Liq. problems \Rightarrow govt. default \Rightarrow investors don't rollover...

$\Rightarrow \textbf{self-fulfilling rollover crisis}$

Policy measures by ECB targeted at avoiding bad equilibrium

• Mario Draghi: "whatever it takes"

- Investors refuse to rollover \Rightarrow liquidity problems for govt....
- Liq. problems \Rightarrow govt. default \Rightarrow investors don't rollover...

\Rightarrow self-fulfilling rollover crisis

Policy measures by ECB targeted at avoiding bad equilibrium

• Mario Draghi: "whatever it takes"

But literature provides little quantitative support to rollover crises

- Investors refuse to rollover \Rightarrow liquidity problems for govt....
- Liq. problems ⇒ govt. default ⇒ investors don't rollover...
 ⇒ self-fulfilling rollover crisis

Policy measures by ECB targeted at avoiding bad equilibrium

• Mario Draghi: "whatever it takes"

But literature provides little quantitative support to rollover crises

• Missing: aggregate demand channel and monetary policy

• Spain and Portugal close to default despite *low debt-GDP* ratios compared to economies *not* in a currency union

• Spain and Portugal close to default despite *low debt-GDP* ratios compared to economies *not* in a currency union

Can monetary autonomy help to deal with rollover crisis?

• Spain and Portugal close to default despite *low debt-GDP* ratios compared to economies *not* in a currency union

Can monetary autonomy help to deal with rollover crisis?

- De Grauwe-Krugman: printing press and inflate away
 - This channel hinges on debt being in *domestic currency*

• Spain and Portugal close to default despite *low debt-GDP* ratios compared to economies *not* in a currency union

Can monetary autonomy help to deal with rollover crisis?

- De Grauwe-Krugman: printing press and inflate away
 - This channel hinges on debt being in *domestic currency*

Can monetary policy still help if debt is in foreign currency?

• Spain and Portugal close to default despite *low debt-GDP* ratios compared to economies *not* in a currency union

Can monetary autonomy help to deal with rollover crisis?

- De Grauwe-Krugman: printing press and inflate away
 - This channel hinges on debt being in *domestic currency*

Can monetary policy still help if debt is in foreign currency?

This paper: Theory linking monetary autonomy and rollover crisis based on aggregate demand channel

Show how rollover risk depend on monetary policy regime

Show how rollover risk depend on monetary policy regime

Key result: Lack of monetary autonomy make an economy more vulnerable to rollover crises

Show how rollover risk depend on monetary policy regime

Key result: Lack of monetary autonomy make an economy more vulnerable to rollover crises

Quantitatively (preliminary):

- With flexible exchange rate, economy remains relatively immune to rollover crisis.
- With fixed exchange rate, much higher exposure

 When investors "run" on govt. bonds, repayment requires large reduction in aggregate demand...⇒ unemployment

- When investors "run" on govt. bonds, repayment requires large reduction in aggregate demand...⇒ unemployment
- ...unemployment makes repayment more costly and leads to default \Rightarrow validates run on government debt

- When investors "run" on govt. bonds, repayment requires large reduction in aggregate demand...⇒ unemployment
- ...unemployment makes repayment more costly and leads to default \Rightarrow validates run on government debt
- Ability to depreciate enables govt. to break self-fulfilling loop

- When investors "run" on govt. bonds, repayment requires large reduction in aggregate demand...⇒ unemployment
- ...unemployment makes repayment more costly and leads to default \Rightarrow validates run on government debt
- Ability to depreciate enables govt. to break self-fulfilling loop
 - Investors less prone to run because govt. would accommodate

- When investors "run" on govt. bonds, repayment requires large reduction in aggregate demand...⇒ unemployment
- ...unemployment makes repayment more costly and leads to default \Rightarrow validates run on government debt
- Ability to depreciate enables govt. to break self-fulfilling loop
 - Investors less prone to run because govt. would accommodate

 \Rightarrow Additional cost from losing monetary independence

Classic papers on rollover crises: Alesina, Tabellini and Pratti; Giavazzi and Pagano; Cole and Kehoe

Recent quantitative models on rollover crises: Chatterjee and Eygunoor; Bocola and Dovis; Aguiar, Chatterjee, Cole and Stangebye; Roch and Uhlig; Conesa and Kehoe

Other types of multiplicity in sovereign debt: Calvo , Lorenzoni and Werning, Ayres, Navarro, Nicolini and Teles, Aguiar and Amador

Monetary models with multiple equilibria in sovereign debt: Da Rocha, Gimenez and Lores; Araujo, Leun and Santos; Aguiar, Amador, Farhi and Gopinath, Corsetti; Camous and Cooper; Bacchetta, Perazzi and van Wincoop;

Sovereign default model with nominal rigidities: Na, Schmitt-Grohe, Uribe and Yue, Bianchi, Ottonello and Presno

Main elements of the model

- Small open economy with tradable and non-tradable goods
 - Stochastic endowment of tradable goods y^T
 - Non-tradable goods produced with labor $y^N = F(h)$
- Law of one price for tradable goods $P_t^T = P_t^* e_t$.
 - Assume $P_t^* = 1 \Rightarrow P_t^T = e_t$
- Wages are downward rigid in domestic currency $W_t \geq \overline{W}$
 - With fixed exchange rate regime \Rightarrow *real* wage rigidity
- Government issues defaultable long-term debt, *b*, in foreign currency

• Preferences

$$\mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t U(c_t) \right]$$
$$c = [\omega(c^T)^{-\mu} + (1-\omega)(c^N)^{-\mu}]^{-1/\mu}$$

- c^T, c^N : consumption of tradables and non-tradables
- Budget constraint (in domestic currency)

$$e_t c_t^T + P_t^N c_t^N = e_t y_t^T + \phi_t^N + W_t h_t^s - T_t$$

- ϕ^N firms' profits, T_t lump sum taxes
- Total endowment of hours \bar{h}

• Preferences

$$\mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t U(c_t) \right]$$
$$c = [\omega(c^T)^{-\mu} + (1-\omega)(c^N)^{-\mu}]^{-1/\mu}$$

- c^T, c^N : consumption of tradables and non-tradables
- Budget constraint (in domestic currency)

$$e_t c_t^T + P_t^N c_t^N = e_t y_t^T + \phi_t^N + W_t h_t^s - T_t$$

- ϕ^N firms' profits, T_t lump sum taxes
- Total endowment of hours \bar{h}

Optimality

$$\frac{P_t^N}{e_t} = \frac{1-\omega}{\omega} \left(\frac{c_t^T}{c_t^N}\right)^{1+\mu}$$

- Produce using labor: $y^N = F(h)$
- Profit maximization

$$\phi_t^N = \max_{h_t} \left\{ P_t^N F(h_t) - W_t h_t \right\}$$

• Optimality

$$W_t = P_t^N F'(h_t)$$

Wages in domestic currency cannot fall below \overline{W}

$W_t \geq \overline{W}$

Wages in domestic currency cannot fall below \overline{W}

$$W_t \geq \overline{W}$$

If \overline{W} is *higher* than market clearing wage \Rightarrow unemployment If \overline{W} is *lower* than market clearing wage $\Rightarrow h = \overline{h}$

$$\left(W_t - \overline{W}\right)\left(\overline{h} - h_t\right) = 0$$

- Government issues long-term bonds at price q_t
- Bond payoff structure: $\delta \left[1, (1-\delta), (1-\delta)^2, ..., (1-\delta)^t\right]$
- Law of motion for bonds $b_{t+1} = b_t(1-\delta) + i_t$

- Government issues long-term bonds at price q_t
- Bond payoff structure: $\delta \left[1, (1-\delta), (1-\delta)^2, ..., (1-\delta)^t\right]$
- Law of motion for bonds $b_{t+1} = b_t(1-\delta) + i_t$
- Budget constraint in good credit standing:

$$\delta e_t b_t (1 - d_t) = e_t q_t i_t + T_t$$

 $d_t = 0(1)$ if government repays (defaults)

- Government issues long-term bonds at price q_t
- Bond payoff structure: $\delta \left[1, (1-\delta), (1-\delta)^2, ..., (1-\delta)^t\right]$
- Law of motion for bonds $b_{t+1} = b_t(1-\delta) + i_t$
- Budget constraint in good credit standing:

$$\delta e_t b_t (1 - d_t) = e_t q_t i_t + T_t$$

 $d_t = 0(1)$ if government repays (defaults)

• If default, utility loss and exclusion with stochastic reentry

- Government issues long-term bonds at price q_t
- Bond payoff structure: $\delta \left[1, (1-\delta), (1-\delta)^2, ..., (1-\delta)^t\right]$
- Law of motion for bonds $b_{t+1} = b_t(1-\delta) + i_t$
- Budget constraint in good credit standing:

$$\delta e_t b_t (1 - d_t) = e_t q_t i_t + T_t$$

 $d_t = 0(1)$ if government repays (defaults)

- If default, utility loss and exclusion with stochastic reentry
- Focus on fixed exchange rate regime $e_t = e \ \forall t$

- International investors are risk-neutral and competitive.
- Besides the defaultable bonds, they can invest in real risk-free security at rate *r*
- Bond prices satisfy no-arbitrage condition

$$q_t(1+r) = \mathbb{E}_t[(1-d_{t+1})(\delta + (1-\delta)q_{t+1})]$$

when government repays

Equilibrium conditions

• Recall households' and firm optimality

$$\frac{P_t^N}{e_t} = \frac{1 - \omega}{\omega} \left(\frac{c_t^T}{c_t^N}\right)^{1 + \mu}$$
$$W_t = P_t^N F'(h_t)$$

Equilibrium conditions

• Recall households' and firm optimality

$$\frac{P_t^N}{e_t} = \frac{1 - \omega}{\omega} \left(\frac{c_t^T}{c_t^N}\right)^{1 + \mu}$$
$$W_t = P_t^N F'(h_t)$$

• Real equilibrium wage given by

$$\mathcal{W}_t\left(c_t^{\mathsf{T}},h
ight) \equiv \frac{1-\omega}{\omega}\left(\frac{c_t^{\mathsf{T}}}{F(h_t)}
ight)^{1+\mu}F'(h_t)$$

Equilibrium conditions

• Recall households' and firm optimality

$$\frac{P_t^N}{e_t} = \frac{1 - \omega}{\omega} \left(\frac{c_t^T}{c_t^N}\right)^{1 + \mu}$$
$$W_t = P_t^N F'(h_t)$$

• Real equilibrium wage given by

$$W_t\left(c_t^T,h\right) \equiv \frac{1-\omega}{\omega}\left(\frac{c_t^T}{F(h_t)}\right)^{1+\mu}F'(h_t) \geq \frac{\overline{W}_t}{e_t}$$

where $\frac{\partial W}{\partial c^T} > 0$, and $\frac{\partial W}{\partial h} < 0$

• If wage rigidity binds: $\downarrow c^T \Rightarrow \downarrow h$

Definition: Competitive eq. given govt. policies

Given b_0 , and govt. policy $\{e_t, b_{t+1}, d_t\}_{t=0}^{\infty}$, a competitive equilibrium is given by households and firms' allocations $\{c_t^T, c_t^N, h_t\}_{t=0}^{\infty}$, and prices $\{P_t^N, W_t, q_t\}_{t=0}^{\infty}$, such that

- i. Households and firms solve their optimization problems
- ii. Government budget constraint holds
- iii. Bond pricing schedule satisfies investors' optimality
- iv. NT market clears $c_t^N = y_t^N$ and resource constraint for T

$$c_t^{\mathsf{T}} - q_t \left(b_{t+1} - (1-\delta)b_t \right) = y_t^{\mathsf{T}} - \delta(1-d_t)b_t$$

v. Labor market equilibrium conditions hold
Next, we will study markov equilibria: government chooses repayment and borrowing without commitment

Next, we will study markov equilibria: government chooses repayment and borrowing without commitment

Three distinct "zones" (Cole-Kehoe)

- Safe zone: government always repays
- Default zone: government always defaults
- Crisis zone: government repayment depends on investors' expectations

Next, we will study markov equilibria: government chooses repayment and borrowing without commitment

Three distinct "zones" (Cole-Kehoe)

- Safe zone: government always repays
- Default zone: government always defaults
- Crisis zone: government repayment depends on investors' expectations

Goal: study how \overline{W} and monetary policy affect zones

Next, we will study markov equilibria: government chooses repayment and borrowing without commitment

Three distinct "zones" (Cole-Kehoe)

- Safe zone: government always repays
- Default zone: government always defaults
- Crisis zone: government repayment depends on investors' expectations

Goal: study how \overline{W} and monetary policy affect zones

- States: $(b, \mathbf{s}) \quad \mathbf{s} = (y^T, \zeta)$ where ζ is a sunspot
- Government problem in good credit standing

$$V(b, \mathbf{s}) = \mathsf{Max}\left\{V_D(y^T), V_R(b, \mathbf{s})\right\}$$

$$V_{R} (b, \mathbf{s}) = \max_{c^{T} h, b'} \left\{ u(c^{T}, F(h)) + \beta \mathbb{E} \left[V (b', \mathbf{s}') \right] \right\}$$

s.t. $c^{T} = y^{T} - \delta b + q(b', b, \mathbf{s}) \left[b' - (1 - \delta) b \right]$
 $\mathcal{W}(c^{T}, h) \bar{e} \ge \overline{W},$
 $h \le \bar{h}$

$$V_{R} (b, \mathbf{s}) = \max_{c^{T} h, b'} \left\{ u(c^{T}, F(h)) + \beta \mathbb{E} \left[V(b', \mathbf{s}') \right] \right\}$$

s.t. $c^{T} = y^{T} - \delta b + q(b', b, \mathbf{s}) \left[b' - (1 - \delta) b \right]$
 $\mathcal{W}(c^{T}, h) \bar{e} \ge \overline{W},$
 $h \le \bar{h}$

$$V_D(y^T) = u(y^T, F(h)) - \kappa(y^T) + \beta \mathbb{E}[\psi V(0, s') + (1 - \psi) V_D(y^{T'})]$$

s.t. $\mathcal{W}(y^T, h)\bar{e} \ge \overline{W},$
 $h \le \bar{h}$

$$V_{R} (b, \mathbf{s}) = \max_{c^{T} h, b'} \left\{ u(c^{T}, F(h)) + \beta \mathbb{E} \left[V(b', \mathbf{s}') \right] \right\}$$

s.t. $c^{T} = y^{T} - \delta b + q(b', b, \mathbf{s}) \left[b' - (1 - \delta) b \right]$
 $\mathcal{W}(c^{T}, h) \bar{e} \ge \overline{W},$
 $h \le \bar{h}$

$$V_D(y^T) = u(y^T, F(h)) - \kappa(y^T) + \beta \mathbb{E}[\psi V(0, s') + (1 - \psi) V_D(y^{T'})]$$

s.t. $\mathcal{W}(y^T, h) \bar{e} \ge \overline{W},$
 $h \le \bar{h}$

$$V_{R} (b, \mathbf{s}) = \max_{c^{T} h, b'} \left\{ u(c^{T}, F(h)) + \beta \mathbb{E} \left[V(b', \mathbf{s}') \right] \right\}$$

s.t. $c^{T} = y^{T} - \delta b + q(b', b, \mathbf{s}) \left[b' - (1 - \delta) b \right]$
 $\mathcal{W}(c^{T}, h) \bar{e} \ge \overline{W},$
 $h \le \bar{h}$

$$V_D(y^T) = u(y^T, F(h)) - \kappa(y^T) + \beta \mathbb{E}[\psi V(0, s') + (1 - \psi) V_D(y^{T'})]$$

s.t. $\mathcal{W}(y^T, h)\bar{e} \ge \overline{W},$
 $h \le \bar{h}$

$$V_{R} (b, \mathbf{s}) = \max_{c^{T} h, b'} \left\{ u(c^{T}, F(h)) + \beta \mathbb{E} \left[V(b', \mathbf{s}') \right] \right\}$$

s.t. $c^{T} = y^{T} - \delta b + q(b', b, \mathbf{s}) \left[b' - (1 - \delta) b \right]$
 $\mathcal{W}(c^{T}, h) \bar{e} \ge \overline{W},$
 $h \le \bar{h}$

$$\begin{aligned} V_D(y^T) = & u(y^T, F(h)) - \kappa(y^T) + \beta \mathbb{E}[\psi V(0, s') + (1 - \psi) V_D(y^{T'})] \\ s.t. \quad \mathcal{W}(y^T, h) \bar{e} \geq \overline{W}, \\ & h \leq \bar{h} \end{aligned}$$

Optimal exchange rate eliminates wage rigidity

Values of repayment and default good sunspot

$$V_{R}^{+}(b, y^{T}) = \max_{c^{T} h, b'} \left\{ u(c^{T}, F(h)) + \beta \mathbb{E} \left[V \left(b', \mathbf{s}' \right) \right] \right\}$$

s.t. $c^{T} = y^{T} - \delta b + q(b', b, \mathbf{s}) \left[b' - (1 - \delta) b \right]$
 $\mathcal{W}(c^{T}, h) \bar{e} \ge \overline{W},$
 $h \le \bar{h}$

$$\begin{split} V_D(y^T) = & u(y^T, F(h)) - \kappa(y^T) + \beta \mathbb{E}[\psi V(0, s') + (1 - \psi) V_D(y^{T'})] \\ s.t. \quad \mathcal{W}(y^T, h) \bar{e} \geq \overline{W}, \\ & h \leq \bar{h} \end{split}$$

If government is not issuing debt $\hat{b}^+_R < (1-\delta)b \ \Rightarrow V^+_R = V^-_R$

Values of repayment and default bad sunspot

$$\begin{split} \mathscr{V}_{R}^{-}(b, y^{T}) &= \max_{c^{T} h, b'} \left\{ u(c^{T}, F(h)) + \beta \mathbb{E} \left[V \left(b', \mathbf{s}' \right) \right] \right\} \\ \text{s.t.} \quad c^{T} = y^{T} - \delta b \\ \mathcal{W}(c^{T}, h) \bar{e} \geq \overline{W}, \\ h \leq \bar{h} \\ b' &= b(1 - \delta) \\ V_{D}(y^{T}) = u(y^{T}, F(h)) - \kappa(y^{T}) + \beta \mathbb{E} [\psi V(0, s') + (1 - \psi) V_{D}(y^{T'})] \\ \text{s.t.} \quad \mathcal{W}(y^{T}, h) \bar{e} \geq \overline{W}, \\ h \leq \bar{h} \end{split}$$

If government is not issuing debt $\hat{b}^+_R < (1-\delta)b \ \Rightarrow V^+_R = V^-_R$

A Markov perfect equilibrium is defined by value functions $\{V(b, \mathbf{s}), V_R(b, \mathbf{s}), V_D(y^T)\}$, policy functions $\{d(b, \mathbf{s}), c^T(b, \mathbf{s}), b'(b, \mathbf{s}), h(b, \mathbf{s})\}$, and a bond price schedule $q(b', b, \mathbf{s})$ such that

- i. Given the bond price schedule, the policy functions solve the government problem
- ii. The bond price schedule satisfies no arbitrage given future government policies

Consider a state (b, y^T) in which government wants to issue debt:

Multiplicity of Equilibria as in Cole-Kehoe

Consider a state (b, y^T) in which government wants to issue debt:

- 1. If each lender expects other lenders' to extend credit
 - Government can rollover debt and obtains value V_R
 - If $V_R^+ > V_D$, government **repays**

Multiplicity of Equilibria as in Cole-Kehoe

Consider a state (b, y^T) in which government wants to issue debt:

- 1. If each lender expects other lenders' to extend credit
 - Government can rollover debt and obtains value V_R
 - If $V_R^+ > V_D$, government **repays**

2. If each lender expects other lenders to refuse to extend credit

- Government cannot rollover debt and obtains value V_R
- If $V_R^- < V_D$, government **defaults**

Multiplicity of Equilibria as in Cole-Kehoe

Consider a state (b, y^T) in which government wants to issue debt:

- 1. If each lender expects other lenders' to extend credit
 - Government can rollover debt and obtains value V_R
 - If $V_R^+ > V_D$, government **repays**

2. If each lender expects other lenders to refuse to extend credit

- Government cannot rollover debt and obtains value V_R
- If $V_R^- < V_D$, government **defaults**

In second case, default is entirely due to self-fulfilling beliefs: if lenders refuse to lend, government is unwilling/unable to cut down consumption and defaults • Safe zone (govt. always repays)

$$S \equiv \left\{ (b, y^T) : V_D(y^T) \le V_R^-(b, y^T) \right\}$$

• Default zone (govt. always defaults)

$$\mathcal{D} \equiv \left\{ (b, y^{\mathsf{T}}) : \quad V_D(y^{\mathsf{T}}) > V_R^+(b, y^{\mathsf{T}}) \right\}$$

• Crisis zone (govt. repayment depends on beliefs)

$$\mathcal{C} \equiv \left\{ (b, y^{T}) : \quad V_{D}(y^{T}) > V_{R}^{-}(b, y^{T}) \\ \& \quad V_{D}(y^{T}) \le V_{R}^{+}(b, y^{T}) \right\}$$

• Safe zone (govt. always repays)

$$S \equiv \left\{ (b, y^T) : V_D(y^T) \le V_R^-(b, y^T) \right\}$$

• Default zone (govt. always defaults)

$$\mathcal{D} \equiv \left\{ (b, y^{\mathsf{T}}) : \quad V_D(y^{\mathsf{T}}) > V_R^+(b, y^{\mathsf{T}}) \right\}$$

• Crisis zone (govt. repayment depends on beliefs)

$$\mathcal{C} \equiv \left\{ (b, y^{T}) : \quad V_{D}(y^{T}) > V_{R}^{-}(b, y^{T}) \\ \& \quad V_{D}(y^{T}) \le V_{R}^{+}(b, y^{T}) \right\}$$

Will show how wage rigidity enlarges "crisis zone"

Policy functions and value functions & zones with flexible wages

Policy for Borrowing: good and bad sunspot

Value Functions

Value Functions

Value Functions

Value Functions and Zones

Zones: Flexible Wages

- Assume wage rigidity is introduced for only one period
 - Same continuation values and bond price schedule
- How do three zones change?
 - High and low wage rigidities, $\overline{w}_{high} > \overline{w}_{low}$
- Later, will study permanent changes in wage rigidity

Recall crisis region with flexible wages

V_D is unaffected with \overline{w}_{low}

V^+ is reduced with \overline{w}_{low_1}

V^- is reduced by more than V^+

Wage rigidity leaves zones unaffected

Recall flexible wage

Higher wage rigidity affects crisis and default regions

Higher wage rigidity affects crisis and default regions

Higher wage rigidity affects crisis and default regions

Explaining the increase in crisis region: the role of unemployment

Unemployment

Unemployment

Unemployment

Zones: Flexible Wages

Zones: Low Wage Rigidity

Zones: High Wage Rigidity

We show in the paper

- Safe region shrinks with wage rigidity
- Default region expands with wage rigidity
- For given level of y^T , higher wage rigidity implies that:
 - Economy enters in crisis zone with lower debt
 - There $\exists \ \hat{w}$ such that length of crisis zone is increasing in $\bar{w} \ \forall \ \bar{w} < \hat{w}$

Quantitative analysis

Calibration Strategy

- Spain 1996-2015 as a case of study
- A period is a year.
- Calibrate directly:
 - Preference elasticities (intra- and inter-temporal) and discount factor
 - Production parameters and process for y^T
 - Maturity
 - For now, sunspot process is iid with probability $\pi=0.03$
- Calibrate by simulation two cost of default parameters to match average spread and average debt

Calibration Strategy

- Spain 1996-2015 as a case of study
- A period is a year.
- Calibrate directly:
 - Preference elasticities (intra- and inter-temporal) and discount factor
 - Production parameters and process for y^T
 - Maturity
 - For now, sunspot process is iid with probability $\pi=0.03$
- Calibrate by simulation two cost of default parameters to match average spread and average debt
- First, we look at flex economy. Calibration of fixed wage economy in progress

Benchmark Calibration

Parameter	Value	Description
α	0.750	Labor share in nontradable production
β	0.905	Discount factor
δ	0.176	Maturity of debt
ψ	0.240	Probability of Re-entry
μ	0.205	Elasticity of substitution
ω	0.300	Share of tradables
σ	2.000	Risk aversion
π	0.100	Sunspot probability
r	0.020	Risk-free rate
\overline{h}	1.000	Normalization
ρ	0.777	Persistency of shock
σ_{ε}	0.029	Standard deviation of shock
κ ₀	0.375	Mean spread 1.05%
κ_1	1.825	Debt-GDP 22%

Statistics

Rigidity \bar{w} is set 10% above the lowest wage in flex economy

• No unemployment along equilibrium path

Statistic	Flexible wage	$\bar{w} = 1.50$
$\mu(r^*-r)$	1.03	1.78
$\mu(ar{b}/y)$	0.22	0.21
$\mu(ar{h}-h)$	0	0
$\rho(y,c)$	0.95	0.95
$ ho(y,r^*-r)$	-0.81	-0.76
ho(y, TB)	-0.54	-0.60
$\sigma(\hat{c})/\sigma(\hat{y})$	1.3	1.4
$\sigma(r^*-r)$	0.2	0.73
$\sigma(ar{h}-h)$	0	0
Defaults due to rollover crisis	0.02	0.16

Fundamental and Non-Fundamental Defaults

Uncover new cost from currency unions:

• Lack of monetary independence makes an economy more prone to rollover crisis

Lender of last resort is more important than we thought

Avenues ahead:

- Applications to ZLB, managed exchange rates
- Interactions with fiscal policies

EXTRAS

Mario Draghi: "The assessment of the Governing Council is that we are in a situation now where you have large parts of the euro area in what we call a "bad equilibrium", namely an equilibrium where you may have self-fulfilling expectations that feed upon themselves and generate very adverse scenarios. So, there is a case for intervening, in a sense, to "break" these expectations" **Proposition.** (Safe zone shrinks with \bar{w}) There exist a \bar{w}^* such that for every $\bar{w}_2, \bar{w}_1 \in [0, \bar{w}^*]$, if $\bar{w}_2 > \bar{w}_1$, the safe zone compresses $S(\bar{w}_2) \subset S(\bar{w}_1)$. **Proposition.** (Safe zone shrinks with \bar{w}) There exist a \bar{w}^* such that for every $\bar{w}_2, \bar{w}_1 \in [0, \bar{w}^*]$, if $\bar{w}_2 > \bar{w}_1$, the safe zone compresses $S(\bar{w}_2) \subset S(\bar{w}_1)$.

Proposition. (Default zone expands with \bar{w}) There exist a \bar{w}^* such that for every $\bar{w}_2, \bar{w}_1 \in [0, \bar{w}^*]$, if $\bar{w}_2 > \bar{w}_1$, the default zone expands $\mathcal{D}(\bar{w}_1) \subset \mathcal{D}(\bar{w}_2)$. **Proposition.** (Safe zone shrinks with \bar{w}) There exist a \bar{w}^* such that for every $\bar{w}_2, \bar{w}_1 \in [0, \bar{w}^*]$, if $\bar{w}_2 > \bar{w}_1$, the safe zone compresses $S(\bar{w}_2) \subset S(\bar{w}_1)$.

Proposition. (Default zone expands with \bar{w}) There exist a \bar{w}^* such that for every $\bar{w}_2, \bar{w}_1 \in [0, \bar{w}^*]$, if $\bar{w}_2 > \bar{w}_1$, the default zone expands $\mathcal{D}(\bar{w}_1) \subset \mathcal{D}(\bar{w}_2)$.

Next, results on crisis zone

• For every y^T , there is an interval of debt in crisis region

$$\mathcal{C}_{y^{T}} \equiv \left(\bar{B}_{y^{T}}^{S}, \bar{B}_{y^{T}}^{D}\right] \qquad \& \qquad \Delta \mathcal{C}_{y_{T}} \equiv \bar{B}_{y^{T}}^{D} - \bar{B}_{y^{T}}^{S}$$

 $\bar{B}^S_{y^T},\bar{B}^D_{y^T}$ are the thresholds for the default and safe zones

Assumption. Autarchy after default, i.i.d. shock for y^T , and *one-period* wage rigidity shock $\bar{w} > 0$

Proposition. There exists a \bar{w}^* such that for every $\bar{w}_2, \bar{w}_1 \in [0, \bar{w}^*]$, if $\bar{w}_2 > \bar{w}_1$, then, for all y_T , ΔC_{y_T} increases and $\frac{d\bar{B}_{y_T}^S}{d\bar{w}} \leq 0$

• For every y^T , there is an interval of debt in crisis region

$$\mathcal{C}_{y^{T}} \equiv \left(\bar{B}_{y^{T}}^{S}, \bar{B}_{y^{T}}^{D}\right] \qquad \& \qquad \Delta \mathcal{C}_{y_{T}} \equiv \bar{B}_{y^{T}}^{D} - \bar{B}_{y^{T}}^{S}$$

 $\bar{B}^S_{y^T},\bar{B}^D_{y^T}$ are the thresholds for the default and safe zones

Assumption. Autarchy after default, i.i.d. shock for y^T , and *one-period* wage rigidity shock $\bar{w} > 0$

Proposition. There exists a \bar{w}^* such that for every $\bar{w}_2, \bar{w}_1 \in [0, \bar{w}^*]$, if $\bar{w}_2 > \bar{w}_1$, then, for all y_T , ΔC_{y_T} increases and $\frac{d\bar{B}_{y_T}^S}{d\bar{w}} \leq 0$

Starting from w^{FLEX} , crisis region expands with higher \bar{w}

$$V^{R}(\mathbf{S}) = \max_{c^{T} h, b'} \left\{ u(c) + \beta \mathbb{E} \left[V \left(b', \mathbf{s}' \right) \right] \right\}$$

subject to
$$c = \left(\omega \left(c^{T} \right)^{-\mu} + (1 - \omega) \left(F(h) \right)^{-\mu} \right)^{-\frac{1}{\mu}}$$

$$c^{T} = y^{T} - \delta b + q(b', \mathbf{S}) \left[b' - (1 - \delta) b \right]$$

$$\bar{w} \le \mathcal{W}_{t} \left(c^{T}, F(h), h \right)$$

$$h \le \bar{h}$$

Value of repayment during rollover crisis, V^C , is reduced considerably more than V^F and V^D

$$V^{R}(\mathbf{S}) = \max_{c^{T} h, b'} \left\{ u(c) + \beta \mathbb{E} \left[V \left(b', \mathbf{s}' \right) \right] \right\}$$
subject to

$$c = \left(\omega \left(c^{T}\right)^{-\mu} + (1-\omega) \left(F(h)\right)^{-\mu}\right)^{-\frac{1}{\mu}}$$
$$c^{T} = y^{T} - \delta b$$
$$\bar{w} \le \mathcal{W}_{t} \left(c^{T}, F(h), h\right)$$
$$h \le \bar{h}$$

Value of repayment during rollover crisis, V^{C} , is reduced considerably more than V^{F} and V^{D}

$$V^{R}(\mathbf{S}) = \max_{c^{T} h, b'} \left\{ u(c) + \beta \mathbb{E} \left[V \left(b', \mathbf{s}' \right) \right] \right\}$$

subject to

$$c = \left(\omega \left(c^{T}\right)^{-\mu} + (1-\omega) \left(F(h)\right)^{-\mu}\right)^{-\overline{\mu}}$$
$$c^{T} = y^{T} - \delta b$$
$$\overline{w} \le \mathcal{W}_{t} \left(c^{T}, F(h), h\right)$$
$$h \le \overline{h}$$

Even if unemployment not "observed", rigidity can trigger crisis

1