Hours, Occupations, and Gender Differences in Labor Market Outcomes

Andrés Erosa Universidad Carlos III de Madrid

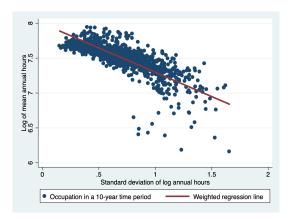
Luisa Fuster Universidad Carlos III de Madrid

> Gueorgui Kambourov University of Toronto

Richard Rogerson Princeton University

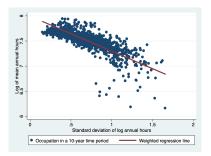
Canon Institute for Global Studies Tokyo, May 27-28, 2019

Motivation


- Two classic topics of labor supply are
 - time allocation
 - occupational choice
- These topics are studied in isolation of each other
- We provide evidence of important interactions between them
- Argue in favour of a framework that considers them jointly
- Insightful for analyzing gender differences in labor market outcomes

Motivation

- Consider a particular 3-digit occupation
 - physicians, financial managers, hairdressers, welders and cutters


- Compute two statistics (of annual hours)
 - log of mean annual hours in an occupation
 - standard deviation of log annual hours in an occupation

1976-2015

- Occupations differ in terms of the patterns of hours worked within an occupation
- Negative mean-dispersion relationship in occupational hours

Motivation

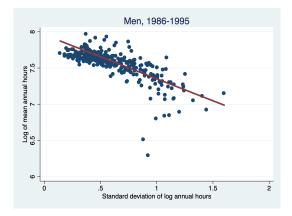
- High-mean low-dispersion occupations (TL, sector 1, nonlinear)
 - managers and supervisors
 - professional (accountants, physicians, lawyers), engineers
 - some machine operators, technicians, mechanics
- Low-mean high-dispersion occupations (BR, sector 2, linear)
 - some professional (carpenters, cooks)
 - some machine operators, technicians
 - teachers, sales workers, waiters, janitors

Overview

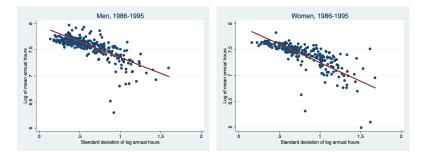
- · Extend a two-sector Roy model of occupational sorting to incorporate
 - : labor-leisure choice (time allocation)
 - : non-linear earnings (nonconvexity)
- Non-linear earnings
 - : hourly wages increase in hours worked
 - : differs across occupations
- Link between occupational choice and time allocation
 - : \uparrow in the desired hours of work \Rightarrow bias occupational choice towards occupations in which the non-convexity is more severe

Overview: Gender Differences

- Document further that
 - : men more likely to sort in TL occupations
 - : women work less hours than men, within an occupation
 - : women receive lower hourly wages, within an occupation
- Use a richer version of the model to understand these gender differences
 - : two-member households
 - : key feature women have a lower time endowment
- Analyze gender differences in
 - : occupational choice
 - : hours worked
- Analyze gender wage gap
 - : model accounts for 29% of the gap
 - : between occupations women sort into low wage occupations
 - : within occupations women earn less than men


Data

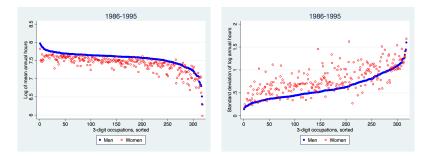
- IPUMS-CPS: 1976-2015
 - benchmark period: 1986-1995
 - large, analysis by 3-digit occupations and gender
 - age: 16-64
 - four 10-year periods: 1976-1985, 1986-1995, 1996-2005, 2006-2015
 - at least 30 observations in an occupation: 96% of occupations for men and 77% of occupations for women
 - use consistent 1976-2015 occupational codes (Autor and Dorn, 2013)


Preview of Main Facts

- 1. Negative relationship between the mean and the dispersion in hours in an occupation
 - robust across age, gender, and education groups
- 2. Fraction of men, relative to women, higher in TL occupations
- 3. Women work less hours than men, in (almost) all occupations
 - women have higher dispersion in hours than men, in (almost) all occupations
- 4. Hourly wages decline as we move from TL to BR occupations
- 5. Women have lower hourly wages than men, in (almost) all occupations

Mean and Dispersion in Occupational Hours

Mean and Dispersion in Occupational Hours



robust across age, gender, and education groups [More]

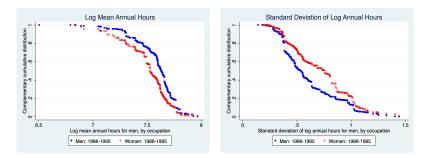
[Changes in Hours Worked for Occupation Switchers]

robust over time [More]

Hours Worked: Men and Women

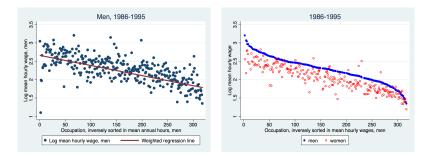
- · Women work less than men, in (almost) all occupations
- · Women have a higher dispersion in hours than men, in (almost) all occupations

Occupational Hours Distribution


• Complementary Cumulative Distribution Function for men $\overline{F}_{g,t}(x)$:

$$\overline{F}_{g,t}(x) = Prob(X > x)$$

where x is the:


- log of mean (male) annual hours in an occupation in period t; or
- standard deviation of log (male) annual hours in an occupation in period t

Occupational Hours Distribution

- Men more likely to be in high-mean low-dispersion (TL) occs. [More]
- Distribution mostly stable for men over time
- Women have reallocated towards high-mean low-dispersion (TL) occs. over time

Hourly Wages

- Men, on average, earn higher hourly wages in the TL than the BR occupations
 - holds also after controlling for education
- Women earn lower hourly wages than men, in (almost) all occupations

Multi-Member Households Model

- Two-sector Roy model of occupational sorting
 - : sectoral abilities
- Extend the model by introducing
 - : time allocation decision
 - individuals value leisure
 - : heterogeneous preferences over leisure
 - : nonlinear production technology in one of the sectors
 - positive effect of hours worked on wages

Multi-Member Households Model

- Unit mass of households with a male (m) and a female (f)
- Preferences:

$$U(c_m, c_f, h_m, h_f) = u_m(c_m, h_m) + u_f(c_f, h_f)$$
$$u_g(c_g, h_g) = \ln c_g + \phi_g \frac{(T_g - h_g)^{1-\gamma}}{1-\gamma} \text{ for } g = m, f$$

- : (T_m, T_f) time endowment for *m* and *f*
- : (c_m, c_f) consumption for m and f
- : (h_m, h_f) (market) hours worked for m and f

Distributional Assumptions

- Individuals are heterogeneous in three dimensions
 - ϕ : taste for leisure
 - a1: skills in sector 1
 - a2: skills in sector 2
- A household is characterized by the 6-tuple (a_{i1}, a_{i2}, φ_i)_{i=m,f}
 - drawn from a multivariate log-normal distribution

Technology

 One homogeneous good is produced with two production technologies (occupations) j = 1,2

$$Y_j = A_j E_j$$

where Y_j is aggregate output from occupation *j* and E_j is the aggregate efficiency units of labor in occupation *j*.

• The mapping from individual hours to efficiency units of labor in occupation *j* satisfies

$$e_{ij}=a_{ij}h_{ij}^{1+\theta_j},$$

 a_{ij} is the ability of individual *i* to produce labor services in sector *j*.

- sector 1: $\theta_1 = \theta > 0$ (nonlinear, TL)
- sector 2: $\theta_2 = 0$ (linear, BR)

Effect of Longer Hours on Hourly Wages

- Static effects: Conditional on numerous controls, individuals who decide to work fewer hours do get offered lower hourly wages
 - Gustman and Steinmeier (ECMA 1986), Moffit (JLE 1984), Keane and Wolpin (IER 2001), Aaronson and French (JLE 2004), Ameriks, Briggs, Caplin, Lee, Shapiro, and Tonetti (2018)
- Dynamic effects: Human Capital
 - Imai and Keane (2004), and others
- Different across occupational sectors:
 - Dustmann and Meghir (2008), Zangelidis (2008), Sullivan (2010), Goldin (2014), Cortes and Pan (2016), Adda, Dustmann, and Stevens (2016)

The Household's Problem

$$\max\left\{\ln c_m + \ln c_f + \phi_m \frac{(T_m - [l_1^m h_{m1} + l_2^m h_{m2}])^{1-\gamma}}{1-\gamma} + \phi_f \frac{(T_f - [l_1^f h_{f1} + l_2^f h_{f2}])^{1-\gamma}}{1-\gamma}\right\}$$

subject to:

$$c_m + c_f = \left\{ \sum_{j=1}^2 I_j^m a_{mj} h_{mj}^{1+\theta_j} + \sum_{j=1}^2 I_j^f a_{jj} h_{jj}^{1+\theta_j} \right\}.$$

- : I_i^m takes the value of 1 if m works in sector j
- : I_j^f takes the value of 1 if f works in sector j

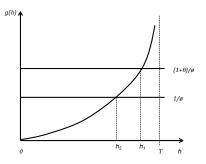
FOC in a Multi-Member Household

$$\frac{a_{mj}(1+\theta_j)h_{mj}^{\theta_j}}{a_{mj}h_{mj}^{1+\theta_j}+a_{fi}h_{fi}^{1+\theta_i}} = \phi_m(T_m - h_{mj})^{-\gamma},$$
$$\frac{a_{fi}(1+\theta_i)h_{fi}^{\theta_i}}{a_{mj}h_{mj}^{1+\theta_j}+a_{fi}h_{fi}^{1+\theta_j}} = \phi_f(T_f - h_{fi})^{-\gamma},$$

- occupational choice and hours are joint decisions
- · income effect from the choice of one member,
 - affects hours and occupational choice of other member of the couple
- if \u03c6_g increases for g = {m, f}, it increases the incentives for other member of working long hours and choosing sector 1
- correlation of skills and taste for leisure are crucial

Single Individual Problem

$$\max\left\{\ln c + \phi \frac{(T - [lh_1 + (1 - l)h_2])^{1 - \gamma}}{1 - \gamma}\right\}$$


subject to:

$$c = la_1 h_1^{1+\theta} + (1-l)a_2 h_2,$$

If the individual chooses to work in occupation j, the optimal choice of hours h_j satisfies:

$$\frac{1+\theta_j}{\phi}=h_j(T-h_j)^{-\gamma}\equiv g(h_j)$$

Single Individual Problem

- Conditional on occupation j
 - : h_i are independent of occ. productivities a_i
 - : h_i is decreasing in ϕ
 - : $\theta > 0 \Rightarrow$ conditional on ϕ , $h_1 > h_2$
 - : convexity of $g(\cdot) \Rightarrow$ variance of hours is lower in sector 1 than 2

Sorting of Workers across Occupations

The probability that an individual with a taste for leisure ϕ works in sector 1 is

$$P(l=1|\phi) = P\left[\ln\left(\frac{a_1}{a_2}\right) > Z(\phi)\right]$$

where $z'(\phi) > 0$.

- increases with skill ratio ^{a1}/_{a2}
- decreases with taste for leisure ϕ
 - : individuals working long hours are more likely to work in sector 1
- convexity of g(·) acts as force in reducing variance of hours in sector 1

Calibration

- $\gamma = 4, \ \theta = 0.60, \ T_m = 5200, \ T_f = 4700.$
- further sample restrictions: married individuals, aged 22-64
- create two sectors of occupations
 - : rank occupations by the level of mean hours for men
 - : separate into two groups of equal employment size (men plus women)
- 1986-1995 CPS
 - employment shares, annual hours worked, hourly wages
- 1986-1995 PSID
 - correlation in spousal log wages: 0.43
 - correlation in spousal log hours: 0.02

Data Moments

Males					
	E	In \overline{h}	<i>sd</i> (In <i>h</i>)	ln ₩	<i>sd</i> (ln <i>w</i>)
Non-Linear	0.61	7.73	0.22	2.56	0.45
Linear	0.39	7.57	0.32	2.19	0.46
Aggregate	1.00	7.67	0.26	2.46	0.45
Females					
E $\ln \overline{h}$ $sd(\ln h)$ $\ln \overline{w}$ $sd(\ln w)$					
Non-Linear	0.37	7.49	0.39	2.21	0.49
Linear	0.63	7.33	0.50	1.86	0.47
Aggregate	1.00	7.40	0.46	2.04	0.48

- Patterns for men similar to those presented earlier
 - mainly in the TL occupations
 - hours: higher mean and lower dispersion in the nonlinear sector
 - wages: higher in the nonlinear sector

Data Moments

Males					
	E	In \overline{h}	<i>sd</i> (In <i>h</i>)	ln W	<i>sd</i> (ln <i>w</i>)
Non-Linear	0.61	7.73	0.22	2.56	0.45
Linear	0.39	7.57	0.32	2.19	0.46
Aggregate	1.00	7.67	0.26	2.46	0.45
Females					
E $\ln \overline{h}$ $sd(\ln h)$ $\ln \overline{w}$ $sd(\ln w)$					
Non-Linear	0.37	7.49	0.39	2.21	0.49
Linear	0.63	7.33	0.50	1.86	0.47
Aggregate	1.00	7.40	0.46	2.04	0.48

- · Patterns for women similar to those presented earlier
 - mainly in the BR occupations
 - hours: work less than men, overall and in each sector
 - wages: lower than for men, overall and in each sector
 - wages: the gender gap is similar in both sectors

Baseline Economy

- Men and women are identical, except for the time endowment (T_m, T_f)
- Additional assumptions/restrictions:

:
$$\rho_{a_1,\phi} = \rho_{a_2,\phi} = 0$$

- : $\rho_{a_{1m},a_{1f}} = \rho_{a_{2m},a_{2f}}$
- Parameters to be calibrated:
 - : μ_{a_2} mean value of log ability in sector 2, ($\mu_{a_1} = 0$)
 - : μ_{ϕ} mean value of log taste for leisure
 - : $\sigma_{a_1}^2$ variance of log ability in sector 1
 - : $\sigma_{a_2}^2$ variance of log ability in sector 2
 - : σ_{ϕ}^2 variance of log taste for leisure
 - : ρ_{a_1,a_2} correlation of abilities in occupations 1 and 2
 - : $\rho_{a_{1m},a_{1f}}$ correlation of ability 1 within couples
 - : ho_{ϕ_m,ϕ_f} correlation of the taste for leisure within couples

Targets and Fit of the Model

Parameter	Value	Target	Data	Model
$ \begin{array}{c} \mu_{a_2} \\ \sigma^2_{a_1} \\ \sigma^2_{a_2} \\ \mu_{\phi} \\ \sigma^2_{\phi} \\ \rho_{a_1,a_2} \\ \rho_{a_m,a_f} \\ \rho_{\phi_m,\phi_f} \end{array} $	-0.164 0.308 0.198 0.670 0.377 0.330 0.660 0.815	E_m^{NL} $sd(\ln w_{m,NL})$ $sd(\ln w_{m,L})$ $\ln \overline{h_m}$ $sd(\ln h_m)$ $\ln \overline{w_{m,NL}} - \ln \overline{w_{m,L}}$ gender corr. of log wages gender corr. of log hours	0.61 0.45 0.46 7.67 0.26 0.37 0.43 0.02	0.61 0.48 0.43 7.67 0.26 0.37 0.43 0.02

Baseline Economy

Males					
$E \ln \overline{h} sd(\ln h) \ln \overline{w} sd(\ln w)$					
Non-Linear	0.61	7.75	0.16	2.59	0.48
Linear	0.39	7.51	0.31	2.22	0.43
Aggregate	1.00	7.67	0.26	2.46	0.49
Females					
E $\ln \overline{h}$ $sd(\ln h)$ $\ln \overline{w}$ $sd(\ln w)$					
Non-Linear	0.43	7.51	0.20	2.53	0.46
Linear	0.57	7.13	0.58	2.17	0.43
Aggregate	1.00	7.31	0.51	2.34	0.48

Hours Worked and Occupational Choice: Men

- · Log of mean hours
 - Data: $\ln \overline{h_{m,1}} = 7.73$, $\ln \overline{h_{m,2}} = 7.57$
 - Model: $\ln \overline{h_{m,1}} = 7.75$, $\ln \overline{h_{m,2}} = 7.51$
- SD of log hours
 - Data: $sd(\ln h_{m,1}) = 0.22$, $sd(\ln h_{m,2}) = 0.32$
 - Model: $sd(\ln h_{m,1}) = 0.16$, $sd(\ln h_{m,2}) = 0.31$
- Occupational choice
 - 61% in sector 1 (targeted)
- Mechanism
 - illustrated with the single individual problem

Gender Gaps in Hours and Occupational Choice

- Gender asymmetry: Time endowments $T_f < T_m$
- Gender gap in occupational choice
 - : only 43% of women are in sector 1
 - : model accounts for 75% of occupational gap (0.24 data vs 0.18 model).
- Gender gap in hours
 - : Women work less overall and in each sector

Gender Gap in Wages

- Model accounts for 29% of the gender wage gap
- Nonlinear sector
 - : model accounts for 17% of the gender wage gap
 - : $\ln \overline{h_{f,1}} < \ln \overline{h_{m,1}} \Rightarrow$ women earn less
 - : partially offset women better selected in terms of $\left(\frac{a_1}{a_2}\right)$
- Linear sector
 - : model accounts for 15% of the gender wage gap
 - : women worse selected in terms of a₂
- Aggregate wage gap: large fraction is due to within-occupation gender wage gap, as in the data.

The Role of Selection

	Gender Differences in log					
	skills	ϕ	$\overline{\left(\frac{a_1}{a_2}\right)}$	$\overline{\left(\frac{a_2}{a_1}\right)}$		
NL L	-0.10 0.06	0.13 0.01	-0.11 —	_ 0.17		

Relative to men, women in NL are:

- more positively selected in skill ratio $\frac{a_1}{a_2}$
- more negatively selected in ϕ .

Relative to men, women in L are more negatively selected in skill ratio $\frac{a_2}{a_1}$

The Role of Household Interactions

	Everyone Single	Baseline Economy
Wage Gap (%)	7	12
Hours Gap (%)	20	36
Occupational Gap (%)	8	18

Key finding: Introducing household interactions

- gender wage gap \uparrow by 5 p.p.
- hours gap \uparrow by 16 p.p.
- occupational gap by \uparrow 10 p.p.

Sensitivity Analysis: Heterogeneity in Occupations

$ heta_1 \\ heta_2$	0.6 0	0.6 0.2	0.8 0.2	0.8 0.4
Gender Differences				
Wage	0.12	0.11	0.16	0.13
Hours	0.35	0.29	0.32	0.26
Share Emp NL	0.17	0.11	0.17	0.11

Misallocation and Welfare

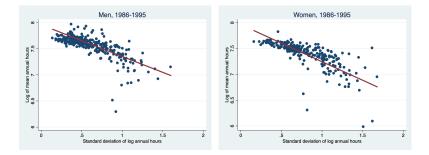
- How costly is the gender asymmetry in the time endowment?
 - : This question relates to the recent work by Hsieh et al (2016) on the misallocation of talent
- Households optimally choose how to assign discretionary time
 - : men and women identical
 - : optimal for one member to specialize in home production activities
 - : women (men) perform home production activities in half of the households
- Large reallocation of hours worked
 - : male hours decrease by 18% (and less likely to be in sector 1)
 - : female hours increase by 20.4% (and more likely to be in sector 1)

Misallocation across Economies

$\begin{array}{c} \theta_1 \\ \theta_2 \end{array}$	0.6 0	0.6 0.2	0.8 0.2	0.8 0.4
Percentage change in:				
Welfare	10.4	11.7	14.6	18.4
Output	2.7	4.0	5.1	6.6
Output per Hour	5.3	7.5	9.7	12.4

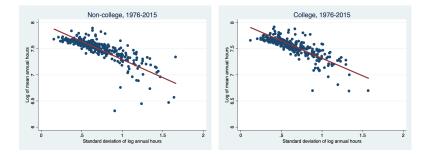
- Large welfare gains of 10.4%
 - : welfare gain at the 90th percentile is 33%
- Labor productivity increases by 5.3%
 - : higher for women (11%) than men (1.8%)
 - : higher for those in occ. 1

Conclusion

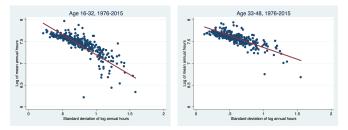

- · Facts on hours worked (and wages) in occupations
 - : negative mean-dispersion relationship in occupational hours
 - : hours in an occupation lower mean and higher dispersion for women
 - : wages in an occupation lower for women
- Two-sector Roy model of occupational sorting
 - : sectoral abilities
 - : time allocation decision (individuals value leisure)
 - : heterogeneous preferences over leisure
 - : nonlinear production technology in one of the sectors
 - : couples

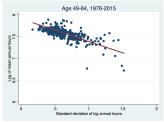
Conclusion

- Model is consistent with the facts on occupational hours and wages for men and women
- Gender differences in discretionary times, accounts for 29% of the gender wage gap
 - : large fraction is due to within-occupation gender wage gap, as in the data
- Misallocation: gender equalization leads to large gains in welfare and output per worker.

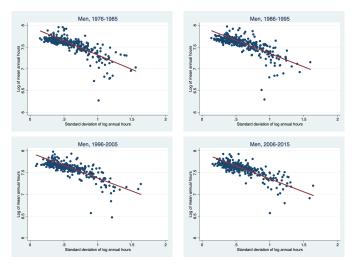

Additional Slides

Mean and Dispersion in Occupational Hours: by Gender

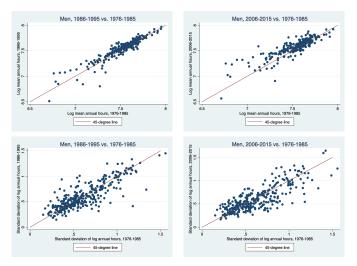


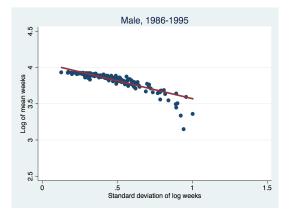

[[]Back]

Mean and Dispersion in Occupational Hours: by Education



Mean and Dispersion in Occupational Hours: by Age

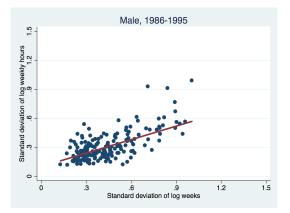



Over Time: 1976-2015

Over Time: 1976-2015



Extensive Margin: Weeks Worked


Number of weeks worked last year

Intensive Margin

· Usual hours per week last year

Correlation: Intensive vs. Extensive Margin

Strong positive correlation

Occupational Hours Distribution over Time: Men

[Back]

Changes in Hours Worked for Occupation Switchers

- Use 1986-1995 IPUMS-CPS data
 - : compute mean hours worked in an occupation j, \overline{H}_i
- Use the 1990 SIPP dataset
 - : identify occupational switchers, from occupation (j-1) to occupation j, between months t-1 to t
 - : compute average change in hours worked between months t + 1, t + 2, and t + 3 and months t - 2, t - 3, and t - 4 (occupational switching during this period is only between months t - 1 and t)
 - : denote the resulting change in log hours for individual *i* as $\Delta \ln h_{i,i-1}^{i}$
 - : assign to the origin occ. (j-1) the mean hours worked in that occ., \overline{H}'_{i-1}
 - : assign to the destination occ. *j* the mean hours worked in that occ., \overline{H}_i^{\prime}
 - : dummy variable S_1 equal to one if the switch is towards an occup. with lower mean hours worked and zero otherwise
 - : dummy variable S_2 equal to one if the switch is towards an occup with higher mean hours worked and zero otherwise [Back]

Changes in Hours Worked for Occupation Switchers

$$\Delta \ln h_{j,j-1}^{i} = \beta_0 + \beta_1 S_1 + \beta_2 S_1 |\Delta \ln \overline{H}_{j,j-1}^{i}| + \beta_3 S_2 + \beta_4 S_2 |\Delta \ln \overline{H}_{j,j-1}^{i}|$$

	eta_0 Constant	$eta_1 \\ S_1$	$egin{array}{l} eta_2\ S_1 \Delta \ln \overline{H} \end{array}$	eta_3 S ₂	$egin{array}{l} eta_4\ S_2 \Delta\ln\overline{H} \end{array}$
all	-0.003***	0.022***	-0.245***	0.024**	0.217***

*** - statistically significant at 1%; ** - statistically significant at 5%.

• Results are for men only

: results for women are similar

Wage Profiles in 3-Digit Occupations

- Use the IPUMS-CPS data
 - : divide sample into three periods: 1976-85, 1986-95, and 1996-10
 - : for each occupation, construct the wage ratios for ages 55 and 25

Figure: 55/25 Wage Ratio and Mean Occupational Hours, Men

Wage Profiles in 3-Digit Occupations

Figure: 55/40 Wage Ratio and Mean Occupational Hours, Men

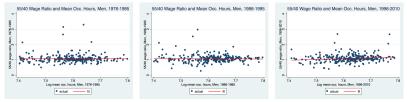
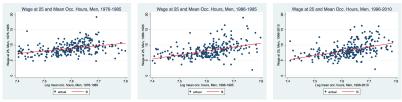



Figure: Wage at Age 25 and Mean Occupational Hours, Men

