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Abstract

We propose a novel framework that integrates an economy’s distribution of skills
with its occupation and industrial structure. Individuals with heterogeneous skills
choose to become a manager or worker by comparative advantage, and those who
become workers are again sorted into occupations that differ in terms of skill contents.
Industrial sectors differ in how they combine occupational outputs (or tasks) for
production. In equilibrium, occupation-specific TFPs and individuals’ occupational
choices endogenously determine sector-level and aggregate TFPs. Using this model,
we show faster TFP growth among middle-skill worker occupations relative to the
rest leads not only to job and wage polarization across worker occupations (horizontal
polarization), but also to a higher employment share and relative wage for managers
over workers (vertical polarization). Moreover, the speed of both types of polarization
is faster in sectors that use more middle-skill worker tasks and less managerial tasks,
which also leads to endogenously higher TFP growth for those sectors. We document
that such predictions are supported empirically. If sectoral outputs are complementary
in producing final output, the faster TFP growth among middle-skill occupations
endogenously shifts capital and labor toward sectors that are less dependent on the
middle-skill task, resulting in structural change. In the limiting balanced growth path,
the middle-skill occupations vanish, but all sectors coexist and grow at the same rate.
A quantitative analysis shows that even in the presence of sector-specific TFP growth,
occupation-specific TFP growth alone can account for more than half of structural
change.

∗University of Mannheim and Toulouse School of Economics: sylee.tim@uni-mannheim.de.
†Washington University and Federal Reserve Bank of St. Louis: yshin@wustl.edu.



1 Introduction

We develop a novel model that integrates an economy’s occupation and industrial

structure with the individual skill distribution. The model jointly determines how het-

erogeneous individuals sort into different occupations and how much of each occupation

is employed by different industrial sectors. In the model, the changes in wage and em-

ployment shares across occupations, and across industrial sectors, are interrelated and

reinforce each other.

We use this model to connect labor market polarization and structural change.

Structural change—the shift of economic output and employment across broadly-

defined sectors—is a well-established economic fact. Job and wage polarization—the

employment shares and wages of low- and high-skill occupations increasing relative to

middle-skill occupations—is a distinct feature of advanced economies (Acemoglu and

Autor, 2011; Goos et al., 2014). In addition, we establish two new facts in the U.S.

data: (i) the divergence in the relative employment shares and wages between man-

agers and workers, which we call vertical polarization, and (ii) the faster speed of both

polarization across workers, and between managers and workers, in sectors that use

middle-skill occupations more intensively. We then show in our model that all these

phenomena can be generated by one common cause: relatively faster growth of the

TFP of middle-skill worker occupations, which is not sector-specific.

In our model, individuals are heterogeneous in two dimensions, managerial talent

and worker human capital, which are not sector-specific. Individuals decide whether to

become a manager or a worker based on comparative advantage, and if they become a

worker, also whether to work in a low-, middle- or high-skill occupations based on their

occupation-neutral worker human capital. Notably, they only choose an occupation (or

task) and are indifferent across sectors. The only difference across sectors is how

intensively different occupational outputs or tasks are used in production, and sector-

level TFP is endogenously determined by the equilibrium distribution of occupation

choices.

An exogenous improvement in the productivity of the middle-skill worker occupa-

tion, relative to the managerial and other worker tasks, leads to job and wage polar-

ization across workers, i.e., the employment shares and wages of the low- and high-skill

occupations increase relative to the middle-skill occupation, assuming complementar-

ity across worker tasks. Part of such an productivity improvement can be viewed

as routinization, or technological advancement among routine jobs (which tend to be

middle-skill jobs in the data), reducing the need for workers working in such jobs,

and recent empirical studies have established that routinization has played a dominant

role (Autor and Dorn, 2013; Goos et al., 2014) in polarization. When distinction is
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necessary, we refer to this as horizontal polarization.

A novel feature of our model is that TFP growth among middle-skill jobs leads

to an increase in the employment share and wages of managers relative to all workers

(vertical polarization), if managerial and worker tasks are also complementary. We

also show that the speed of both horizontal and vertical polarization is faster in sectors

that uses more middle-skill tasks and less managers. In the U.S. data, this sector is

manufacturing, and we document that horizontal and vertical polarization has indeed

progressed faster in manufacturing than in services. This implies faster endogenous

TFP growth for the manufacturing sector, which is also supported by the data. Then,

if manufacturing and service outputs are complementary, it leads to structural change

from manufacturing to services. We also show that structural change, although origi-

nating from occupation-specific TFP growth, reinforces polarization.

An implication of structural change driven by occupation-level TFP growth is that,

in the limiting balanced growth path of our model, some tasks may vanish but both

sectors must coexist, unlike many existing theories of structural change. The intu-

ition is straightforward: because most theories rely on sector-specific forces to explain

structural change, the shift of resources from one sector to another must continue as

long as the same forces exist. In contrast, in our model of endogenous sector-level

TFP, occupation-level TFP growth is sector-neutral and only affects sectors indirectly

through how they combine task outputs. Once certain occupation shares become neg-

ligible, structural change must cease even as TFP continues to grow at the occupation

level.

Our model is a first attempt to provide a framework that links the occupational

structure of an economy to sectoral aggregates. In particular, we can use micro-

estimates of occupational employment and wages, which have been studied extensively

in labor economics, to study how occupational choices aggregate up to macro-level

sectoral shifts. The main finding in this regard is that micro-level productivities and

elasticities in the labor market are important for understanding sectoral shifts at the

aggregate level.

This is of particular empirical relevance for the U.S. The 1980s marks a starting

point of rising labor market inequality, much of which can be attributed to polarization.

It was also the starting point of a clear rise in manufacturing productivity (Herrendorf

et al., 2014) and the rise of low-skill service jobs (Autor and Dorn, 2013). As of yet,

polarization and structural change have been treated separately, and vertical polariza-

tion has not been considered. We provide a unified explanation with occupation-level

productivity enhancements among middle-skill jobs as the single driving force.

When we quantify the model also allowing for exogenous sector-specific TFP

growth, we find that occupation-specific TFP growth alone can still account for more
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than half of structural change. Conversely, we find that exogenous sector-specific TFP

growth is mostly important for accounting for vertical polarization, but not horizontal

polarization. However, sector-specific TFP growth cannot generate within-sector

polarization, horizontal or vertical. Lastly, we document that while the routinization

index commonly used in the polarization literature is positively correlated with

occupation-specific TFP growth, the correlation is about 0.5, indicating that other

forces may be at work.

Related Literature Task-based models are found in Acemoglu and Autor (2011)

and Goos et al. (2014) to explain polarization in employment shares, but neither

addresses wage polarization. None of them relate polarization to structural change

across macroeconomic sectors, nor treat managers as an occupation that is qualitatively

different from workers.

The manager-level technology in our model is an extension of the span-of-control

model of Lucas (1978), in which managers hire workers to produce output. However,

unlike all existing variants of the span-of-control model, in our model managers organize

tasks instead of workers. That is, instead of deciding how many workers to hire, they

decide on the quantities of each task to use in production, and for each task, how

much skill to hire (rather than how many homogeneous workers). Moreover, rather

than assuming a Cobb-Douglas technology between managerial talent and workers, we

assume a CES technology between managerial talent and tasks.1

Our model is closely related to the rapidly growing literature in international trade

that use assignment models to explain inequality between occupations and/or indus-

tries (Burstein et al., 2015; Lee, 2015). The majority of such models follow in the

tradition of Roy: all workers have as many types of skills as there are available indus-

try/occupation combinations, and select themselves into the job they in which they

have a comparative advantage. To make the model tractable, they typically employ a

Fréchet distribution which collapses the model into an empirically testable set of equa-

tions for each industry and/or occupation pair. While the manager-worker division in

our model is also due to Roy-selection, but the horizontal sorting of workers into tasks

is qualitatively different. In addition, we assume only 2-skill types, which is arguably

more suitable for studying the endogenous formation of skills.

Since Ngai and Pissarides (2007), most production-driven models of structural

change rely on exogenously evolving sectoral productivities. Closer to our model is

Acemoglu and Guerrieri (2008), in which the capital-intensive sector (in the sense of

1Starting with the standard span-of-control model, we incorporate (i) non-unitary elasticity between
managers and workers, (ii) heterogeneity in worker productivity as well as in managerial productivity, (iii)
multiple worker tasks or occupations, and (iv) multiple sectors.
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having a larger capital share in a Cobb-Douglas technology) vanishes in the limiting

balanced growth path. While sectors in their model differ in how intensively they use

capital and labor, in our model they differ in how intensively they use different tasks.

By contrasting different types of labor, rather than capital and labor, we can connect

structural change—which happens across sectors—to labor market inequality across

occupations. Moreover, as mentioned above, unlike any other existing explanation of

structural change, our model implies that it is certain occupations, not broadly-defined

sectors, that may vanish in the limit.

While we are the first to build a model in which individuals with different skills

sort themselves into different occupations, which in turn are used as production inputs

in multiple sectors,2 there have been recent attempts such as Buera and Kaboski

(2012) and Buera et al. (2015), in which multiple sectors use different combinations

of heterogeneous skills as production inputs. One important distinction is that we

separate worker human capital (continuous distribution) and skill levels of a task or

occupation (discrete). More important, our driving force (i.e., routinization) is specific

to a task or occupation, not to workers’ human capital levels. This way, not only can

we address broader dimensions of wage inequality and use micro-labor estimates to

discipline our model,3 but also represent sectoral TFPs endogenously by aggregating

over equilibrium occupational choices, rather than relying on exogenously evolving

worker-skill specific productivities.

The rest of the paper is organized as follows. In section 2, we summarize three

groups of facts: horizontal polarization, structural change, and the rise of managers.

In section 3, we present the model and solve for its equilibrium allocation. Section 4

performs comparative statics on the equilibrium, which demonstrate that routinization

leads to horizontal and vertical polarization, and ultimately structural change. Section

5 characterizes the BGP of the dynamic economy and studies local stability. Section

6 calibrates the model to data from 1980-2010, and also quantifies how important

routinization may have been in explaining recent trends in structural change. Section

7 concludes.

2 Facts

1. Jobs and wages have polarized, figure 1 Source: U.S. Census and ACS 2010,

replicated and extended from Autor and Dorn (2013) and extended to 2010.

Occupations are ranked by their 1980 mean wage.

2Bárány and Siegel (2015) build a model in which occupations are tied to sectors.
3Autor et al. (2006); Acemoglu and Autor (2011) show that residual wage inequality controlling for

education groups is much larger than between-group inequality.
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(a) Employment Polarization
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(b) Wage Polarization

Fig. 1: Job and Wage Polarization, 30 years.
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(a) Routinization

−
.0

7
−

.0
6

−
.0

5
−

.0
4

−
.0

3
−

.0
2

−
.0

1
0

0 20 40 60 80 100
Skill percentile (1980 occupational mean wage)

1980−1990 1980−2000

1980−2010

C
h
a
n
g
e
 i
n
 m

a
n
u
fa

c
tu

ri
n
g
 e

m
p
lo

y
m

e
n
t

(b) Manufacturing Employment

Fig. 2: Routinization and Structural Change, 30 years.

2. Routinizable jobs correlate with structural change, figure 2. Source: U.S. Census

and ACS 2010. Left panel replicated from Autor and Dorn (2013), right panel

shows change in manufacturing employment by occupation cell.

3. Manufacturing has relatively higher share of intermediate occupations, of which

low-to-middle skill jobs have been relatively shrinking, figure 3. The right panel

includes mining and construction into manufacturing. Source: U.S. Census and

ACS 2010.

4. Structural change continues in the U.S., figure 4. Source: BEA (value-added),

NIPA Table 6 (persons involved in production). Manufacturing includes mining

and construction.

5. Both employment share and relative wages for managers are increasing: figure 5.

See appendix for definition of managers in the census.
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(b) Manufacturing+Mining+Construction

Fig. 3: Manufacturing employment shares across skill percentiles.

1970 1975 1980 1985 1990 1995 2000 2005 2010
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Services Manufacturing Agriculture

(a) GDP, Value-Added

1970 1975 1980 1985 1990 1995 2000 2005 2010
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Services Manufacturing Agriculture

(b) Aggregate Employment Shares

Fig. 4: Structural Change, 1970-2013.
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(b) Relative Employment and Wages

Fig. 5: Managers vs Workers
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(b) Relative Manager Wage

Fig. 6: Managers by Sector

6. Moreover, this occurs faster in the manufacturing sector: figure 6.

3 Model

There are a continuum of individuals each endowed with two types of skill, (h, z).

Human capital, h, is used to produced tasks. Management, z, is a special skill for

organizing tasks. WLOG we assume that the mass of individuals is 1, with associated

distribution function µ.

There are 2 sectors i ∈ {m, s}.4 In each sector, goods are produced in teams. A

single manager uses her own skill and physical capital to organize three types of tasks

j ∈ {0, 1, 2} (e.g., low-, medium-, high-skill occupations; or manual, routine, abstract

tasks). Each task requires both physical and human capital, and how much of each is

allocated to each task is decided by the manager. Aggregating over the goods produced

by all managers within a sector yields total sectoral output.

Within a sector, a better manager can produce more goods with the same amount

of tasks, but task intensities may differ across sectors. Specifically, we assume that

yi(z) =

[
η

1
ω
i xz(z)

ω−1
ω + (1− ηi)

1
ω xh(z)

ω−1
ω

] ω
ω−1

, (1a)

xz(z) = Mzk
αz1−α, xh(z) =

 2∑
j=0

ν
1
σ
ij τij(z)

σ−1
σ

 σ
σ−1

(1b)

τij(z) = Mj

∫
hij(z)

tj(k, h)dµ, (1c)

4In our application, the two sectors stand in for ”manufacturing” and ”services,” respectively. However,
I analytical model can be extended to incorporate any countably finite number N of sectors; we use the
subscripts m and s to avoid confusing them with the subscripts for tasks.
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t0(k, h) = kαh̄1−α, t1(k, h) = kαh1−α t2(k, h) = kα(h− χ)1−α, (1d)

with
∑

j νij = 1. The tj(·)’s are the amounts of task output produced by an individual

with human capital h and physical capital k, the latter of which is allocated by the

manager. Integrating over individual task outputs over the set of workers hired by

a manager of skill z for task j in sector i, hij(z), yields a task aggregate τij(z). The

substitutability between tasks is captured by the elasticity parameter σ, and ω captures

the elasticity between all workers and managers.

For task (or occupation) 0, a worker’s own human capital is irrelevant for produc-

tion: all workers’ effective skill input becomes h̄. This is to capture manual jobs that

do not depend on skills. For task 2, some of your skills become useless and effective

skill input becomes h − χ. This is to capture analytic jobs, for which lower levels of

skill are redundant. We will refer to the managerial task as “task z,” which is vertically

differentiated from tasks j ∈ {0, 1, 2}, which are horizontally differentiated. The Mj ’s,

j ∈ {0, 1, 2, z}, capture task-specific TFP’s, which are sector-neutral.

Several points are in order. As is the case with most models of sorting workers

into tasks, the worker side of our model can be viewed as a special case of Costinot

and Vogel (2010). However, we model managers and have more than one sector. In

contrast to Acemoglu and Autor (2011), we have a continuum of skills rather than

tasks, and a discrete number of tasks rather than skills. While the implications are

comparable, our formulation is more suitable for exploring employment shares across

tasks (which are discrete in the data). The model is also comparable to Goos et al.

(2014), who show (empirically) that relative price changes in task-specific capital,

representing routinization, can drive employment polarization. However, they do not

model skill and hence cannot explain wage polarization.

Now let Hij denote the set of individuals working in sector i ∈ {m, s} on task

j ∈ {0, 1, 2}. We can define

- Hi = ∪j∈{0,1,2}Hij : set of individuals who work as workers in sector i ∈ {m, s},

- Hj = ∪i∈{m,s}Hij : set of individuals who work as workers on task j ∈ {0, 1, 2},

- H = ∪i∈{m,s}Hi = ∪j∈{0,1,2}Hj : set of all individuals who work as workers,

- Z = Zm ∪ Zs: set of individuals who work as managers in sector i ∈ {m, s}.

Output in each sector is then

Yi =

∫
Zi
yi(z)dµ, (2)

and a final good is produced by combining output from both sectors according to a

CES aggregator:

Y = G(Ym, Ys) =

[
γ

1
ε
mY

ε−1
ε

m + γ
1
ε
s Y

ε−1
ε

s

] ε
ε−1

. (3)
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where γM + γS = 1 and we will assume ε < 1.5

3.1 Planner’s Problem

We assume complete markets for solve a static planner’s problem. A planner allocates

aggregate capital K and all individuals into sectors i ∈ {m, s} and tasks j ∈ {0, 1, 2, z}.
The objective is to maximize current output (3) subject to (1))-(2) and

K = Km +Ks ≡


∫
Zm

 ∑
j∈{0,1,2,z}

kmj(z)

+

∫
Zs

 ∑
j∈{0,1,2,z}

ksj(z)

 dµ

Hij ≡
∫
Hij

hdµ =

∫
Zi
hij(z)dµ, j ∈ {0, 1, 2},

where Ki is the amount of capital allocated to sector i, Hij the total amount of human

capital allocated to task j in sector i, and (kij(z), hij(z)) is the amounts of physical

and human capital allocated to task j in sector i under a manager with skill z, where

j ∈ {0, 1, 2, z} for k and j ∈ {0, 1, 2} for h.

For existence of a solution, we assume that

Assumption 1 The population means of both skills are finite, that is,∫
zdµ <∞,

∫
hdµ <∞.

and

Assumption 2 There exists a strictly positive mass of individuals who do not lose all

of their h-skill by working in task 2, i.e. µ(h > χ) > 0.

The following assumption is needed for uniqueness:

Assumption 3 The measure µ(z, h) is continuous and has a connected support on

(h, z) ∈ [0, hu) × [0, zu), where xu ≤ ∞ is the upperbound of skill x ∈ {h, z}; i.e.

µ(h, z) > 0 on (0, 0) ≤ (h, z) < (hu, zu) ≤ ∞.

Along with assumption 2, this implies χ < hu. Before showing existence and uniqueness

of the solution, we first characterize the solution in the following order:

1. Characterize optimal physical capital allocations across tasks within a sector.

2. Characterize optimal human capital (h) allocations across tasks within a sector.

3. Characterize optimal labor (manager-worker) allocations within a sector.

4. Solve for optimal capital and labor allocations across sectors.

5The estimated ε between the manufacturing and service sector (broadly defined) is close to zero, as we
show in section 6.1.
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Capital allocation within sectors Thanks to the HD1 assumptions, we can

write sectoral technologies as

Yi =

[
η

1
ω
i X

ω−1
ω

iz + (1− ηi)
1
ωX

ω−1
ω

ih

] ω
ω−1

, (5a)

Xiz = MzK
α
izZ

1−α
i , Xih =

∑
j

ν
1
σ
ijT

σ−1
σ

ij

 σ
σ−1

, (5b)

where Xih is a sectoral task aggregate and

Ti0 = M0K
α
i0

[
h̄µ(Hi0)

]1−α
, Ti1 = M1K

α
i1H

1−α
i1 ,

Ti2 = M2K
α
i2 [Hi2 − χµ(Hi2)]1−α .

Given sectoral capital Ki, the planner equalizes marginal product across tasks:

MPKi0 = MPKi1 = MPKi2

⇒ MPTi0 · αTi0
Ki0

=
MPTi1 · αTi1

Ki1
=
MPTi2 · αTi2

Ki2

⇒ MPTi1 · Ti1
MPTi0 · Ti0

=
Ki1

Ki0
≡ πi1 =

(
νi1
νi0

) 1
σ

·
(
Ti1
Ti0

)σ−1
σ

(6a)

MPTi2 · Ti2
MPTi1 · Ti1

=
Ki2

Ki1
≡ πi2 =

(
νi2
νi1

) 1
σ

·
(
Ti2
Ti1

)σ−1
σ

, (6b)

where MPTij is the marginal product of Tij w.r.t. Xi, and πij is the capital input ratio

in tasks j ∈ {1, 2} and j − 1. Due to the Cobb-Douglas assumption, πij divided by

task output ratios is the marginal rate of technological substitution (MRTS) between

tasks j and j − 1; furthermore, πij divided by either factor input ratios in tasks j and

j − 1 measures the MRTS of that factor between tasks j and j − 1. (For capital, this

is equal to 1.) Given (6) we can write

Xih = ν
1

σ−1

i0 (1 + πi1 + πi1πi2)︸ ︷︷ ︸
≡Πih

σ
σ−1Ti0. (7)

Of course, MPK must also be equalized across the managerial task and the rest:

MPKiz = MPKi0

⇒ MPXiz · αXiz

Kiz
=
MPXih ·MPTi0 · αTi0

Ki0

⇒ MPXiz ·Xiz

MPXih ·MPTi0 · Ti0
=
Kiz

Ki0
≡ πiz =

(
ηi

1− ηi

) 1
ω

·
(
Xiz

Xih

)ω−1
ω

·Πih,

(8)

which then allows us to write, using (7),

Yi = (1− ηi)
1

ω−1 [1 + πiz/Πih]
ω
ω−1 Xih

= (1− ηi)
1

ω−1 [1 + πiz/Πih]
ω
ω−1 ν

1
σ−1

i0 Π
σ
σ−1

ih Ti0 (9)
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Sorting skills across worker tasks within sectors Given the sectoral pro-

duction function (5), we can now decide how to allocate worker skills h to worker tasks

j ∈ {0, 1, 2}. Since skill doesn’t matter in task 0 and some becomes irrelevant in task

2, there is positive sorting of workers into tasks; i.e. there will be thresholds (ĥ1, ĥ2)

s.t. all workers with h ≤ ĥ1 work in task 0 and those with h > ĥ2 work in task 2. Note

that these thresholds must be equal across sectors, hence are not subscripted by i.

For each threshold, it must be that the marginal product of the threshold worker

is equalized in either task:

MPTi0 ·
(1− α)Ti0
h̄µ(Hi0)

· h̄ = MPTi1 ·
(1− α)Ti1

Hi1
· ĥ1,

MPTi1 ·
(1− α)Ti1

Hi1
· ĥ2 = MPTi2 ·

(1− α)Ti2
Hi2 − χµ(Hi2)

· (ĥ2 − χ)

using assumption 3, so

ĥ1 =
h̄1Li1
πi1Li0

, 1− χ

ĥ2

=
(h̄2 − χ)Li2
πi2h̄1Li1

, (10)

where Lij ≡ µ(Hij) and h̄j ≡ Hij/Lij ; that is, we are assuming

Assumption 4 The means of skills in tasks j ∈ {0, 1, 2, z}, that is, (h̄j , z̄), are equal

across sectors i ∈ {m, s}.

This is an assumption is needed because we assume discrete tasks; it can be thought

of as the limit of vanishing supermodularity within segments of a continuum of tasks.

Assumption 1 also guarantees that all objects are finite and well-defined. Using (10)

we can reformulate (6) as

πi1 =
νi1
νi0
·

M1

M0

(
ĥ1

h̄

)1−α
σ−1

, πi2 =
νi2
νi1
·

[
M2

M1

(
1− χ

ĥ2

)1−α
]σ−1

. (11)

Sorting managers and workers within a sector Now we know how to allocate

Ki,Hi within a sector, but we still need to know how to divide individuals into managers

and workers; that is, determine Zi ∪Hi given a mass of individuals within a sector.

Since individuals are heterogeneous in 2 dimensions, the key is to get a cutoff rule

z̃j(h) s.t. for every h, individuals with z above z̃j(h) become managers and below

become workers. Since the h-skill is used differently across tasks, we need to get 3 such

rules for each sector; however the rule must be identical across sectors.

For h ≤ ĥ1, this rule is simple. For these workers, h does not matter, so z̃0(h) = ẑ,

i.e., is constant. The constant is chosen so that the marginal product of the threshold

manager is equalized in either task:

MPXiz ·
(1− α)Xiz

Zi
· z̃0(h) = MPXih ·MPTi0 ·

(1− α)Ti0
h̄µ(Hi0)

· h̄
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⇒ z̃0(h) = ẑ =
Zi

πizLi0
=

z̄Liz
πizLi0

, (12)

where Liz = µ(Zi) and z̄ = Zi/Liz (which is equal across sectors by assumption 4).

Then from (8) we can write

πiz =
ηiν

1−ω
σ−1

i0

1− ηi
·

[
Mz

M0

(
ẑ

h̄

)1−α
]ω−1

·Π
σ−ω
σ−1

ih . (13)

For h ∈ (ĥ1, ĥ2], the rule is linear:

MPXiz ·
(1− α)Xiz

Zi
· z̃1(h) = MPXih ·MPTi1 ·

(1− α)Ti1
Hi1

· h

⇒ z̃1(h)

h
= φ1 =

πi1Zi
πizHi1

=
πi1z̄Liz
πizh̄1Li1

.

and finally for h > ĥ2, the rule is affine:

MPXiz ·
(1− α)Xiz

Zi
· z̃2(h) = MPXih ·MPTi2 ·

(1− α)Ti2
Hi2 − χµ(Hi2)

· (h− χ)

⇒ z̃2(h)

h− χ
= φ2 =

πi1πi2Zi
πiz (Hi2 − χLi2)

=
πi1πi2z̄Liz

πiz(h̄2 − χ)Li2
.

Observe that

ẑ = φ1ĥ1, 1− χ/ĥ2 = φ1/φ2, (14)

so (ĥ1, ĥ2, ẑ) completely determine the φj ’s, and all objects are well defined given

assumption 2, since all tasks are essential.

Sectoral production function and allocation across sectors Equations

(10)-(13) completely describe the task thresholds. What is important here is that all

these thresholds are determined independently of the amount of physical capital. To

see this more clearly, rewrite (9) to obtain

Yi = ψi · [1 + πiz/Πih]
ω
ω−1 Π

σ
σ−1

ih M0K
α
i0L

1−α
i0

ψi ≡ (1− ηi)
1

ω−1 ν
1

σ−1

i0 h̄1−α

and furthermore since

Ki = Ki0 (Πih + πiz)︸ ︷︷ ︸
ΠKi

(15)

Li = Li0

[
1 + (ĥ1/h̄1)πi1 +

1− χ/ĥ2

(h̄2 − χ)/ĥ1

· πi1πi2 + (ẑ/z̄)πiz

]
︸ ︷︷ ︸

ΠLi

, (16)
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we obtain

Yi = M0ψi ·Π
ω−σ

(ω−1)(σ−1)

ih Π
ω
ω−1
−α

Ki
Πα−1
Li︸ ︷︷ ︸

Φi: TFP

Kα
i L

1−α
i . (17)

Note that sectoral TFP, Φi, can be decomposed into 3 parts: M0, that is common

across both sectors, ψi, which is sector-specific but exogenous, and the parts determine

by (Πih,ΠKi ,ΠLi), which is sector-specific and endogenously determined by (ĥ1, ĥ2, ẑ).

Furthermore, since the thresholds depend only on the relative masses of individuals

across tasks within a sector, they do not depend on the employment size of the sector

(nor capital). Hence even as Ki or Li changes, these thresholds do not as long as the

distribution of skills remains constant.

Sectors only differ in how intensely they use each task, i.e., the mass of individuals

allocated to each task. As usual, these masses are determined so that the MPK and

MPL are equalized across sectors:

κ ≡ Ks

Km
=

(
γs
γm

) 1
ε
(
Ys
Ym

) ε−1
ε

=
Ls
Lm

(18)

where κ is capital input ratios between sectors m and s.

3.2 Existence and Uniqueness

Having characterized the optimal allocation (which is identical to the equilibrium al-

location), we can now establish existence and uniqueness:

Theorem 1 Under assumptions 1-4, the solution to the planner’s problem exists and

is unique.

Proof: First define a renormalization of ΠLi :

Π̃Li ≡ (1− ηi)νi0Mσ−1
0 h̄(σ−1)(1−α)ΠLi =

∑
j=0,1,2,z

Vij ,

where the weights Vij are

Vi0 ≡ (1− ηi)νi0Mσ−1
0 · h̄

α+σ(1−α)

h̄
, (19a)

Vi1 ≡ (1− ηi)νi1Mσ−1
1 · ĥ

α+σ(1−α)
1

h̄1
, (19b)

Vi2 ≡ (1− ηi)νi2Mσ−1
2 ·

[
ĥ1(1− χ/ĥ2)

]α+σ(1−α)

h̄2 − χ
, (19c)

Viz ≡ ηiΠ̃
σ−ω
σ−1

ih Mω−1
z · ẑ

α+ω(1−α)

z̄
(19d)
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and Π̃ih is a renormalization of Πih:

Π̃ih ≡ νi0Mσ−1
0 h̄(σ−1)(1−α) ·Πih.

Note that the only differences in the Vij ’s across sectors i comes from the task intensity

parameters νij , ηi (since Πih is also a function only of the νij ’s in equilibrium). The

total amount of labor in each task j can be expressed as

Lj =
∑

i∈{m,s}

Vij

Π̃Li

· Li, where Lm = 1/(1 + κ), Ls = κ/(1 + κ) (20)

for j ∈ {0, 1, 2, z}. This system of equations that solves the planner’s problem are

also the equilibrium market clearing conditions; the LHS is the labor supply and RHS

demand for each task j. Since h̄jLj = Hj , z̄Lz = Z,
∑

j Lj = 1 and κ = κ(ĥ1, ĥ2, ẑ) is

a function of (ĥ1, ĥ2, ẑ) from (18), the solution to (ĥ1, ĥ2, ẑ) is found from the system

of three equations

log ẑ =

(1− ω) logMz + logZ − log

[∑
i
ηiΠ̃

σ−ω
σ−1
ih

Π̃Li
· Li

]
α+ ω(1− α)

(21a)

log ĥ1 =

(1− σ) logM1 + logH1 − log

[∑
i

(1−ηi)νi1
Π̃Li

· Li
]

α+ σ(1− α)
(21b)

log ĥ2 = log(ĥ2 − χ)

−
(1− σ) log

(
M2
M1

)
+ log

(
H2−χL2

H1

)
− log

[∑
i

(1−ηi)νi1
Π̃Li

· Li
/∑

i
(1−ηi)νi1

Π̃Li
· Li
]

α+ σ(1− α)
(21c)

where

Z(ĥ1, ĥ2, ẑ) =

[∫ ĥ1
∫
ẑ

+

∫ ĥ2

ĥ1

∫
φ1(ẑ,ĥ1)·h

+

∫
ĥ2

∫
φ2(ĥ1,ĥ2,ẑ)·(h−χ)

]
zdF (z|h)dG(h)

H1(ĥ1, ĥ2, ẑ) =

∫ ĥ2

ĥ1

hF
(
φ1(ĥ1, ẑ) · h|h

)
dG(h)

H2(ĥ1, ĥ2, ẑ) =

∫
ĥ2

hF
(
φ2(ĥ1, ĥ2, ẑ) · (h− χ)|h

)
dG(h)

and G(h) is the marginal distribution of h, and F (z|h) the distribution of z conditional

on h; that is

µ(h̃, z̃) =

∫ h̃ ∫ z̃

dF (z|h)dG(h).

Existence is straightforward. Note that the domain of ẑ ∈ [0, zu), ĥ1 ∈ [0, ĥ2), and

ĥ2 ∈ [ĥ1, hu). Hence holding other variables fixed,
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Fig. 7: Equilibrium

1. as ẑ → 0, LHS of (21a) approaches −∞, while RHS approaches ∞. Conversely,

as the LHS approaches log zu, RHS approaches −∞.

2. as ĥ1 → 0, LHS of (21b) approaches −∞, while RHS remains finite. Conversely,

as LHS approaches log ĥ2, RHS approaches −∞.

3. as ĥ2 → max{ĥ1, χ}, LHS of (21c) remains finite, while RHS approaches −∞.

Conversely, as LHS approaches log hu, RHS becomes larger than LHS.

Assumption 3 ensures that all RHS’s are continuous; hence a solution exists. The

assumption also ensures that the mapping in the RHS is monotone; so for any guess

of the two other thresholds, each threshold is found uniquely as a function of the

other two. That is, the RHS of system (21) with respect to (log ẑ, log ĥ1, log ĥ2) is a

contraction; so the fixed point to the system is unique. �

The equilibrium skill allocation is depicted in figure 8. The thresholds determine the

tasks, and employment is split across sectors while preserving the means for each task.

The different masses of sectoral employment across tasks are due to the task intensity

parameters νij , ηi.

3.3 Equilibrium wages and prices

Since there are no frictions, the planner’s allocation coincides with a competitive equi-

librium. Hence, the solution (ĥ1, ĥ2, ẑ) gives all the information needed to derive equi-

librium prices. The price of the final good can be normalized to 1:

P = 1 =
[
γmp

1−ε
m + γsp

1−ε
s

] 1
1−ε , pi = [Yi/γiY ]−

1
ε . (22)

Sectoral output prices can be obtained by applying the sectoral output in (15)-(17) in

(22). The interest rate R is given either by the dynamic law of motion for aggregate
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capital, or fixed in a small open economy. So w0 is

w0 =
1− α
α
· Ki0

Li0
· R
h̄

where the capital-labor ratio can be found from (15)-(16).

Given w0, indifference across tasks for threshold workers imply

w0h̄ = w1ĥ1, w1ĥ2 = w2(ĥ2 − χ) (23a)

⇒ w0/w1 = ĥ1/h̄, w1/w2 = 1− χ/ĥ2. (23b)

and likewise, the threshold manager implies a “managerial efficiency wage”

wz ẑ = w0h̄ ⇒ w0/wz = ẑ/h̄. (23c)

Hence, relative wages for task j are simply the inverse of the thresholds.

4 Comparative Statics

The sectoral technology representation (17) implies that this model has similar impli-

cations as Ngai and Pissarides (2007): the sector with the larger TFP shrinks. The

major difference is that these TFP’s are endogenous.

What is more interesting is the implications of growth in task-specific TFP’s—

this is equivalent to the price of task-specific capital falling in Goos et al. (2014)—or

changes in the distribution for skill. In particular, we are interested in the effect of

routinization, which we model as an increase in the task 1’s TFP, M1. This is illustrated

in a series of comparative statics, which is possible since the equilibrium is unique and

skill distribution continuous (under assumption 3). To simplify notation, define the

elasticities of the thresholds w.r.t. M1:

∆h1 ≡
d log ĥ1

d logM1
, ∆h2 ≡ χ̃ ·

d log ĥ2

d logM1
, ∆z ≡

d log ẑ

d logM1
, where χ̃ ≡ χ

ĥ2 − χ
> 0.

Similarly define ∆x as the elasticity of any variable x with respect to M1. Given

(∆h1 ,∆h2 ,∆z) we know what happens to all the other variables of interest since

∆φ1 = ∆z −∆h1 , ∆φ2 = ∆φ1 −∆h2 ,

∆W1 = −∆h1 , ∆W2 = −∆h2 , ∆Wz = −∆z.

where Wj ’s are the wage ratios

W1 = w1/w0, W2 = w2/w1, Wz = wz/w0.

We proceed as follows:
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1. approximate the change in thresholds (ĥ1, ĥ2, ẑ) within a sector, taking the dis-

tribution of skill in sector i, µi, as given;

2. given the comparative statics in the thresholds, approximate the change in em-

ployment shares across tasks within a sector, taking µi as given;

3. approximate the differences in polarization across sectors holding Li constant;

4. approximate the change in employment shares across sectors.

4.1 Wage and Job Polarization

To approximate the change in thresholds, we will first focus on the within sector

allocation of skill implied by (10) and (12):

ĥ1 · πi1(ĥ1) = Hi1(ĥ1, ĥ2, ẑ)
/
Li0(ẑ, ĥ1) (24a)(

1− χh/ĥ2

)
· πi2(ĥ2) =

[
Hi2(ĥ1, ĥ2, ẑ)− χLi2(ĥ1, ĥ2, ẑ)

]/
Hi1(ĥ1, ĥ2, ẑ) (24b)

ẑ · πiz(ĥ1, ĥ2, ẑ) = Zi(ĥ1, ĥ2, ẑ)
/
Li0(ẑ, ĥ1) (24c)

where (πij , πiz) are defined in (11) and (13), and (φ1, φ2) are defined in (14). The

masses and skill aggregates are defined over a sector-specific distribution µi, which is

taken as given.

For the approximation, we will assume that ∆Lij → 0 for j ∈ {0, 1, 2, z}. This

implies that the density function is sufficiently small everywhere, which we assume

to ignore the indirect effects of M1 on (Lij , Hij , Zi) that arise from changes in the

thresholds. This can be thought of a limiting case of either when skills are discrete

(Goos et al., 2014),6 or when there are both a continuum of tasks and skills which are

matched assortatively (Costinot and Vogel, 2010). Within the context of our model, it

can be understood as approximating the equilibrium response using only the response

of labor demand (the LHS’s), while keeping labor supply (the RHS’s) fixed. We can

then show that

Proposition 1 (Routinization and Polarization) Suppose there is an increase in

M1, and that ∆Lij → 0 for j ∈ {0, 1, 2, z}. Then

1. ∆h1 ≈ −∆h2 > 0 iff σ < 1, and

2. ∆φ1 < {∆h1 ,∆z ≈ ∆φ2} < 0 if ω < σ < 1.

This implies that capital and labor flow out of task 1 (job polarization), relative wages

decline in task 1 (wage polarization), and both the employment share and wages of

6In fact, they assume that wages are fixed and labor is inelastically supplied.
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managers increase (vertical polarization).

Proof: Under the assumption (or, holding labor supply fixed), the comparative static

is identical across sectors. System (24) becomes

∆h1 + ∆πi1 ≈ 0, ∆h2 + ∆πi2 ≈ 0, ∆z + ∆πiz ≈ 0,

where

∆πi1 = (σ − 1) [(1− α)∆h1 + 1] , ∆πi2 = (σ − 1) [(1− α)∆h2 − 1] ,

∆πiz = (ω − 1)(1− α)∆z +
σ − ω
σ − 1

· πi1(1 + πi2)∆πi1 + πi1πi2∆πi2

Πih
(25)

Hence we obtain that

∆h1 ≈ −∆h2 ≈
1− σ

α+ σ(1− α)
> 0, ∆W1 < 0, ∆W2 > 0 ⇔ σ < 1.

Furthermore if ω < σ < 1,

∆z ≈
σ − ω

(σ − 1) [α+ ω(1− α)]
· πi1

Πih
·∆h1 < 0, (26)

∆φ1 < 0, ∆φ2 ≈ ∆z < 0, and ∆Wz > 0.

�

The change in thresholds makes it easier to analyze what happens to employment shares

by task. If σ < 1, and holding management employment shares constant, employment

and payroll in task 1 shrinks while they increase in tasks 0 and 2. Hence, similarly as in

Goos et al. (2014), we get employment polarization only when tasks are complementary,

i.e. σ < 1; we also get wage polarization even with endogenous choice of tasks. At the

same time, capital flows out to the other tasks as well.

Furthermore if ω < σ, we also find that the mass and wage of managers increase

relative to all workers. But while it is clear that the thresholds move in a direction that

continues to shrink Li1, it is unclear what happens to Li0 and Li2, since both tasks 0

and 2 gain employment from task 1 but lose employment to managers.

So let us think about the (supply side) changes in Lij , j ∈ {0, 1, 2, z}, arising from

the change in thresholds within a sector i, still taking the sectoral distribution µi as

given. To sign the ∆Li0 ,∆Li2 , we need additional parametric restrictions for sufficiency:

Lemma 1 Suppose the skill distribution in sector i is uniform and that ω < σ < 1. A

sufficient condition for employment in tasks 0 and 2 to rise is

σ − ω < (1− σ) [α+ ω(1− α)] .
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So if

σ − (1− σ)α

1 + (1− σ)(1− α)
< ω < σ,

all employment shares except task 1’s increase. This also implies that the average skill

of task 1 workers rises.

Proof: Using the approximations from Proposition 1 and (24), we can approximate

∆Li0 −∆Li1 ≈ ∆h̄1
, ∆Li0 −∆Li2 ≈ ∆h̄2−χ, ∆Li0 −∆Li1 ≈ ∆z̄.

Since {∆z,∆h2} <0, we know that {∆z̄,∆h̄2−χ} <0, that is, the average skill of man-

agers, and workers in task 2, become diluted. We cannot sign ∆h̄1
; however, under the

uniform distribution assumption

∆Li0 = ∆z + ∆h1 ≈
[
1− σ − ω

(1− σ) [α+ ω(1− α)]
· πi1

Πih

]
∆h1

using (26). Since πi1/Πih is a fraction bounded above by 1, the condition in the lemma

guarantees that ∆Li0 > 0, so

∆Li1 < 0 < ∆Li0 < {∆Li2 ,∆Liz} ,

although we can still not order the last two. �

This is intuitive. If tasks were substitutes, task 1 would crowd out all other tasks,

including managers. As task 1 becomes the dominant occupation, wages also increase.

However, when tasks are complements, workers need to flow to the other tasks, and for

this to happen relative wages must decline in task 1. Moreover, if management is more

complementary with tasks than tasks are among themselves, more individuals must

become managers—and in equilibrium, manager wages must increase. The within-

sector comparative static is depicted in figure 8.

4.2 Structural change

Previous models of structural change either rely on a special non-homogeneous form

of demand (rise in income shifting demand for service products) or relative technol-

ogy differences across sectors (rise in manufacturing productivity relative to services,

combined with complementarity between the two types of goods, shifting production

to services). Our model is also technology driven, but transformation arises from a

skill neutral increase in task productivities, or routinization. Most importantly, in con-

trast to recent papers arguing that sectoral productivity differences can explain the

skill premia or polarization (Bárány and Siegel, 2015; Buera et al., 2015), we argue
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Fig. 8: Comparative Static, Within-Sector

exactly the opposite—that routinization can explain sectoral productivity differences

and structural change.

To begin this analysis, note that from (25),

∆Πih ≡
d log Πih

d logM1
=
d log Π̃ih

d logM1
≈ (1− σ) [α+ ω(1− α)]

σ − ω
·∆z, (27)

and using Proposition 1, the ∆Vij ’s can be approximated from (19) as

∆Vi0 = 0, ∆Vi1 ≈ −∆h̄1
< 0 by Lemma 1, (28a)

∆Vi2 ≈ −∆h̄2−χ > 0, ∆Viz ≈ ∆z̄ > 0. (28b)

So the ∆Vij ’s are sector-neutral and can be ordered as

∆V1 < {0 = ∆V0} < {∆V2 ,∆Vz}.

Also note that

∆ΠLi
≡ d log ΠLi

d logM1
=
d log Π̃Li

d logM1
=

∑
j=0,1,2,z Vij∆Vj

Π̃Li

=
∑

j=0,1,2,z

Lij
Li
·∆Vj . (29)

Decomposing Polarization The change in the total amount of labor in each

task, expressed in (20), can be decomposed similarly as in Goos et al. (2014):7

∆Lj =
∑

i∈{m,s}

Lij
Lj
·
[
∆Vj −∆ΠLi

+ ∆Li

]
7However, our decomposition differs from theirs. Their thought experiment is to separate the effects from

keeping industry output fixed and when it is allowed to vary. Ours is to separate the effect from keeping
sectoral employment fixed and when allowing it to vary.
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=
∑

i∈{m,s}

Lij
Lj
·
[

∆Vj −
∑

j′=0,1,2,z

Lij′

Li
·∆Vj′︸ ︷︷ ︸

Bij

+∆Li

]
by (29), j ∈ {0, 1, 2, z}.

(30)

A change in the Vij ’s occurs even holding Li’s constant, shifting the termBij . This leads

to “within-sector polarization,” as we saw in the previous subsection. In particular,

from (28), the ∆Vj ’s are sector-neutral and common across sectors. So any difference

in how the share of task j employment evolves across sectors depends on the weighted

average of the ∆Vj ’s by the employment shares of all tasks within a sector, Lij/Li.

Holding Li’s constant, we know from Lemma 1 that task 1 is shrinking and other

tasks growing within-sectors. Now we can compare the ∆ΠLi
’s across sectors, which is

the weighted average of within-sector employment shifts as seen in (29). Thus

Lemma 2 The weighted average of within-sector employment share changes, ∆ΠLi
, is

smaller in the sector with a larger within-sector employment share in task 1, and larger

in the sector with larger shares in all other tasks. That is,

Ls1/Ls < Lm1/Lm ⇒ ∆ΠLs
> ∆ΠLm

. (31)

This implies that, holding sectoral employment shares constant, manufacturing polar-

izes more compared to services.8

The term ∆Li in (30) captures structural change. To compute ∆Li , rewrite capital

input (or employment) ratios in (18) using (17):

κ =

(
γs
γm

)[(
1− ηs
1− ηm

) 1
ω−1

(
νs0
νm0

) 1
σ−1

·
(

Πsh

Πmh

) ω−σ
(ω−1)(σ−1)

×
(

ΠKs

ΠKm

) ω
ω−1
−α( ΠLs

ΠLm

)α−1
]ε−1

. (32)

So relative employment is completely determined by the relative endogenous TFP ratio

between the two sectors. Since the elasticities of Πih are sector-neutral (both change

at the negative rate of ẑ), we obtain

∆κ ≈ (1− ε)
[(
α− ω

ω − 1

)(
∆ΠKs

−∆ΠKm

)
+ (1− α)

(
∆ΠLs

−∆ΠLm

)]
. (33)

8Of course, the assumption in the lemma is a condition on employment shares, which are endogenous.
However, the condition holds throughout our observation period in the data, so our analysis is valid. Al-
ternatively, we could assume νm1 >> νs1 and ηm << ηs. The astute reader would have already noticed
that what the task-specific TFP’s effectively do is shift the relative employment shares over time as if the
parameters νij , ηi were changing.
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So if (∆ΠKi
,∆ΠLi

) are larger in services, employment shifts to services; that is, rou-

tinization (a rise in M1) leads to structural change. We have already seen that ∆ΠLi

is smaller in the manufacturing when (31) holds. Now from (27),

∆ΠKi
≈ ∆z

ΠKi

·
[
πiz + Πih ·

(1− σ)[α+ ω(1− α)]

σ − ω

]
< 0,

so under the assumption in Lemma 1, ∆ΠK2
> ∆ΠK1

if

πsz
Πsh

>
πmz
Πmh

⇔ ηs
1− ηs

· (νs0Πsh)
1−ω
σ−1 >

ηm
1− ηm

· (νm0Πmh)
1−ω
σ−1 ,

which holds when the manager share of capital is larger in services, or η1 << η2. Hence,

both because of shifts in labor and capital, structural change occurs toward services.

To understand why capital reallocation matters for structural change, note that we

can write change in sectoral employment shares as

∆Lm = −Ls ·∆κ < 0, ∆Ls = Lm ·∆κ > 0, (34)

or plugging in ∆κ from (33),

∆Li ≈ (1− ε)

[
(1− α)

(
∆ΠLi

−
∑
i′

Li′∆ΠLi′︸ ︷︷ ︸
CLi

)

+

(
α+

ω

1− ω

)(
∆ΠKi

−
∑
i′

Ki′∆ΠKi′︸ ︷︷ ︸
CKi

)]
.

This makes clear that structural change in our model is due to a reallocation of both

labor and capital, in contrast to Goos et al. (2014). The reason that capital matters

in our model is because labor in our model is in skill units, which is different from

employment shares. However, given sectoral capital Ki within a sector, physical capital

does not affect employment shares as it is simply allocated to equalize its MRTS with

the MRTS of skills across tasks; only when we let factors move across sectors does its

effect appear in the model. Also note that the term CLi can be written as

CLi =
∑
j

Lij
Li
·∆Vj −

∑
i′

Li ·

∑
j′

Li′j′

Li′
∆Vj′

 ,

which is the “between-sector” counterpart to the within-sector component Bij : that is,

CLi captures the average change in employment in sector i compared to the weighted

average across sectors. The contribution from capital, CKi , is additional.
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(d) BGP m1

Fig. 9: Comparative Statics, Across-Sectors

Of course, from (30), structural change also contributes to polarization. To see this,

rewrite (30) using (34) as

∆Lj = ∆Vj −
∑

i∈{m,s}

Lij
Lj

∆ΠLi
+

[
Lsj
Lj

Lm −
Lmj
Lj

Ls

]
∆κ (35)

⇒ Lj
(
∆Lj −∆Vj

)
= −

∑
i∈{m,s}

Lij∆ΠLi
+

[
Lsj
Ls
− Lmj
Lm

]
LmLs∆κ.

Thus,

Lemma 3 Suppose lemma 4.2 holds. Then structural change also contributes to po-

larization.

Proof: The term in the square brackets in (35) is negative for j = 1, and positive for

all other tasks, under lemma 4.2. �

This is intuitive. Manufacturing has a larger within-sector employment share in task

1 (that is, if it is more routine-intense), employing more for that task. So in addition

to task 1 shrinking in both sectors, if sector 1 also shrinks (structural change), there

is even more polarization.

Lemmas 4.2 and 3 are depicted in the first 3 subplots in figure 9. In figure (a),

manufacturing is depicted as having a higher share in task 1, and services in task z.

As we move from (a) to (b), sectoral employment shares are held fixed, and task 1

shrinks in both sectors. The change in employment shares is larger in manufacturing

due to lemma . This leads to structural change in (c), according to lemma 3. Because

manufacturing has a higher share in task 1, shrinking its size contributes to polarization.

Polarization or Structural Change? One may argue that it is not task pro-

ductivities that lead to structural change, but advances in sector-specific productivities

that lead to polarization. While it is most likely in reality that both forces are in play,
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in the context of our model, as long as technologies are either task- or sector-specific

(that is, there are no task- and sector-specific technologies), sector-specific productivity

shifts does not lead to polarization within sectors.

Suppose that in addition to the Mj ’s, there were Ai sectoral TFP’s, so that Yi =

AiΦiK
α
i L

1−α
i . As in Ngai and Pissarides (2007), a rise in Am changes κ at a rate of 1−ε,

that is, manufacturing shrinks. But it is easily seen that none of the thresholds change,

and hence neither do the Φi’s (the endogenous sectoral TFP’s). So polarization can

only arise by the reallocation of labor across sectors that use different mixes of tasks.

To be precise, from (30),

d logLj
d logAm

= (1− ε) · d logLj
d log κ

= (1− ε)
[
Lsj
Lj

Lm −
Lmj
Lj

Ls

]
< 0. (36)

Note that d logLj/d log κ is equal to the term in square brackets in (35), and negative

under assumption (31). Hence, polarization only occurs because manufacturing shrinks.

The reason is that In our micro-founded model, tasks are aggregated up into sectoral

output, not the other way around.

Equation (36) also puts a bound on how much sectoral shifts alone can account

for job polarization. For example, in the data, manufacturing employment fell from

approximately 33% to 19% from 1980 to 2010. If this were solely due to a change in

Am, this means that (denoting empirical values with hats):

d log κ̂

d logAm
≈ 14/67 + 14/33 ≈ 0.63

which means that

dL̂j
d logAm

≈ 0.63
[
L̂sjL̂m − L̂mjL̂s

]
= 0.63

[
L̂sj

L̂j
0.33− L̂mj

L̂j
0.67

]
.

In Section 6, we measure the employment share of routine, manufacturing jobs and

routine, service jobs (as a share of total employment; that is, Lm1 and Ls1) in 1980

were 26% and 33%, respectively (refer to Table 2). So

dL̂j
d logAm

= 0.63 [0.33 · 0.33− 0.26 · 0.67] = −0.04,

that is, a change in Am alone would imply an approximately 4 percentage point drop in

routine jobs from 1980 to 2010. As shown in Table 2, the actual drop was 13 percentage

points.

5 Dynamics

The above result implies that on a dynamic path in which M1 grows at a constant rate,

polarization happens faster than structural change. This implies that in the limit, task
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1 vanishes, structural change ceases, but both sectors still employ non-trivial amounts

of labor, unlike previous models of structural change.

Such a dynamic version of the model is a straightforward extension of the neoclassi-

cal growth model. Assume that aggregate labor L grows at rate n, and a representative

household with CRRA preferences∫ ∞
0

exp(−ρt) · c(t)
1−θ − 1

1− θ
dt

where ct = Ct/Lt, and a law of motion for aggregate capital

K̇t = Yt − δKt − Ct,

and for simplicity let us assume that Ṁ1/M1 = m1 and M0 = M2 = Mz, Ṁ0/M0 = m.

Then from (18), we can also write the aggregate production function as

Yt = Yst ·

[
γ

1
ε
m

(
Ymt
Yst

) ε−1
ε

+ γ
1
ε
s

] ε
ε−1

= Φst · LstKα
t L

1−α
t ·

(
γ

1
ε
s L
−1
st

) ε
ε−1

= Φst · (Lst/γs)
1

1−ε ·Kα
t L

1−α
t

where Φst, Lst, the endogenous sectoral TFP and employment share of services at time

t, are functions of (ẑt, ĥ1t, ĥ2t).

Now define

Φ1−α
t ≡ Φst · (Lst/γs)

1
1−ε

the endogenous aggregate (Harrod-neutral) TFP and its growth rate gt ≡ Φ̇t/Φt. As

in the RCK model, define the normalized consumption and capital per efficiency unit

of labor

ĉt ≡ Ct/ΦtLt k̂t ≡ Kt/ΦtLt,

so output per efficiency unit of labor is

ŷt ≡ Yt/ΦtLt = f(k̂t) ≡ k̂αt .

The dynamic equilibrium is characterized by

˙̂ct =
1

θ
·
[
f ′(k̂t)− (n+ δ + ρ+ gtθ)

]
· ĉt

˙̂
kt = f(k̂t)− (n+ δ + gt)k̂t − ĉt

gt ≡
Φ̇t

Φt
= g

(
ĥ1t, ĥ2t, ẑt

)
.
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So instead of having sectoral shares as in Acemoglu and Guerrieri (2008), we have

endogenously evolving TFP which pins down the sectoral shares at every instant. Using

(17) and (33), the endogenous growth rate gt becomes

(1− α)gt = m+
∑
i

Lit ·

[
ω − σ

(ω − 1)(σ − 1)
· Π̇ih

Πih
+

(
ω

ω − 1
− α

)
· Π̇Ki

ΠKi

+ (α− 1) · Π̇Li

ΠLi

]
.

On a BGP, gt must be constant. Hence it must be that (ĥ1, ĥ2, ẑ) no longer evolve:

Clearly this happens when ĥ1 = ĥ2, or from (10)-(11),

ĥ2 − χ =
(h̄2 − χ)Li2

Li0
·

νi0
νi2
·

(
ĥ2 − χ
h̄

)(1−α)(1−σ)


⇒ νi0Li2
νi2Li0

=
(ĥ2 − χ)σ+α(1−σ)

h̄2 − χ
,

assuming h̄ = 1. Then ẑ is determined by (12), sectoral-task employment masses are

determined by (ΠKi ,ΠLi) according to (32), and on a BGP

g∗ =
m

1− α
.

The long-run dynamics is depicted in figure 9(d), where both polarization and struc-

tural change continue until task 1 vanishes.

6 Quantitative Analysis

In the quantitative analysis, we assume that there are 10 rather than 3 (horizontally

differentiated) worker tasks. All worker tasks j ≥ 2 are characterized by a skill lost

parameter χj . (The characterization of the equilibrium is exactly the same as before.)

Each task broadly corresponds to a 1-digit occupation category in the census, as shown

in Table 2. The 10 occupation groups can broadly be further be broadly grouped into

low-, medium- and high skill tasks, or manual, routine, and abstract jobs, according

to the mean wages of each occupation group and routinization indices.

The objective is to quantify how much of the observed changes in employment and

wage shares from 1980 to 2010 can be explained by task-level productivity growth. To

do so, we first calibrate the skill distribution over (h, z) to 1980 data. Then we choose

all other model parameters, except for the elasticities of substitutions between tasks,

(σ, ω), to fit the 1980 data exactly. Lastly, the elasticities are calibrated jointly with the

growth rates of Mj ’s, j ∈ {0, 1, . . . , 9, z}, to the time trends in employment and wage

shares from 1980 to 2010. When doing so we also include a manufacturing-specific,

exogenous sectoral TFP Am, and calibrate its growth rate from 1980 to 2010. This

allows us to quantify how the growth in the Mj ’s contributes to explaining the data,
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(1) (2) (3)

γ 0.371
∗∗

0.346
∗∗

0.258
∗∗

(0.003) (0.005) (0.004)
ε 0.003

∗∗
0.002

∗∗
0.003

(0.000) (0.000) (0.004)

AIC -550.175 -551.264 -550.866
RMSE1 0.106 0.106 0.106
RMSE2 0.039 0.039 0.039

Standard errors in parentheses
†
p < 0.10,

∗
p < 0.05,

∗∗
p < 0.01

Table 1: Aggregate Production Function

that is, the role of task-level productivity growth in explaining polarization, structural

change, and sectoral and total output growth.

When obtaining our empirical moments, we subsume mining and construction into

manufacturing, and government into services, and the agricultural sector is dropped.

That is, aggregate output and capital correspond to the moments computed without

agriculture, as is the case for employment shares.9

6.1 Aggregate Production Function

The aggregate production function is estimated outside of the model. For the esti-

mation, we only look at the manufacturing and service sectors, where manufacturing

includes mining and construction, and government is included in services. We estimate

the parameters (γ, ε) from the system of equations

log

(
pmYm
PY

)
= log γ + (1− ε) log pm − log

[
γp1−ε

m + (1− γ)p1−ε
s

]
+ u1

log(Y ) = c+
ε

ε− 1
log

[
γ

1
ε Y

ε−1
ε

m + (1− γ)
1
ε Y

ε−1
ε

s

]
+ u2

where γ ≡ γm, using non-linear SUR (seemingly unrelated regression), on all years of

real and nominal sectoral output observed in the BEA/NIPA.

Real production by sector is computed by a cyclical expansion procedure as in

(Herrendorf et al., 2014) using production value-added to merge lower level industries

(as opposed to consumption value-added, as in their analysis).10 The price indices are

implied from nominal versus real sectoral quantities. We try different base years as

9Agriculture shares are only about 2% of both total output and employment, and has been more or less
flat since the 90s.

10The constant c is included since it is not levels, but relative changes that identifies ε.
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Ranked by mean wage SOC Employment Shares Total Wage Shares
(except management) Code 1980 2010 Manufacturing 1980 2010 Manufacturing

Low Skill Services 400 10.44 13.92 0.59 0.23 6.75 7.60 0.52 0.16

Middle Skill 59.09 46.48 25.86 12.93 53.43 35.90 24.76 10.02
Administrative Support 300 16.57 14.13 3.47 1.53 12.90 9.60 2.90 1.15
Machine Operators 700 9.81 3.75 8.79 3.02 8.21 2.39 7.37 1.91
Transportation 800 8.73 6.64 3.80 2.28 7.73 4.15 3.37 1.46
Sales 240 7.87 9.37 0.79 0.62 7.40 8.45 1.06 0.85
Technicians 200 3.23 3.86 1.00 0.57 3.35 4.33 1.13 0.66
Mechanics & Construction 500 7.91 6.02 4.44 3.19 8.40 4.88 4.91 2.61
Miners & Precision Workers 600 4.97 2.71 3.58 1.73 5.43 2.10 4.03 1.38

High Skill 19.22 26.16 3.87 3.64 24.20 33.98 6.07 5.51
Professionals 40 11.02 16.51 1.73 1.45 13.36 20.78 2.59 2.12
Management Support 20 8.20 9.65 2.14 2.20 10.84 13.20 3.48 3.39

Management 1 11.26 13.44 2.47 2.59 15.62 22.52 4.22 5.81

Table 2: Occupation Groups used for Calibration

well: 1947, 1980, and 2005, corresponding to columns (1)-(3) in Table 1. As shown

there, the values are in a similar range as in Herrendorf et al. (2014), although ε is not

significant with 2005 as a base year. For the calibration, we will use take the values of

(γ, ε) in column (1) values as a benchmark.

The capital income share α is computed as 1-(labor income/total income), and fixed

at 0.360. Since we do not model investment, for the calibration we also need the level

of total capital stock (for manufacturing and services) for each decade, which we take

from the Fixed Asset Table and is directly plugged into the model.

6.2 Occupations

For the calibration, we broadly categorize all occupations in the census into 11 broad

categories, as summarized in Table 2. The left panel describes their SOC code with

a short job description, and the middle and right panels their employment and total

wage shares in 1980 and 2010, respectively. For the employment and wage share panels,

the first two columns shows the size of each occupation in 1980 and 2010 as a fraction

of total employment/wages. The next two columns show the size of each occupation

within manufacturing as a fraction of total employment/wages.

The RTI indices of each task is tabulated in Table 4, along with model parameters

calibrated from the data.

6.3 Calibration

Given the aggregate production function, we find the rest of the parameters by fitting

an initial equilibrium to 1980 data, while finding (σ, ω), the growth rate of task-TFP

growth, mj , and the growth rate of exogenous manufacturing-specific sectoral TFP

growth, am, to fit time trends in aggregate employment and wage shares by task and

sector. All parameters have been specified except for the skill distribution, which we
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Parameter Value Target

kt (2)
BEA/NIPA

From α 0.361

data γ 0.348
Estimated in section 6.1

ε 0.004

Mj ≡M 1.054 Output per worker, normalization
Am 1.015 Manufacturing employment share
νij (20)

Table 4
Employment shares by task/sector

Fit to ηi(2) Manager share by sector

1980 χj (8) Table 4
Wage shares by task, 1980a 8.171

γh 0.289

γz 1.000 Normalizations;
h̄ 1.000 Not separately identified from Mj

σ 0.261 Output per worker growth,
Fit to ω 0.150 income/employment
2010 mj Table 4 shares by task/sector

am 0.044

Table 3: Parameters

All parameters valued 1 are normalized.

assume to be a type IV bivariate Pareto (Arnold, 2014), with the c.d.f. given by:

µ(h, z) = 1−
[
1 + h1/γh + z1/γz

]−a
.

We normalize γz = 1, since we cannot separately identify both skills from the skill-

specific TFP’s. For the same reason, we normalize h̄ and Mj ≡ M0 for all j ∈
{0, 1, . . . , z}. All model parameters are summarized in table 3.

The calibrated skill loss parameters χj and employment weights (ηi, νij) for each

occupation are tabulated in Table 4, along with the task-level productivity growth

rates (mj) implied by the model. The RTI indices and productivity growth rates are

also visualized in Figure 14.

Calibrating the distribution The model is fitted exactly to 1980 moments. For

any guess of (γh, a, χ), we can find (ĥjt, ẑt), j ∈ {0, . . . 9} for t = 1980 that exactly

match observed employment shares, by integrating over the guessed skill distribution.

Given the thresholds, we then compute the model-implied income shares using (23),

w1H1

w0H0
=

H1

ĥ1L0

,
w2(H2 − χ2L2)

w1H1
=

H2 − χ2L2

H1(1− χ2/ĥ2)
,

wzZ

w0H0
=

Z

ẑL0
,
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Ranked by mean wage
χj

Emp Wgts (νij , ηi) mj RTI
(except management) Manu. Serv.

Low Skill Services - 0.021 0.177 0.000 -0.426

Middle Skill 0.817 0.508
Administrative Support - 0.090 0.171 0.015 2.428
Machine Operators 0.005 0.259 0.015 0.043 0.609
Transportation 0.012 0.119 0.078 0.021 -0.586
Sales 0.018 0.026 0.119 0.002 0.494
Technicians 0.024 0.034 0.038 -0.001 -0.074
Mechanics & Construction 0.031 0.157 0.061 0.014 -0.637
Miners & Precision Workers 0.037 0.131 0.026 0.031 0.642

High Skill 0.162 0.317
Professionals 0.044 0.068 0.182 -0.007 -0.671
Management Support 0.050 0.095 0.135 0.001 -0.657

Management - 0.058 0.098 0.000 -1.122

Table 4: Calibrated Employment Weights and Growth Rates

and similarly for j ∈ {3, . . . 9}. The LHS is the ratio of total wagebills by task, which

we observe from the data, while the RHS is a function only of the thresholds, which

themselves are functions of (γh, a, χj). Hence, we iterate over (γh, a, χj) so that the

model-implied ratios match observed average wage ratios exactly. Then for the rest of

the calibration, we can fix these three parameters and ensure that the other parameters

generate an equilibrium that yields the implied thresholds.

Calibrated within the Model The rest of the model must be calibrated jointly,

since (σ, ω) are only identified over time trends (as should be apparent from our com-

parative statics). Hence, they are calibrated together with the growth rates as follows:

1. Guess (σ, ω,mj , am). For each year 1980, 1990, 2000, and 2010, take kt, capital

per worker, directly from the data.

2. Given the guess, calibrate the parameters in the second panel of table 3 to exactly

fit 1980 moments.

3. Given the 1980 equilibrium, calibrate the parameters in the third panel of table

3 to fit time trends.

When we calibrate the 1980 equilibrium, we take the distributional parameters, in

addition to the implied thresholds, as given. Then given a guess for M0, we can plug

in the observed employment shares from 1980, for each task by sector using (10)-(13)

and (18). From this, we can obtain all the ηi’s and ν ′ijs, in addition to Am. We then

iterate over M0 so that output per worker in 1980 is exactly equal to 1.

Given values for (σ, ω,mj , am), all the other parameters are now fixed to 1980.
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Fig. 10: Data vs. Model, Employment Shares by Task

We then fit these 14 parameters to fit the trends in output per worker growth and

employment/wage shares by task and by sector, taking the value of capital per worker

for each year, kt, t = 1990, 2000, 2010, as given and fixed from the data.

6.4 Model Fit

Figure 10 plots the model implied trends in employment shares across tasks, in ag-

gregate and by sector. Aggregate task shares (in the bottom) are targeted, so it is

not surprising that we almost exactly fit the trend. Figures 10(a)-(b) were not tar-

geted, and the model still performs well, although we underestimate the rise and fall

of managerial and manual tasks in manufacturing, respectively. In services, the model

overstates the increase in managers.

Figure 11 plots the same graphs as in Figure 10 for income shares. Again, aggregate

shares are targeted, so it is not so surprising that Figure 11(a) fits well—although the

32



0.35

0.4

0.45

0.5

0.55

0.6

0.65
o Data,  x Model

 

 

Routine (Left)

Manual (Right)

Abstract (Right)

Manager (Right)

1980 1990 2000 2010
0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a) Aggregate Shares

1980 1990 2000 2010
1.2

1.4

1.6

1.8

2
o Data,  x Model

 

 

Routine/Manual (Left)

Manager/Worker (Left)

Abstract/Manual (Right)

1980 1990 2000 2010
1.7

1.9

2.1

2.3

2.5

(b) Average Wage Ratios

0.44

0.5

0.56

0.62

0.68

0.74

0.8
o Data,  x Model

 

 

Routine (Left)

Manual (Right)

Abstract (Right)

Manager (Right)

1980 1990 2000 2010
0

0.05

0.1

0.15

0.2

0.25

0.3

(c) Manufacturing Shares

0.35

0.4

0.45

0.5

0.55

0.6
o Data,  x Model

 

 

Routine (Left)

Manual (Right)

Abstract (Right)

Manager (Right)

1980 1990 2000 2010
0.05

0.11

0.17

0.23

0.29

0.35

(d) Services Shares

Fig. 11: Data vs. Model, Incomes by Task

fit is not as good as employment shares. Surprisingly, the bottom two panels which

show income shares within manufacturing and services, also fit well despite they were

not targeted. On the other hand, the model predicts that the average wage of manual

workers rise relative to abstract workers, contrary to the data.

Overall, the model targeted only to aggregate moments delivers a good fit by task

even within sectors. Next, we turn to how much of each of these trends can explain

other outcomes.

6.5 Counterfactuals

We do two counterfactuals. First, we set am = 0, which gives the model’s predictions

in the absence of any sector-specific TFP growth. Then we set mj = m and recalibrate

m to match output per worker growth, which gives the model’s predictions in the

absence of any task-specific TFP growth. Then we again set am = 0, but recalibrate
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all the mj ’s to match the change in employment shares; this gives the model the best

change to explain the data in the absence of any sector-specific TFP growth. The

results are plotted against the benchmark in figure 12. In the top panels, note that

structural change alone can account for about 15–20 percent of horizontal and vertical

polarization. However, remember that with am, there are no changes in employment

shares within sectors. On the other hand, 12(c) and (e) shows that polarization alone

accounts for about 70 percent of structural change in aggregate, and also among routine

jobs. In management, polarization accounts for about 15% of structural change. In fact,

with only sector-specific TFP growth, we overshoot structural change in management,

because the shift in management is much less than in routine jobs in the data.

Lastly in Figure 13, we show the benchmark and counterfactual (log) GDP per

worker, for aggregate and by sector. For both the aggregate and manufacturing, the

benchmark model lines up almost perfectly with the data; it is slightly less than the

data for services; this is also the case with only a sector-specific TFP growth. In

contrast, if there were only task-specific TFP growth, the model lines up better with

services but underestimates manufacturing.

In sum, task-specific TFP growth can account for 60-70 percent of the observed

structural change between 1980 and 2010. Due to the vertical and horizontal polar-

ization induced by routinization, employment shifts to the sector that uses the routine

task less and management more intensively. Conversely, while sector-specific produc-

tivities are still required to fully account for structural change, we have shown both

analytically and quantitatively that contrary to the data, it does not cause any polar-

ization within sectors. However, it can also account for 15-30 percent of polarization

observed in the aggregate data.

How much is actually routinization? The correlation between the task-TFP growth

rates and RTI measure used in Autor and Dorn (2013) is above 0.4, and while not

perfectly in line, it is visually clear that there is a strong relationship between the two

in Figure 14. The rest we suspect comes from off-shoring and endogenously changes in

the distribution of skill, from which we have abstracted from.

6.6 Long-Run Growth Path

Lastly, we show the long-run dynamics of the model, assuming that the economy starts

in 1980. We assume that the CRRA coefficient θ = 2, as is standard in the data, and

target an asymptotic interest rate of 2%, implying an approximately equal discount

rate ρ. The depreciation rate is set to δ = 0.065, as computed from the NIPA accounts.

As can be seen, both routine and manufacturing continue to decline, with the former

at a faster rate. Likewise, managerial employment continues to rise, dominating the
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Fig. 12: Benchmark vs. Counterfactuals, Polarization and Structural Change
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Fig. 13: Benchmark vs. Counterfactuals, Output
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Fig. 14: Task TFP growth and Routinization
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Fig. 15: Long-run Dynamics

economy. Finally, note that the first 150 years displays structural change and near

balanced growth, consistently with the Kuznets and Kaldor facts.

7 Conclusion

We presented a new model which encompasses job polarization, structural change, and

a modified span of control technology. We showed analytically and the quantitatively

that the model can be a useful tool for analyzing macroeconomic dynamics.
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