Discouraging Deviant Behavior in Monetary Economics

Lawrence Christiano and Yuta Takahashi

Northwestern and Hitotsubashi

May 27, 2019

- Standard, New Keynesian (NK) Monetary Model:
 - ▶ Interest rate rule with big coefficient on inflation ('Taylor rule') and passive fiscal policy:
 - ▶ Big coefficient on inflation: 'Taylor Principle'.

- Standard, New Keynesian (NK) Monetary Model:
 - ▶ Interest rate rule with big coefficient on inflation ('Taylor rule') and passive fiscal policy:
 - ▶ Big coefficient on inflation: 'Taylor Principle'.
- Literature focuses on unique equilibrium local to unique interior steady state.
 - Referred to as 'desired equilibrium' here.
 - ▶ In practice, that equilibrium is 'pretty good' in a welfare sense.

- Standard, New Keynesian (NK) Monetary Model:
 - ▶ Interest rate rule with big coefficient on inflation ('Taylor rule') and passive fiscal policy:
 - ▶ Big coefficient on inflation: 'Taylor Principle'.
- Literature focuses on unique equilibrium local to unique interior steady state.
 - Referred to as 'desired equilibrium' here.
 - ▶ In practice, that equilibrium is 'pretty good' in a welfare sense.
- But, we have reasons to think that there are other equilibria in NK model:
 - ▶ BSGU(01,JET) showed there are two steady states.

- Standard, New Keynesian (NK) Monetary Model:
 - ▶ Interest rate rule with big coefficient on inflation ('Taylor rule') and passive fiscal policy:
 - ▶ Big coefficient on inflation: 'Taylor Principle'.
- Literature focuses on unique equilibrium local to unique interior steady state.
 - Referred to as 'desired equilibrium' here.
 - ▶ In practice, that equilibrium is 'pretty good' in a welfare sense.
- But, we have reasons to think that there are other equilibria in NK model:
 - BSGU(01, JET) showed there are two steady states.
 - In simple monetary models there are also other equilibria:
 - Hyperinflation, deflation, cycling, and chaos.

- Standard, New Keynesian (NK) Monetary Model:
 - ▶ Interest rate rule with big coefficient on inflation ('Taylor rule') and passive fiscal policy:
 - ▶ Big coefficient on inflation: 'Taylor Principle'.
- Literature focuses on unique equilibrium local to unique interior steady state.
 - Referred to as 'desired equilibrium' here.
 - ▶ In practice, that equilibrium is 'pretty good' in a welfare sense.
- But, we have reasons to think that there are other equilibria in NK model:
 - BSGU(01, JET) showed there are two steady states.
 - In simple monetary models there are also other equilibria:
 - Hyperinflation, deflation, cycling, and chaos.
- Message from models: Taylor rule not sufficient to stabilize inflation globally.

• Intuitive motivation used in Taylor (1996), Christiano-Rostagno (2001), and BSGU.

- Intuitive motivation used in Taylor (1996), Christiano-Rostagno (2001), and BSGU.
 - In high inflation, money growth high.

- Intuitive motivation used in Taylor (1996), Christiano-Rostagno (2001), and BSGU.
 - In high inflation, money growth high.
 - Just declare 'we refuse to allow high money growth'.

- Intuitive motivation used in Taylor (1996), Christiano-Rostagno (2001), and BSGU.
 - In high inflation, money growth high.
 - Just declare 'we refuse to allow high money growth'.
 - In deflation, money growth slow.
 - Just declare 'we refuse to allow slow (negative) money growth'.

- Intuitive motivation used in Taylor (1996), Christiano-Rostagno (2001), and BSGU.
 - In high inflation, money growth high.
 - Just declare 'we refuse to allow high money growth'.
 - In deflation, money growth slow.
 - Just declare 'we refuse to allow slow (negative) money growth'.
 - ▶ While inside an inflation monitoring range, follow Taylor rule.

- Intuitive motivation used in Taylor (1996), Christiano-Rostagno (2001), and BSGU.
 - In high inflation, money growth high.
 - Just declare 'we refuse to allow high money growth'.
 - In deflation, money growth slow.
 - Just declare 'we refuse to allow slow (negative) money growth'.
 - ▶ While inside an inflation monitoring range, follow Taylor rule.
- There exists a unique equilibrium under this policy.

- Intuitive motivation used in Taylor (1996), Christiano-Rostagno (2001), and BSGU.
 - In high inflation, money growth high.
 - Just declare 'we refuse to allow high money growth'.
 - In deflation, money growth slow.
 - Just declare 'we refuse to allow slow (negative) money growth'.
 - ▶ While inside an inflation monitoring range, follow Taylor rule.
- There exists a unique equilibrium under this policy.
- Practical examples of escape clauses:

- Intuitive motivation used in Taylor (1996), Christiano-Rostagno (2001), and BSGU.
 - In high inflation, money growth high.
 - Just declare 'we refuse to allow high money growth'.
 - In deflation, money growth slow.
 - Just declare 'we refuse to allow slow (negative) money growth'.
 - ▶ While inside an inflation monitoring range, follow Taylor rule.
- There exists a unique equilibrium under this policy.
- Practical examples of escape clauses:
 - Exigent circumstances clause 13.3 in Federal Reserve Act.

- Intuitive motivation used in Taylor (1996), Christiano-Rostagno (2001), and BSGU.
 - In high inflation, money growth high.
 - Just declare 'we refuse to allow high money growth'.
 - In deflation, money growth slow.
 - Just declare 'we refuse to allow slow (negative) money growth'.
 - ▶ While inside an inflation monitoring range, follow Taylor rule.
- There exists a unique equilibrium under this policy.
- Practical examples of escape clauses:
 - Exigent circumstances clause 13.3 in Federal Reserve Act.
 - European Central Bank Two Pillar Policy.

• Cochrane, Journal of Political Economy, 2011.

- Cochrane, Journal of Political Economy, 2011.
 - Uniqueness proof with the escape clause is correct.

- Cochrane, Journal of Political Economy, 2011.
 - Uniqueness proof with the escape clause is correct.
 - ▶ Undesired equilibria ruled out by govt. commitment to do something impossible.
 - Commitment to 'blow up the economy.'
 - The policy delivering uniqueness is of no economic interest.

- Cochrane, Journal of Political Economy, 2011.
 - Uniqueness proof with the escape clause is correct.
 - ▶ Undesired equilibria ruled out by govt. commitment to do something impossible.
 - Commitment to 'blow up the economy.'
 - The policy delivering uniqueness is of no economic interest.
- Our finding is that Cochrane's conclusion is *not* correct in a production economy.
 - While correct in his endowment economy.

• ACK suggest shrinking the monitoring range to a singleton and letting the escape clause do all the work to uniquely implement desired equilibrium.

- ACK suggest shrinking the monitoring range to a singleton and letting the escape clause do all the work to uniquely implement desired equilibrium.
- ACK conclude: *Taylor principle irrelevant* to implement desired equilibrium.

- ACK suggest shrinking the monitoring range to a singleton and letting the escape clause do all the work to uniquely implement desired equilibrium.
- ACK conclude: *Taylor principle irrelevant* to implement desired equilibrium.
- Equilibrium with ACK policy is knife-edge:

- ACK suggest shrinking the monitoring range to a singleton and letting the escape clause do all the work to uniquely implement desired equilibrium.
- ACK conclude: *Taylor principle irrelevant* to implement desired equilibrium.
- Equilibrium with ACK policy is knife-edge:
 - Lacks robustness to trembles.

- ACK suggest shrinking the monitoring range to a singleton and letting the escape clause do all the work to uniquely implement desired equilibrium.
- ACK conclude: *Taylor principle irrelevant* to implement desired equilibrium.
- Equilibrium with ACK policy is knife-edge:
 - Lacks robustness to trembles.
 - Tiny trembles activate escape clause,

- ACK suggest shrinking the monitoring range to a singleton and letting the escape clause do all the work to uniquely implement desired equilibrium.
- ACK conclude: *Taylor principle irrelevant* to implement desired equilibrium.
- Equilibrium with ACK policy is knife-edge:
 - Lacks robustness to trembles.
 - Tiny trembles activate escape clause,
 - Negative consequences for welfare if there are money demand shocks.

- What makes agents to think that other allocations don't realize under a certain policy?
 - Competitive equilibrium concept is silent about these types of questions.

- What makes agents to think that other allocations don't realize under a certain policy?
 - Competitive equilibrium concept is silent about these types of questions.

- We approach this question by reformulating economy as game.
 - ▶ We can formally ask "what makes you think other equilibria do not arise?".

- What makes agents to think that other allocations don't realize under a certain policy?
 - Competitive equilibrium concept is silent about these types of questions.

- We approach this question by reformulating economy as game.
 - ▶ We can formally ask "what makes you think other equilibria do not arise?".
- We use a refinement of *rationalizability* to answer the big question.

- What makes agents to think that other allocations don't realize under a certain policy?
 - Competitive equilibrium concept is silent about these types of questions.

- We approach this question by reformulating economy as game.
 - ▶ We can formally ask "what makes you think other equilibria do not arise?".
- We use a refinement of *rationalizability* to answer the big question.
 - Rationalizable implementation is more desirable for policy design.
 - Bergemann, Morris, and Tercieux(2011).

Model

Roadmap

- Model
- Background results:
 - ▶ Multiple equilibria with Taylor rule, uniqueness when escape clause is added.

Roadmap

- Model
- Background results:
 - ▶ Multiple equilibria with Taylor rule, uniqueness when escape clause is added.
- How does the escape clause eliminate the non-desired equilibria?
Roadmap

- Model
- Background results:
 - ▶ Multiple equilibria with Taylor rule, uniqueness when escape clause is added.
- How does the escape clause eliminate the non-desired equilibria?
 - How does it discourage deviant behavior?

Roadmap

- Model
- Background results:
 - ▶ Multiple equilibria with Taylor rule, uniqueness when escape clause is added.
- How does the escape clause eliminate the non-desired equilibria?
 - How does it discourage deviant behavior?
- Conclusion

• Government levies taxes, provides monetary transfers:

$$(ar{\mu}_t - 1)\,ar{M}_{t-1}, \quad ar{\mu}_t = ar{M}_t / ar{M}_{t-1},$$

and balances budget in each period.

• Government levies taxes, provides monetary transfers:

$$(ar{\mu}_t - 1)\,ar{M}_{t-1}, \quad ar{\mu}_t = ar{M}_t / ar{M}_{t-1},$$

and balances budget in each period.

• Monetary policy: $\{\bar{\mu}_t\}_{t=0}^{\infty}$ selected so that, in equilibrium,

$$ar{R}_t = ar{R}^* \left(rac{ar{\pi}_t}{ar{\pi}^*}
ight)^{\phi}$$

• Government levies taxes, provides monetary transfers:

$$(ar{\mu}_t - 1)\,ar{M}_{t-1}, \quad ar{\mu}_t = ar{M}_t / ar{M}_{t-1},$$

and balances budget in each period.

• Monetary policy: $\{\bar{\mu}_t\}_{t=0}^{\infty}$ selected so that, in equilibrium,

$$ar{R}_t = ar{R}^* \left(rac{ar{\pi}_t}{ar{\pi}^*}
ight)^{\phi}, \quad ar{\pi}_{t+1} \equiv rac{P_{t+1}}{P_t}$$

• Government levies taxes, provides monetary transfers:

$$(ar{\mu}_t - 1)\,ar{M}_{t-1}, \quad ar{\mu}_t = ar{M}_t / ar{M}_{t-1},$$

and balances budget in each period.

• Monetary policy: $\{\bar{\mu}_t\}_{t=0}^{\infty}$ selected so that, in equilibrium,

$$ar{R}_t = ar{R}^* \left(rac{ar{\pi}_t}{ar{\pi}^*}
ight)^{\phi}, \quad ar{\pi}_{t+1} \equiv rac{P_{t+1}}{P_t}, \quad ar{R}^* \equiv ar{\pi}^*/eta,$$

where $\bar{\pi}^* = \bar{\mu}^* \ge 1$ and \bar{R}^* are *desired* inflation and interest rate.

• A version of 'Limited participation model':

- A version of 'Limited participation model':
 - Lucas (1990), Fuerst (1993), Christiano-Eichenbaum (1992,1995), CEE (1997).

- A version of 'Limited participation model':
 - Lucas (1990), Fuerst (1993), Christiano-Eichenbaum (1992,1995), CEE (1997).
 - Household gets wage at start of t, in time to satisfy cash in advance constraint.

- A version of 'Limited participation model':
 - Lucas (1990), Fuerst (1993), Christiano-Eichenbaum (1992,1995), CEE (1997).
 - ▶ Household gets wage at start of *t*, in time to satisfy cash in advance constraint.
- Household first order conditions:

$$rac{W_t}{P_t} = c_t^{\gamma} l_t^{\psi}, \quad c_t^{-\gamma} = eta c_{t+1}^{-\gamma} rac{ar{R}_t}{ar{\pi}_{t+1}}, \quad ext{`Euler equation'}$$

plus transversality and cash in advance conditions.

$$Y_t = \left[\int_0^1 Y_{i,t}^{\frac{\varepsilon-1}{\varepsilon}} di\right]^{\frac{\varepsilon}{\varepsilon-1}}, \quad \varepsilon > 1$$

$$Y_t = \left[\int_0^1 Y_{i,t}^{rac{arepsilon-1}{arepsilon}} di
ight]^{rac{arepsilon}{arepsilon-1}}, \quad arepsilon > 1.$$

• i^{th} intermediate good firm production: $Y_{t,i} = I_{t,i}$.

$$Y_t = \left[\int_0^1 Y_{i,t}^{rac{arepsilon-1}{arepsilon}} di
ight]^{rac{arepsilon}{arepsilon-1}}, \quad arepsilon > 1.$$

- i^{th} intermediate good firm production: $Y_{t,i} = I_{t,i}$.
- Demand curve:

$$Y_{i,t} = Y_t \left(\frac{p_{i,t}}{P_t}\right)^{-\varepsilon}, \quad P_t \triangleq \left[\int_0^1 p_{i,t}^{1-\varepsilon} di\right]^{\frac{1}{1-\varepsilon}}$$

$$Y_t = \left[\int_0^1 Y_{i,t}^{rac{arepsilon-1}{arepsilon}} di
ight]^{rac{arepsilon}{arepsilon-1}}, \quad arepsilon > 1.$$

- i^{th} intermediate good firm production: $Y_{t,i} = I_{t,i}$.
- Demand curve:

$$Y_{i,t} = Y_t \left(\frac{p_{i,t}}{P_t}\right)^{-\varepsilon}, \quad P_t \triangleq \left[\int_0^1 p_{i,t}^{1-\varepsilon} di\right]^{\frac{1}{1-\varepsilon}}$$

$$Y_t = \left[\int_0^1 Y_{i,t}^{rac{arepsilon-1}{arepsilon}} di
ight]^{rac{arepsilon}{arepsilon-1}}, \quad arepsilon > 1.$$

- i^{th} intermediate good firm production: $Y_{t,i} = I_{t,i}$.
- Demand curve:

$$Y_{i,t} = Y_t \left(\frac{p_{i,t}}{P_t}\right)^{-\varepsilon}, \quad P_t \triangleq \left[\int_0^1 p_{i,t}^{1-\varepsilon} di\right]^{\frac{1}{1-\varepsilon}}$$

$$p_{i,t} =$$

$$Y_t = \left[\int_0^1 Y_{i,t}^{rac{arepsilon-1}{arepsilon}} di
ight]^{rac{arepsilon}{arepsilon-1}}, \quad arepsilon > 1.$$

- i^{th} intermediate good firm production: $Y_{t,i} = I_{t,i}$.
- Demand curve:

$$Y_{i,t} = Y_t \left(\frac{p_{i,t}}{P_t}\right)^{-\varepsilon}, \quad P_t \triangleq \left[\int_0^1 p_{i,t}^{1-\varepsilon} di\right]^{\frac{1}{1-\varepsilon}}$$

$$Y_t = \left[\int_0^1 Y_{i,t}^{rac{arepsilon-1}{arepsilon}} di
ight]^{rac{arepsilon}{arepsilon-1}}, \quad arepsilon > 1.$$

- i^{th} intermediate good firm production: $Y_{t,i} = I_{t,i}$.
- Demand curve:

$$Y_{i,t} = Y_t \left(\frac{p_{i,t}}{P_t}\right)^{-\varepsilon}, \quad P_t \triangleq \left[\int_0^1 p_{i,t}^{1-\varepsilon} di\right]^{\frac{1}{1-\varepsilon}}$$

$$Y_t = \left[\int_0^1 Y_{i,t}^{rac{arepsilon-1}{arepsilon}} di
ight]^{rac{arepsilon}{arepsilon-1}}, \quad arepsilon > 1.$$

- i^{th} intermediate good firm production: $Y_{t,i} = I_{t,i}$.
- Demand curve:

$$Y_{i,t} = Y_t \left(rac{p_{i,t}}{P_t}
ight)^{-arepsilon}, \quad P_t \triangleq \left[\int_0^1 p_{i,t}^{1-arepsilon} di
ight]^{rac{1}{1-arepsilon}}$$

$$\mathcal{D}_{i,t} = \underbrace{\frac{\varepsilon}{\varepsilon - 1}}_{\text{markup}} \times \underbrace{\overline{R}_t}_{\text{interest rate distortion}} \times \underbrace{W_t}_{\text{nominal MC}} \times \underbrace{(1 - \tau_t)}_{\text{tax}} = W_t \Longrightarrow P_t = W_t.$$

• Labor/goods market clearing and firm optimality:

$$1 = rac{W_t}{P_t} \quad \underbrace{=}_{\mathsf{MRS}} \quad c_t^\gamma I_t^\psi$$

• Labor/goods market clearing and firm optimality:

$$1 = \frac{W_t}{P_t} \quad \underbrace{=}_{\mathsf{MRS}} \quad c_t^{\gamma} l_t^{\psi} \quad \underbrace{=}_{c_t = l_t} \quad c_t^{\gamma + \psi}$$

• Labor/goods market clearing and firm optimality:

$$1 = \frac{W_t}{P_t} \quad \underbrace{=}_{\mathsf{MRS}} \quad c_t^{\gamma} l_t^{\psi} \quad \underbrace{=}_{c_t = l_t} \quad c_t^{\gamma + \psi} \Longrightarrow c_t = 1.$$

• Labor/goods market clearing and firm optimality:

$$1 = \frac{W_t}{P_t} \quad \underbrace{=}_{\mathsf{MRS}} \quad c_t^{\gamma} l_t^{\psi} \quad \underbrace{=}_{c_t = l_t} \quad c_t^{\gamma + \psi} \Longrightarrow c_t = 1.$$

• In equilibrium, the Euler equation is the Fisher equation:

$$c_t^{-\gamma} = eta c_{t+1}^{-\gamma} rac{ar{R}_t}{ar{\pi}_{t+1}} \implies 1 = eta rac{ar{R}_t}{ar{\pi}_{t+1}}$$

• Scaled, logged Fisher equation $\beta \bar{R}_t = \bar{\pi}_{t+1}$:

• Scaled, logged Fisher equation $\beta \bar{R}_t = \bar{\pi}_{t+1}$:

$$\frac{\beta \bar{R}_t}{\beta \bar{R}^*} = \frac{\bar{\pi}_{t+1}}{\bar{\pi}^*}$$

• Scaled, logged Fisher equation $\beta \bar{R}_t = \bar{\pi}_{t+1}$:

$$\frac{\beta \bar{R}_t}{\beta \bar{R}^*} = \frac{\bar{\pi}_{t+1}}{\bar{\pi}^*} \to R_t = \pi_{t+1}, \quad (*) \quad \text{where} \quad R_t \equiv \ln\left(\frac{\bar{R}_t}{\bar{R}^*}\right), \pi_{t+1} \equiv \ln\left(\frac{\bar{\pi}_{t+1}}{\bar{\pi}^*}\right).$$

• Scaled, logged Fisher equation $eta ar{R}_t = ar{\pi}_{t+1}$:

$$\frac{\beta \bar{R}_t}{\beta \bar{R}^*} = \frac{\bar{\pi}_{t+1}}{\bar{\pi}^*} \to R_t = \pi_{t+1}, \quad (*) \quad \text{where} \quad R_t \equiv \ln\left(\frac{\bar{R}_t}{\bar{R}^*}\right), \pi_{t+1} \equiv \ln\left(\frac{\bar{\pi}_{t+1}}{\bar{\pi}^*}\right).$$

• Monetary policy in scaled terms:

$$ar{R}_t = ar{R}^* \left(rac{ar{\pi}_t}{ar{\pi}^*}
ight)^\phi$$

• Scaled, logged Fisher equation $eta ar{R}_t = ar{\pi}_{t+1}$:

$$\frac{\beta \bar{R}_t}{\beta \bar{R}^*} = \frac{\bar{\pi}_{t+1}}{\bar{\pi}^*} \to R_t = \pi_{t+1}, \quad (*) \quad \text{where} \quad R_t \equiv \ln\left(\frac{\bar{R}_t}{\bar{R}^*}\right), \pi_{t+1} \equiv \ln\left(\frac{\bar{\pi}_{t+1}}{\bar{\pi}^*}\right).$$

• Monetary policy in scaled terms:

$$ar{R}_t = ar{R}^* \left(rac{ar{\pi}_t}{ar{\pi}^*}
ight)^\phi
ightarrow rac{ar{R}_t}{ar{R}^*} = \left(rac{ar{\pi}_t}{ar{\pi}^*}
ight)^\phi$$

• Scaled, logged Fisher equation $eta ar{R}_t = ar{\pi}_{t+1}$:

$$\frac{\beta \bar{R}_t}{\beta \bar{R}^*} = \frac{\bar{\pi}_{t+1}}{\bar{\pi}^*} \to R_t = \pi_{t+1}, \quad (*) \quad \text{where} \quad R_t \equiv \ln\left(\frac{\bar{R}_t}{\bar{R}^*}\right), \pi_{t+1} \equiv \ln\left(\frac{\bar{\pi}_{t+1}}{\bar{\pi}^*}\right).$$

• Monetary policy in scaled terms:

$$\bar{R}_t = \bar{R}^* \left(\frac{\bar{\pi}_t}{\bar{\pi}^*}\right)^{\phi} \to \frac{\bar{R}_t}{\bar{R}^*} = \left(\frac{\bar{\pi}_t}{\bar{\pi}^*}\right)^{\phi} \to R_t = \phi \pi_t \quad (**).$$

• Scaled, logged Fisher equation $\beta \bar{R}_t = \bar{\pi}_{t+1}$:

$$\frac{\beta \bar{R}_t}{\beta \bar{R}^*} = \frac{\bar{\pi}_{t+1}}{\bar{\pi}^*} \to R_t = \pi_{t+1}, \quad (*) \quad \text{where} \quad R_t \equiv \ln\left(\frac{\bar{R}_t}{\bar{R}^*}\right), \pi_{t+1} \equiv \ln\left(\frac{\bar{\pi}_{t+1}}{\bar{\pi}^*}\right).$$

• Monetary policy in scaled terms:

$$\bar{R}_t = \bar{R}^* \left(\frac{\bar{\pi}_t}{\bar{\pi}^*}\right)^{\phi} \to \frac{\bar{R}_t}{\bar{R}^*} = \left(\frac{\bar{\pi}_t}{\bar{\pi}^*}\right)^{\phi} \to R_t = \phi \pi_t \quad (**).$$

• Combining (*) and (**), yields equilibrium difference equation:

$$\pi_{t+1} = \phi \pi_t$$

• Scaled, logged Fisher equation $\beta \bar{R}_t = \bar{\pi}_{t+1}$:

$$\frac{\beta \bar{R}_t}{\beta \bar{R}^*} = \frac{\bar{\pi}_{t+1}}{\bar{\pi}^*} \to R_t = \pi_{t+1}, \quad (*) \quad \text{where} \quad R_t \equiv \ln\left(\frac{\bar{R}_t}{\bar{R}^*}\right), \pi_{t+1} \equiv \ln\left(\frac{\bar{\pi}_{t+1}}{\bar{\pi}^*}\right).$$

• Monetary policy in scaled terms:

$$\bar{R}_t = \bar{R}^* \left(\frac{\bar{\pi}_t}{\bar{\pi}^*}\right)^{\phi} \to \frac{\bar{R}_t}{\bar{R}^*} = \left(\frac{\bar{\pi}_t}{\bar{\pi}^*}\right)^{\phi} \to R_t = \phi \pi_t \quad (**).$$

• Combining (*) and (**), yields equilibrium difference equation:

$$\pi_{t+1} = \phi \pi_t$$

• Scaled money growth: $\mu_t = \ln\left(\frac{\bar{\mu}_t}{\bar{\pi}^*}\right)$

Properties of Taylor Rule Equilibrium

Multiplicity and Local Uniqueness of Desired Equilibrium

- Multiple equilibria, {π_t}, each indexed by π₀.
- Desired equilibrium is unique equilibrium that never violates monitoring range, [π_I, π_u].
 - If $\pi_0 \neq 0$, then $|\pi_t| \rightarrow \infty$.

Taylor rule with Escape Clause
• Keep using Taylor rule while inflation remains inside *monitoring range*, $\pi_t \in [\pi_l, \pi_u]$,

$$\pi_I \leq 0 \leq \pi_u < \infty.$$

• Keep using Taylor rule while inflation remains inside monitoring range, $\pi_t \in [\pi_I, \pi_u]$,

$$\pi_I \leq 0 \leq \pi_u < \infty.$$

• Activate escape clause: if for some $t, \pi_t \notin [\pi_I, \pi_u]$,

• Keep using Taylor rule while inflation remains inside monitoring range, $\pi_t \in [\pi_I, \pi_u]$,

$$\pi_I \leq 0 \leq \pi_u < \infty.$$

- Activate escape clause: if for some $t, \pi_t \notin [\pi_I, \pi_u]$,
 - then, in t + 1 switch forever to constant money growth, $\mu = 0$.
 - Equilibrium is unique after the activation of the escape clause. (See paper)

• Keep using Taylor rule while inflation remains inside monitoring range, $\pi_t \in [\pi_I, \pi_u]$,

$$\pi_I \leq 0 \leq \pi_u < \infty.$$

- Activate escape clause: if for some $t, \pi_t \notin [\pi_I, \pi_u]$,
 - then, in t + 1 switch forever to constant money growth, $\mu = 0$.
 - Equilibrium is unique after the activation of the escape clause. (See paper)

• Result: under Taylor rule with escape clause, desired equilibrium is the globally unique equilibrium.

Uniqueness of Equilibrium Under Escape Clause

- $\checkmark \ \ {\rm If} \ \pi_0 \neq 0, \ {\rm then} \ |\pi_t| \rightarrow \infty.$
- Activation of escape clause is not consistent with the equilibrium conditions.
- Unique equilibrium associated with $\pi_0 = 0$.

• Suppose $\pi_T > \pi_u$.

• Suppose $\pi_T > \pi_u$. Then,

Taylor rule : $R_T = \phi \pi_T > \pi_u$, because $\phi > 1$

• Suppose $\pi_T > \pi_u$. Then,

Taylor rule :
$$R_T = \phi \pi_T > \pi_u$$
, because $\phi > 1$
Fisher equation : $R_T = \underbrace{\pi_{T+1} = 0}_{\text{Escape clause}} \le \pi_u$

• Suppose $\pi_T > \pi_u$. Then,

Taylor rule :
$$R_T = \phi \pi_T > \pi_u$$
, because $\phi >$
Fisher equation : $R_T = \underbrace{\pi_{T+1} = 0}_{\text{Escape clause}} \le \pi_u$

• So,

$$R_T > \pi_u$$
 and $R_T \leq \pi_u$, contradiction!

Uniqueness of Equilibrium Under Escape Clause

- $\checkmark \ \ {\rm If} \ \pi_0 \neq 0, \ {\rm then} \ |\pi_t| \rightarrow \infty.$
- Activation of escape clause is not consistent with the equilibrium conditions.
- Unique equilibrium associated with $\pi_0 = 0$.

• Cochrane concludes uniqueness is achieved by "blow-up-the-economy threat."

- Cochrane concludes uniqueness is achieved by "blow-up-the-economy threat."
- Reaches this conclusion by studying the question: 'what would happen if the out-of-equilibrium event, π_T > π_u occurred?'

- Cochrane concludes uniqueness is achieved by "blow-up-the-economy threat."
- Reaches this conclusion by studying the question: 'what would happen if the out-of-equilibrium event, π_T > π_u occurred?'
 - In his endowment economy, $c_t = y$ always, in and out of equilibrium

- Cochrane concludes uniqueness is achieved by "blow-up-the-economy threat."
- Reaches this conclusion by studying the question: 'what would happen if the out-of-equilibrium event, π_T > π_u occurred?'
 - In his endowment economy, $c_t = y$ always, in and out of equilibrium
 - ▶ Household Euler equation reduces to Fisher equation in and out of equilibrium.

- Cochrane concludes uniqueness is achieved by "blow-up-the-economy threat."
- Reaches this conclusion by studying the question: 'what would happen if the out-of-equilibrium event, π_T > π_u occurred?'
 - In his endowment economy, $c_t = y$ always, in and out of equilibrium
 - ▶ Household Euler equation reduces to Fisher equation in and out of equilibrium.
 - ► Concludes that under escape clause monetary policy commits to setting *R*_T to two different values:

- Cochrane concludes uniqueness is achieved by "blow-up-the-economy threat."
- Reaches this conclusion by studying the question: 'what would happen if the out-of-equilibrium event, π_T > π_u occurred?'
 - In his endowment economy, $c_t = y$ always, in and out of equilibrium
 - ▶ Household Euler equation reduces to Fisher equation in and out of equilibrium.
 - ► Concludes that under escape clause monetary policy commits to setting *R*_T to two different values: Impossible!!!
 - ▶ R_T implied by Fisher equation and R_T implied by Taylor rule.

- Cochrane concludes uniqueness is achieved by "blow-up-the-economy threat."
- Reaches this conclusion by studying the question: 'what would happen if the out-of-equilibrium event, π_T > π_u occurred?'
 - In his endowment economy, $c_t = y$ always, in and out of equilibrium
 - ▶ Household Euler equation reduces to Fisher equation in and out of equilibrium.
 - ► Concludes that under escape clause monetary policy commits to setting *R*_T to two different values: Impossible!!!
 - ▶ R_T implied by Fisher equation and R_T implied by Taylor rule.
 - No equilibrium exists if $\pi_T > \pi_u$.

- Cochrane concludes uniqueness is achieved by "blow-up-the-economy threat."
- Reaches this conclusion by studying the question: 'what would happen if the out-of-equilibrium event, π_T > π_u occurred?'
 - In his endowment economy, $c_t = y$ always, in and out of equilibrium
 - ▶ Household Euler equation reduces to Fisher equation in and out of equilibrium.
 - ► Concludes that under escape clause monetary policy commits to setting *R*_T to two different values: Impossible!!!
 - R_T implied by Fisher equation and R_T implied by Taylor rule.
 - No equilibrium exists if $\pi_T > \pi_u$.
- Cochrane's answer:

- Cochrane concludes uniqueness is achieved by "blow-up-the-economy threat."
- Reaches this conclusion by studying the question: 'what would happen if the out-of-equilibrium event, π_T > π_u occurred?'
 - In his endowment economy, $c_t = y$ always, in and out of equilibrium
 - ▶ Household Euler equation reduces to Fisher equation in and out of equilibrium.
 - ► Concludes that under escape clause monetary policy commits to setting *R*_T to two different values: Impossible!!!
 - ▶ R_T implied by Fisher equation and R_T implied by Taylor rule.
 - No equilibrium exists if $\pi_T > \pi_u$.
- Cochrane's answer:
 - Escape clause achieves uniqueness by blowing up the economy if $\pi_T \notin [\pi_I, \pi_u]$.

- Cochrane concludes uniqueness is achieved by "blow-up-the-economy threat."
- Reaches this conclusion by studying the question: 'what would happen if the out-of-equilibrium event, π_T > π_u occurred?'
 - In his endowment economy, $c_t = y$ always, in and out of equilibrium
 - ▶ Household Euler equation reduces to Fisher equation in and out of equilibrium.
 - ► Concludes that under escape clause monetary policy commits to setting *R*_T to two different values: Impossible!!!
 - ▶ R_T implied by Fisher equation and R_T implied by Taylor rule.
 - No equilibrium exists if $\pi_T > \pi_u$.
- Cochrane's answer:
 - Escape clause achieves uniqueness by blowing up the economy if $\pi_T \notin [\pi_I, \pi_u]$.
 - ▶ No one would believe the escape clause so that hyperinflation is still a valid equilibrium.

• Diamond and Dybvig (1983) model of bank runs.

- Diamond and Dybvig (1983) model of bank runs.
 - ▶ In absence of regulation, two equilibria: *run*, *no-run*.

- Diamond and Dybvig (1983) model of bank runs.
 - ▶ In absence of regulation, two equilibria: *run*, *no-run*.
- Implementation problem:

- Diamond and Dybvig (1983) model of bank runs.
 - ▶ In absence of regulation, two equilibria: *run*, *no-run*.
- Implementation problem:
 - > Design policy that rules out run equilibrium and keeps no-run equilibrium.

- Diamond and Dybvig (1983) model of bank runs.
 - ▶ In absence of regulation, two equilibria: *run*, *no-run*.
- Implementation problem:
 - > Design policy that rules out run equilibrium and keeps no-run equilibrium.
- Answer to the problem: deposit insurance.

- Diamond and Dybvig (1983) model of bank runs.
 - ▶ In absence of regulation, two equilibria: *run*, *no-run*.
- Implementation problem:
 - > Design policy that rules out run equilibrium and keeps no-run equilibrium.
- Answer to the problem: deposit insurance.
 - Everyone's dominant strategy is *no-run*.

- Diamond and Dybvig (1983) model of bank runs.
 - ▶ In absence of regulation, two equilibria: *run*, *no-run*.
- Implementation problem:
 - > Design policy that rules out run equilibrium and keeps no-run equilibrium.
- Answer to the problem: deposit insurance.
 - Everyone's dominant strategy is *no-run*.
- The answer is uninteresting if govt.'s deposit insurance is not feasible.
 - ► Then no one would believe the insurance, and they might run.

- Diamond and Dybvig (1983) model of bank runs.
 - ▶ In absence of regulation, two equilibria: *run*, *no-run*.
- Implementation problem:
 - Design policy that rules out run equilibrium and keeps no-run equilibrium.
- Answer to the problem: deposit insurance.
 - Everyone's dominant strategy is *no-run*.
- The answer is uninteresting if govt.'s deposit insurance is not feasible.
 - > Then no one would believe the insurance, and they might run.
- Cochrane calls such implementation *Blowing up the Economy*.

- Diamond and Dybvig (1983) model of bank runs.
 - ▶ In absence of regulation, two equilibria: *run*, *no-run*.
- Implementation problem:
 - Design policy that rules out run equilibrium and keeps no-run equilibrium.
- Answer to the problem: deposit insurance.
 - Everyone's dominant strategy is *no-run*.
- The answer is uninteresting if govt.'s deposit insurance is not feasible.
 - > Then no one would believe the insurance, and they might run.
- Cochrane calls such implementation *Blowing up the Economy*.
 - In the monetary model, no one would believe such policy, and hyperinflation is not excluded!

Cochrane's Critique in Our Production Economy

Euler Equation in our Production Economy

Euler Equation in our Production Economy

• Euler Equation in our model:

$$R_{T} = \pi_{T+1} + \gamma \log \left(c_{T+1}/c_{T} \right).$$

Euler Equation in our Production Economy

• Euler Equation in our model:

$$R_{T} = \pi_{T+1} + \gamma \log \left(c_{T+1}/c_{T} \right).$$

- In equilibrium,
 - our Euler equation reduces to Fisher equation because $c_t = 1$ all $t \ge 0$.
Euler Equation in our Production Economy

• Euler Equation in our model:

$$R_{T} = \pi_{T+1} + \gamma \log \left(c_{T+1}/c_{T} \right).$$

- In equilibrium,
 - our Euler equation reduces to Fisher equation because $c_t = 1$ all $t \ge 0$.
- Out of equilibrium,
 - our Euler equation depends on the value of c_{T+1}/c_T .

Euler Equation in our Production Economy

• Euler Equation in our model:

$$R_{T} = \pi_{T+1} + \gamma \log \left(c_{T+1}/c_{T} \right).$$

- In equilibrium,
 - our Euler equation reduces to Fisher equation because $c_t = 1$ all $t \ge 0$.
- Out of equilibrium,
 - our Euler equation depends on the value of c_{T+1}/c_T .
- Euler equation in Cochrane's endowment economy:

$$R_T = \pi_{T+1}$$

▶ in and out of equilibrium because $c_t = Y$ for all $t \ge 0$ (Cochrane (2010, p. 574).

• The critique is only valid in Cochrane's endowment model.

- The critique is only valid in Cochrane's endowment model.
- Suppose $\pi_T > \pi_u$ in our production economy.

- The critique is only valid in Cochrane's endowment model.
- Suppose $\pi_T > \pi_u$ in our production economy. Then,

Taylor rule : $R_T = \phi \pi_T > \pi_u$, because $\phi > 1$

- The critique is only valid in Cochrane's endowment model.
- Suppose $\pi_T > \pi_u$ in our production economy. Then,

Taylor rule :
$$R_T = \phi \pi_T > \pi_u$$
, because $\phi > 1$
Euler equation : $R_T = \underbrace{\pi_{T+1}}_{\text{low, by escape clause}} + \gamma \underbrace{\log(c_{T+1}/c_T)}_{\text{endogenously determined}}$

- The critique is only valid in Cochrane's endowment model.
- Suppose $\pi_T > \pi_u$ in our production economy. Then,

Taylor rule :
$$R_T = \phi \pi_T > \pi_u$$
, because $\phi > 1$
Euler equation : $R_T = \underbrace{\pi_{T+1}}_{\text{low, by escape clause}} + \gamma \underbrace{\log(c_{T+1}/c_T)}_{\text{endogenously determined}}$

• Apparently consistent with a familiar and coherent narrative:

- The critique is only valid in Cochrane's endowment model.
- Suppose $\pi_T > \pi_u$ in our production economy. Then,

Taylor rule :
$$R_T = \phi \pi_T > \pi_u$$
, because $\phi > 1$
Euler equation : $R_T = \underbrace{\pi_{T+1}}_{\text{low, by escape clause}} + \gamma \underbrace{\log(c_{T+1}/c_T)}_{\text{endogenously determined}}$

- Apparently consistent with a familiar and coherent narrative:
 - if $\pi_T > \pi_u$ then real rate, $R_T \pi_{T+1}$, very high and c_T very low.

- The critique is only valid in Cochrane's endowment model.
- Suppose $\pi_T > \pi_u$ in our production economy. Then,

Taylor rule :
$$R_T = \phi \pi_T > \pi_u$$
, because $\phi > 1$
Euler equation : $R_T = \underbrace{\pi_{T+1}}_{\text{low, by escape clause}} + \gamma \underbrace{\log(c_{T+1}/c_T)}_{\text{endogenously determined}}$

- Apparently consistent with a familiar and coherent narrative:
 - if $\pi_T > \pi_u$ then real rate, $R_T \pi_{T+1}$, very high and c_T very low.
 - Iooks like a stylized Volcker recession.

- The critique is only valid in Cochrane's endowment model.
- Suppose $\pi_T > \pi_u$ in our production economy. Then,

Taylor rule :
$$R_T = \phi \pi_T > \pi_u$$
, because $\phi > 1$
Euler equation : $R_T = \underbrace{\pi_{T+1}}_{\text{low, by escape clause}} + \gamma \underbrace{\log(c_{T+1}/c_T)}_{\text{endogenously determined}}$

- Apparently consistent with a familiar and coherent narrative:
 - if $\pi_T > \pi_u$ then real rate, $R_T \pi_{T+1}$, very high and c_T very low.
 - Iooks like a stylized Volcker recession.
 - escape clause looks like an (out-of-equilibrium) Taylor Principle.

- The critique is only valid in Cochrane's endowment model.
- Suppose $\pi_T > \pi_u$ in our production economy. Then,

Taylor rule :
$$R_T = \phi \pi_T > \pi_u$$
, because $\phi > 1$
Euler equation : $R_T = \underbrace{\pi_{T+1}}_{\text{low, by escape clause}} + \gamma \underbrace{\log(c_{T+1}/c_T)}_{\text{endogenously determined}}$

- Apparently consistent with a familiar and coherent narrative:
 - if $\pi_T > \pi_u$ then real rate, $R_T \pi_{T+1}$, very high and c_T very low.
 - Iooks like a stylized Volcker recession.
 - escape clause looks like an (out-of-equilibrium) Taylor Principle.
- So, Cochrane's blow-up-the-economy argument fails in production economy.

How Do We Answer Cochrane's Question?

How Do We Answer Cochrane's Question?

• What is it about the escape clause that implies $\pi_T > \pi_u$ cannot occur in equilibrium?

How Do We Answer Cochrane's Question?

- What is it about the escape clause that implies $\pi_T > \pi_u$ cannot occur in equilibrium?
- We need an equilibrium concept which allows for out-of-equilibrium.

Exit Ramp Off Equilibrium

• Our 'Strategy Equilibrium' related to Bassetto (2002,2005) and ACK (2010):

- Our 'Strategy Equilibrium' related to Bassetto (2002,2005) and ACK (2010):
 - ▶ Reinterpret rational expectations equilibrium as a fixed point of a best response function.
 - ► Nash Equilibrium.

- Our 'Strategy Equilibrium' related to Bassetto (2002,2005) and ACK (2010):
 - ▶ Reinterpret rational expectations equilibrium as a fixed point of a best response function.
 - Nash Equilibrium.
 - > Then we can understand the economics of why a non-fixed point fails to be an equilibrium.

- Our 'Strategy Equilibrium' related to Bassetto (2002,2005) and ACK (2010):
 - ▶ Reinterpret rational expectations equilibrium as a fixed point of a best response function.
 - Nash Equilibrium.
 - > Then we can understand the economics of why a non-fixed point fails to be an equilibrium.
- Best response analysis goes back at least to Diamond and Dybvig (1983)
 - Describe what would happen, off-equilibrium paths, and discourage undesirable actions.

• To set a price, intermediate firms need a belief about W_t . Why?

- To set a price, intermediate firms need a belief about W_t . Why?
 - W_t is jointly determined in labor market and labor supply depends on P_t .

- To set a price, intermediate firms need a belief about W_t . Why?
 - W_t is jointly determined in labor market and labor supply depends on P_t .
 - > So, intermediate firms need a conjecture, P_t^c , about aggregate prices, P_t .

$$p_{i,t} = P_t^c imes rac{W_t}{P_t^c}$$

- To set a price, intermediate firms need a belief about W_t . Why?
 - W_t is jointly determined in labor market and labor supply depends on P_t .
 - So, intermediate firms need a conjecture, P_t^c , about aggregate prices, P_t .

$$p_{i,t} = P_t^c imes rac{W_t}{P_t^c}$$

- We divide the period into morning and afternoon.
 - ▶ In the morning, intermediate firms set $p_{i,t}$ simultaneously given conjecture P_t^c .

- To set a price, intermediate firms need a belief about W_t . Why?
 - W_t is jointly determined in labor market and labor supply depends on P_t .
 - ▶ So, intermediate firms need a conjecture, P_t^c , about aggregate prices, P_t .

$$p_{i,t} = P_t^c imes rac{W_t}{P_t^c}$$

- We divide the period into morning and afternoon.
 - ▶ In the morning, intermediate firms set $p_{i,t}$ simultaneously given conjecture P_t^c .
 - ► In the afternoon, the rest happens so W_t/P_t^c is determined as a function of "history," (h_{t-1}, P_t^c) . $p_{i,t} = P_t^c \times \frac{W_t}{P^c} = P_t^c (c_t^b)^{\gamma+\psi} = P_t^c (c_t^b (h_{t-1}, P_t^c))^{\gamma+\psi}$.

Best Response Function

Best Response Function

• Scaling and logging, we get the individual best response F.

$$\underbrace{\ln \frac{p_{i,t}}{P_{t-1}\bar{\mu}^*}}_{x_{i,t}} = \ln \left[\frac{P_t}{P_{t-1}\bar{\mu}^*} \times \left(c_t^b \left(h_{t-1}, P_t^c \right) \right)^{\gamma+\psi} \right] \equiv F\left(h_{t-1}, \pi_t^c \right).$$

Best Response Function

• Scaling and logging, we get the individual best response F.

$$\underbrace{\ln \frac{P_{i,t}}{P_{t-1}\bar{\mu}^*}}_{x_{i,t}} = \ln \left[\frac{P_t}{P_{t-1}\bar{\mu}^*} \times \left(c_t^b \left(h_{t-1}, P_t^c \right) \right)^{\gamma+\psi} \right] \equiv F\left(h_{t-1}, \pi_t^c \right).$$

• $F(h_{t-1}, \pi_t^c)$ is the best response function

$$x_{i,t} = F(h_{t-1}, \pi_t^c).$$

Continuation Equilibrium

• Let

$$egin{aligned} & m{a}_t = ig(I_t, \pi_t, m{c}_t, m{R}_t, m{W}_t, \mu, ar{M}_t ig) \ & m{h}_{t-1} = ig(m{a}_0, m{a}_1, ..., m{a}_{t-1} ig) \,. \end{aligned}$$

Continuation Equilibrium

Let

$$a_t = (I_t, \pi_t, c_t, R_t, W_t, \mu, \bar{M}_t)$$

 $h_{t-1} = (a_0, a_1, ..., a_{t-1}).$

Definition

A continuation equilibrium conditional on (h_{t-1}, π_t^c) is a sequence, a_{t+s} , for $s \ge 0$, with two properties:

- (a) a_{t+s} , s > 0 satisfies all t + s equilibrium conditions.
- (b) a_t satisfies all time t equilibrium conditions except intermediate good firm optimality.

Strategy Equilibrium

Definition

A strategy equilibrium is a competitive equilibrium with the property that for each possible history h_{t-1} : (i) there is a well-defined continuation equilibrium corresponding to any value of π_t^c and (ii) there exists a π_t^c that is a fixed point:

 $\pi_t^c = F(h_{t-1}, \pi_t^c).$

Strategy Equilibrium

Definition

A strategy equilibrium is a competitive equilibrium with the property that for each possible history h_{t-1} : (i) there is a well-defined continuation equilibrium corresponding to any value of π_t^c and (ii) there exists a π_t^c that is a fixed point:

 $\pi_t^c = F(h_{t-1}, \pi_t^c).$

Comment:

Property: for on-path h_{t-1} and when competitive equilibrium unique, then π^c_t equals competitive π_t.

Strategy Equilibrium

Definition

A strategy equilibrium is a competitive equilibrium with the property that for each possible history h_{t-1} : (i) there is a well-defined continuation equilibrium corresponding to any value of π_t^c and (ii) there exists a π_t^c that is a fixed point:

$$\pi_t^c = F(h_{t-1}, \pi_t^c).$$

Comment:

- Property: for on-path h_{t-1} and when competitive equilibrium unique, then π^c_t equals competitive π_t.
- Part (i) provides an exit-ramp from the competitive equilibrium in each t.
 - Allows us to think coherently about why people privately choose not to take the exit ramp.
 - Can ask 'why does the escape strategy' trim non-desired equilibria?

Why is $\pi_T^c > \pi_u$ not an Equilibrium Under Escape Clause?

• Easy to show that actual inflation would be:

$$F(h_{T-1}, \pi_T^c) = \pi_T^c + \underbrace{(\gamma + \psi) \left[\frac{\phi}{1 - \gamma} \pi_T^c \right]}_{\text{real wage}}.$$

• Intermediate firms expect govt. to depress economy (i.e., reduce c_T) by raising real rate.
Why is $\pi_T^c > \pi_u$ not an Equilibrium Under Escape Clause?

• Easy to show that actual inflation would be:

$$F(h_{T-1}, \pi_T^c) = \pi_T^c + \underbrace{(\gamma + \psi) \left[\frac{\phi}{1 - \gamma} \pi_T^c \right]}_{\text{real wage}}.$$

- Intermediate firms expect govt. to depress economy (i.e., reduce c_T) by raising real rate.
- With low output, labor demand is low

Why is $\pi_T^c > \pi_u$ not an Equilibrium Under Escape Clause?

• Easy to show that actual inflation would be:

$$F(h_{T-1}, \pi_T^c) = \pi_T^c + \underbrace{(\gamma + \psi) \left[\frac{\phi}{1 - \gamma} \pi_T^c \right]}_{\text{real wage}}.$$

- Intermediate firms expect govt. to depress economy (i.e., reduce c_T) by raising real rate.
- With low output, labor demand is low $\rightarrow W_T/P_T$ low.

Why is $\pi_T^c > \pi_u$ not an Equilibrium Under Escape Clause?

• Easy to show that actual inflation would be:

$$F(h_{T-1}, \pi_T^c) = \pi_T^c + \underbrace{(\gamma + \psi) \left[\frac{\phi}{1 - \gamma} \pi_T^c \right]}_{\text{real wage}}.$$

- Intermediate firms expect govt. to depress economy (i.e., reduce c_T) by raising real rate.
- With low output, labor demand is low $\rightarrow W_T/P_T$ low.
- So, intermediate firms post lower prices, and actual inflation is low,

$$\pi_T^c > F(\pi_T^c)$$

No fixed points.

• We use a refinement of "rationalizability" for a theory of expectation.

- We use a refinement of "rationalizability" for a theory of expectation.
 - \blacktriangleright Pick an arbitrary big compact set $\Pi \subset \mathbb{R}$ for firms' action space.

- We use a refinement of "rationalizability" for a theory of expectation.
 - Pick an arbitrary big compact set $\Pi \subset \mathbb{R}$ for firms' action space.
 - Firms are certain that other firms only choose their action from $F(\Pi)$.
 - ► A firm knows others are rational.

- We use a refinement of "rationalizability" for a theory of expectation.
 - Pick an arbitrary big compact set $\Pi \subset \mathbb{R}$ for firms' action space.
 - Firms are certain that other firms only choose their action from $F(\Pi)$.
 - ► A firm knows others are rational.
 - Then firms are now certain that other firms only choose from $F(F(\Pi))$.
 - A firm knows others knows firms are rational.

- We use a refinement of "rationalizability" for a theory of expectation.
 - Pick an arbitrary big compact set $\Pi \subset \mathbb{R}$ for firms' action space.
 - Firms are certain that other firms only choose their action from $F(\Pi)$.
 - ► A firm knows others are rational.
 - Then firms are now certain that other firms only choose from $F(F(\Pi))$.
 - A firm knows others knows firms are rational.
 - Keep continuing this forward induction...
 - Firms only play an action from $F^{\infty}(\Pi)$.

- We use a refinement of "rationalizability" for a theory of expectation.
 - Pick an arbitrary big compact set $\Pi \subset \mathbb{R}$ for firms' action space.
 - Firms are certain that other firms only choose their action from $F(\Pi)$.
 - A firm knows others are rational.
 - Then firms are now certain that other firms only choose from $F(F(\Pi))$.
 - A firm knows others knows firms are rational.
 - Keep continuing this forward induction...
 - Firms only play an action from $F^{\infty}(\Pi)$.

Proposition

If $\gamma > 1$ and $1 < \phi \leq 2\frac{\gamma - 1}{\gamma + \psi}$, then for any large compact set Π , $F^{\infty}(\Pi) = \{0\}$.

- Rational firms convince themselves that desired equilibrium occurs!
 - A desired property for policy design.

• Escape clause prevents undesired inflation by a feasible threat to crash the economy (like Volcker did) if it happened.

• Escape clause prevents undesired inflation by a feasible threat to crash the economy (like Volcker did) if it happened.

• Logic by which it works looks like an 'Out-of-equilibrium Taylor Principle'.

• Escape clause prevents undesired inflation by a feasible threat to crash the economy (like Volcker did) if it happened.

• Logic by which it works looks like an 'Out-of-equilibrium Taylor Principle'.

• Common knowledge of rationality is enough to ensure that firms spontaneously come up with the rational expectation.

• Taylor Principle: When inflation is high, raise R_t sharply and (hopefully) this will slow down the economy and stabilize inflation around desired rate.

- Taylor Principle: When inflation is high, raise R_t sharply and (hopefully) this will slow down the economy and stabilize inflation around desired rate.
- Often, $\phi > 1$ is referred to as the 'Taylor Principle'.
 - But, only seems to deliver on its promise in neighborhood of desired equilibrium.
 - Does not rule out other, non-desired, equilibria.

- Taylor Principle: When inflation is high, raise R_t sharply and (hopefully) this will slow down the economy and stabilize inflation around desired rate.
- Often, $\phi > 1$ is referred to as the 'Taylor Principle'.
 - But, only seems to deliver on its promise in neighborhood of desired equilibrium.
 - Does not rule out other, non-desired, equilibria.
- We showed that the Taylor rule with $\phi > 1$ and an escape clause:

- Taylor Principle: When inflation is high, raise R_t sharply and (hopefully) this will slow down the economy and stabilize inflation around desired rate.
- Often, $\phi > 1$ is referred to as the 'Taylor Principle'.
 - But, only seems to deliver on its promise in neighborhood of desired equilibrium.
 - Does not rule out other, non-desired, equilibria.
- We showed that the Taylor rule with $\phi > 1$ and an escape clause:
 - Rules out non-desired equilibria by an off-equilibrium version of Taylor Principle.

- Taylor Principle: When inflation is high, raise R_t sharply and (hopefully) this will slow down the economy and stabilize inflation around desired rate.
- Often, $\phi > 1$ is referred to as the 'Taylor Principle'.
 - But, only seems to deliver on its promise in neighborhood of desired equilibrium.
 - Does not rule out other, non-desired, equilibria.
- We showed that the Taylor rule with $\phi > 1$ and an escape clause:
 - Rules out non-desired equilibria by an off-equilibrium version of Taylor Principle.
 - Caveat: regime-shift to constant money rule does not always work when money demand is interest elastic.

- Taylor Principle: When inflation is high, raise R_t sharply and (hopefully) this will slow down the economy and stabilize inflation around desired rate.
- Often, $\phi > 1$ is referred to as the 'Taylor Principle'.
 - But, only seems to deliver on its promise in neighborhood of desired equilibrium.
 - Does not rule out other, non-desired, equilibria.
- We showed that the Taylor rule with $\phi > 1$ and an escape clause:
 - Rules out non-desired equilibria by an off-equilibrium version of Taylor Principle.
 - Caveat: regime-shift to constant money rule does not always work when money demand is interest elastic.
 - ▶ Need to revisit New Keynesian canon that thinking about money demand is unnecessary.