Money in the Production Function Some Policy Implications

Edward C. Prescott

May 27, 2019

10th Annual CIGS Conference on Macroeconomic Theory and Policy

Microeconomic Science

- Microeconomics and Macroeconomics are different Sciences
- Microeconomics is a powerful science for addressing micro issues
- But in addressing macro problems it has failed spectacularly (Lucas and Sargent)

Macroeconomic Science

- It is a unified hard quantitative science
- Conceptually it is simple
 - Smart undergraduates can master the basic concepts in a single course
 - Supply and demand are not used in this science
 - General equilibrium reasoning is used with agents on both sides of every transaction
 - All accounting identities must hold for the model economy being used to address the given question

- To answer the question: What is the aggregate consequences of some interest rate targeting regime?
- Until recently when the President of the Minneapolis Federal Reserve Bank asked me what the Fed should do, my answer was that economic theory does not provide an answer.
- Today I will report on a recent advance of macro theory that can be helpful to answer such questions.

Motivation

- Technology is rapidly advancing in the information processing area
- This is changing the monetary/payment system
- A currency–less fiat monetary system is now feasible (Sweden)
- U.S. is moving in this direction

History of Aggregate Monetary Theory

- Using the Stokey and Lucas (1981) framework, money was introduced into dynamic macroeconomics
- The finding was that with this household transaction framework monetary policy had virtually no consequences for real output and employment (Cooley and Hansen, 1989)

History of Value

• The price of a good is in units of value

- Commodity value system
 - Value is in units of a commodity, e.g. ounces of gold/silver
 - Used in U.S. before 1933

- Fiat currency value system
 - Value is in units of currency, e.g. dollar, pound, etc.
 - Its use economizes on resources needed to acquire gold
 - Used in U.S. after 1933

What is the unit of value in a currencyless system?

Fiat Value System

- Fiat value is a form of government debt
- Prices are in units of *fiat value*
- Name of units of value is unimportant

Fiat Value System

- Use valuation equilibrium theory of Debreu (1954)
 - Commodity space is a linear topological space
 - "Value services" is a commodity
- Use sequence of valuation equilibria
 - This is the way statistics are collected (quarterly)

- Fiat value is the numeraire
 - GE theory prior to Debreu had finite number of goods and only *relative* values of commodities were determined
 - In fiat value system, prices are in units of fiat value

Traditional and Commercial Banks

- Traditional Banks
 - Played important role in commodity value system
 - Fractional reserves reduced the amount of commodity used by the payment system

- Commercial Banks
 - Play important role in fiat currency value system
 - Accept demand deposits, originate loans, and have fractional reserves
 - But, managing assets is their major activity

Banks in a Fiat Value System

Proposal: totally separate transaction services from asset management services

Transaction Services

- Businesses hold large amounts of cash reserves
- Businesses hold over \$10 trillion in highly liquid assets that earn zero real return
- Services of these "cash reserves" are a factor of production
- Just like human capital and other capital services

Asset Management

- Trusts that do not accept demand deposits
- They pool savings and make investments
- This is the way most lending to finance business is done
 - Checkable deposits only 0.08 annual GNP
 - Time and savings deposits only 0.57 GNP
 - Yet business borrowing is 2.5 GNP (Flow of Funds L104, L105)
- BlackRock alone manages 0.25 GNP of debt assets

Key Features of System

- Fiat value is a form of government debt
- Prices are in units of fiat value
- Fiat value is a capital stock
- It is rented to the business sector

Note: Money is short for fiat value in what follows

The Model Used to Explore How Such a System Would Operate

Aggregate Production Properties

- Want marginal product of money to be zero if money services input is large enough
- Want standard production function properties (McKenzie)
 - Constant returns to scale (CRS)
 - Concavity
 - Increasing
 - Differentiable
- An isoquant defines a production function, given CRS

Technology

- *h* labor, *k* capital services, *m* money services, *y* output, *A*, λ and θ parameters, and $z_t = k_t^{\theta} h_t^{1-\theta}$
- CRS aggregate production function

$$y_t = f(m_t, z_t) = \begin{cases} A\lambda^{1-f} z_t & \text{if } m_t = \lambda z_t \\ Az_t^f m_t^{1-f} & \text{if } m_t < \lambda z_t \end{cases}$$

A Production Function Isoquant

Technology

• When $m/z = \lambda$, the marginal product of money is zero

• We term this "satiation"

• When satiation, the marginal product of money is zero

Households and Their Preference Ordering

Measure one of identical households

• Preferences ordered by

$$\sum_{t=0}^{\infty} (1+\rho)^{-t} [\log c_t + \alpha \log(1-h_t)]$$

h is the fraction of time allocated to the market

Government Policy Variables

- Variables
 - π : inflation rate
 - au : labor tax rate
 - g: gov't purchases of final product
 - ψ : transfers to household
 - *m* : stock of money
 - *b* : stock of gov't bonds issued
 - i_m : interest rate on money
 - i_b : interest rate on gov't bonds

Government

- Government pays interest on two types of debt:
 - i_m : **nominal** interest paid on money
 - i_b : **nominal** interest paid on bonds
 - Absent monetary satiation i_h is the bigger

Note

- An equilibrium condition is $r_m + i_m = i_b$
- When monetary satiation, the rental price of money services is zero and $i_m = i_b$

Budget Constraints

• All quantities are real

• All prices are **nominal**

Budget Constraints

- Household budget constraint is $c + [k' - (1 - \delta)k] + [(1 + \pi)m' - m] + [(1 + \pi)b' - b] = (1 - \tau)wh + r_kk + r_mm + i_mm + i_bb + \psi$
- HH consume and invest in capital, money, and bonds
- HH income from business sector (wage, capital rental, money rental) and from government (interest received on money and bonds, transfers)

Budget Constraints

• Firm budget constraint is

$$y = wh + r_k k + r_m m$$

 Constant returns to scale so no economic profits in equilibrium

Budget Identity

Government budget identity is

$$g + \psi + i_m m + i_b b =$$

$$\tau w h + \left[m' (1 + \pi) - m \right] + \left[b' (1 + \pi) - b \right]$$

- Gov't consumes, transfers to HH and pays interest on *m* and *b*
- Gov't finances its expenditures from labor taxes, producing money (inflation tax), and new debt.

Balanced Growth Analysis

- Dynasty and overlapping generations in our model economies are essentially equivalent
- We use dynasty because it simplifies the presentation
- In balanced growth, stocks are constant relative to output, so we will drop the prime on beginning of next period's stocks

A Note on Government Financing

• In balance growth, the government budget constraint is

$$g + \psi + i_m m + i_b b = \tau w h + \pi m + \pi b$$

 Government revenue is from the labor tax and from the inflation "tax"

 Money production is a government monopoly

Equilibrium

- Prices are $\{w_{t}, r_{kt}, r_{mt}, i_{mt}, i_{bt}\}_{t=0}^{\infty}$
- Equilibrium conditions are
 - Given prices and budget constraint, **household** chooses its best $\{c_t, h_t, k_{t+1}, m_{t+1}, b_{t+1}\}_{t=0}^{\infty}$
 - Given prices, **firm** chooses $\{k_t, h_t, m_t\}$ that maximizes its value for every *t*
 - The **government** selection of $\{g_t, \psi_t, b_{t+1}, m_{t+1}, \pi_t, \tau_t\}_{t=0}^{\infty}$ are such that its budget identity is satisfied for all t
- We study balanced growth only

Baseline Economy

- We have specified a parametric set of economies
- We choose a set of parameters so that model matches selected U.S. National Income and Product Account data (following Larry Klein)
- Targets:
 - Consumption/investment shares
 - Fraction of time worked
 - -Asset stocks to output ratios
 - Factor income shares

Baseline Economy: *Parameters*

Preference and Technology Parameters

α	relative preference for leisure	0.68
β	discount rate (annual)	0.98
δ	depreciation rate (annual)	0.04
θ	capital cost share	0.35
φ	money cost share	0.01
A	TFP	1.13
λ	money satiation parameter	2

Baseline Economy: *Parameters*

Policy Parameters

g / y	gov't public goods share	0.05
ψ/y	transfer share	0.25
m / y	money output ratio	1.50
b / y	gov't privately held debt to output	0.50
τ	labor tax rate	0.52
i_m	interest rate on money	6.54%
i_b	interest rate on gov't bonds	7.21%
π	inflation rate (annual %)	2.00%

Baseline Economy: National Accts

 This theory necessitates a change in how National Accounts are constructed

National Accounts

Product	1.08
HH Consumption	0.68
Gov't C & Invest.	0.05
HH Invest. in k	0.27
Money Production	0.08
	4 00
income	1.08
Wages	1.08 0.64
Wages Depreciation of Capital	1.08 0.64 0.15
Wages Depreciation of Capital Capital Rental Income	1.08 0.64 0.15 0.19
Wages Depreciation of Capital Capital Rental Income Money Rental Income	1.08 0.64 0.15 0.19 0.01

Government Accounts

Receipts	0.44
Tax Revenue	0.33
Money Issuance	0.08
Debt Issuance	0.03
Expenditures	0.44
Gov't Consumption	0.05
Transfers to HH	0.25
Bond Interest Payments	0.04
Manay Interact Daymanta	0.10

Three Explorations

- Government policy variables $\{\pi, \tau, i_m, \frac{m}{v}, \frac{b}{v}, \frac{\psi}{v}, \frac{g}{v}\}$
- We are concerned with MONETARY policy not FISCAL policy.
- Therefore, fix government debt, spending, and transfers relative to output y
- Gov't policy variables $\{\pi, \tau, i_m, \frac{m}{v}\}$
- Restriction on two MONETARY policy variables
 - interest on money and money stock cannot both be fixed.

1. Monetary Policy with Endogenous Tax

Rate

• What consequences do money supply policies have?

Policy Regimes Fixed across regimes $\left\{\frac{g}{v}=0.05, \ \frac{\psi}{v}=0.25, \ \frac{b}{v}=0.50, \ \pi=0.02\right\}$ Varies across regimes $\left\{\frac{m}{v}, i_m, \tau\right\}$

Labor tax rates for different interest rate targets

Welfare for interest rate target regimes

Implications

- In a regime with a fixed inflation rate target, FISCAL POLICY must respond to changes in INTEREST RATE POLICY
- Hump shape welfare arises for two reasons
 - Higher interest means more money => more output
 - Higher interest means high labor tax => less output
- Welfare highest when interest on money is 6% *in this economy*

2. Monetary Policy with Endogenous Inflation Rate

• What consequences do money supply policies have?

Policy Regimes Fixed across regimes $\left\{\frac{g}{v}=0.05, \ \frac{\psi}{v}=0.25, \ \frac{b}{v}=0.50, \ \tau=0.52\right\}$ Varies across regimes $\left\{\frac{m}{v}, i_m, \pi\right\}$

Welfare for interest rate target regimes

Friedman Rule

- Friedman Rule calls for nominal return on money equal to social cost of producing money (which is zero for our economies)
- Achieved with deflation equal to real interest rate
- Friedman rule not feasible with a fiat valued currency system (see McAndrews 2015)

Friedman Satiation

- With a fiat value system, Friedman
 Satiation can be implemented with positive inflation!
- With satiation $r_m = 0$; $i_m = i_b$
- Private marginal cost of holding money equals the social cost of producing money

With satiation, rental price of money is zero

3. Inflation Rate Targeting Regimes

• What are the consequences of different inflation rate targets?

Policy RegimeFixed across regimes
$$\left\{ \frac{g}{y} = 0.05, \quad \frac{\psi}{y} = 0.25, \quad \frac{b}{y} = 0.5, \quad i_m = 0.06 \right\}$$
Varies across regimes $\left\{ \pi, \tau, \frac{m}{y} \right\}$

Labor tax rates for inflation rate target regimes

Welfare for inflation rate target regimes

Implications

- Welfare indicator highest when inflation is 2.5% and labor tax rate is 49.5% (lower than baseline)
- Some inflation is an effective method of financing government consumption
- High inflation is not an effective financing option because labor tax rate decreases very little

Possible Problems and Advantages

Possible Problems with This System

Before initiating this system, should consider:

- Privacy protection and time consistency
 - See work of Rabee Tourky (ANU) who makes a case for privacy protection
 - Will not deal with these big problems here
- Shadow Banking
 - There is a way to deal with this problem

Possible Solution to the Shadow Banking Problem

- Tax net interest income at a 100% rate for limited liability businesses
- This effectively eliminates businesses that borrow low from one group and lend high to another

Advantages of System

- No bank runs
- No too-big-to-fail problem
- No need for costly regulation as with the U.S. deposit insurance system
 - These costs are about one-half a percent per year of deposits at banks

Conclusion

- We explored a fiat value system which is technically possible given the current state of information-processing technology
- We put money services in the aggregate production function

Conclusion Continued

- It is consistent with both traditional money demand functions and with zero nominal interest rates for extended periods (Japan, 1992-2018)
- Much more research is needed
- Whether going to a currency-less system is good or bad is an open question

Conclusion Continued

 We have shown that monetary policy and fiscal policy are not independent, and evaluating a policy regime is an advanced exercise in public finance