Life-Cycle Model	

Health Insurance Reform: The impact of a Medicare Buy-In

Gary Hansen (UCLA) Minchung Hsu (GRIPS) Junsang Lee (KDI)

August 8, 2011 CIGS Conference on Macroeconomic Theory and Policy

Motivation	Life-Cycle Model	

Motivation

Table: Insurance coverage in the US (2008)					
	Percentage uninsured				
Age	19–34	35–54	55–64		
%	28	18	13		
Unhealthy among the uninsured					
%	7	17	26		
-					

Source: The Henry J. Kaiser Family Foundation.

Motivation	Life-Cycle Model	
Mativation		

Motivation

- Health care reform: how do we reduce the number of uninsured? Will the reform improve welfare?
- A universal health insurance law has been passed however, still controversial.
- Possibilities:
 - Public option More affordable for some than individual private insurance since allows for pooling.
 - Single payer "Medicare for all"
 - Individual mandate.
 - All are controversial in the US.

What we do

- We consider a modest version of a public option: a Medicare buy-in optional for people 55-64.
 - Potentially a political compromise given opposition to universal health insurance.
 - Idea has been proposed by President Clinton in the early 1990's.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

- Compare with current system of individual health plans (IHI) and group insurance provided through employer (EHI).
- Compare with individual mandate

Questions & Methodology

Issues:

- Does Medicare buy-in actually reduce the number of uninsured? Or, does adverse selection lead to no one purchasing this insurance?
- What subsidy is required to get all 55-64 year olds to be insured? How much would this cost?
- Does this insurance affect labor participation since individuals can rely less on EHI?
- How does welfare compare across different arrangements?
- Method of Analysis:
 - Construct a general equilibrium life-cycle model with endogenous health insurance choice
 - Perform quantitative policy experiments

イロト 不得下 イヨト イヨト 二日

Related Literature

- Auerbach and Kotlikoff (1987) and growing literature calibrated general equilibrium life cycle model to study dynamic fiscal policy and social insurance programs.
- Attansio, Kitao and Violante (2008) closest to us, evaluate alternative funding schemes for Medicare given projected aging of population.
- Jeske and Kitao (2009) study adverse selection and welfare improving role of tax deductible premiums for group insurance programs.

Model Economy

- A general equilibrium life-cycle model with
 - 1. Endogenous demand for private health insurance
 - 2. Endogenous labor supply (indivisible)
 - Market incompleteness due to a borrowing constraint and lack of annuity markets.
 - 4. Uncertainty due to
 - income shocks
 - health status
 - medical expenditure shocks depends on health status and age
 - length of life survival probability depends on health status and age

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Model Economy: Demographics

- A continuum of finitely-lived households
- Overlapping generations of individuals of age j = 1, 2, ..., J, where j = 1 corresponds to age 21 and J = 80 corresponds to age 100.
- Lifespan is uncertain
 - 1. $\rho_{j,h}$ probability of an individual of age j with health status h surviving to age j + 1.
 - 2. $h \in \{h_g, h_b\}$ denotes good or bad health status

3.
$$\rho_{J,h} = 0$$

Endowment and Income

- Individuals start life with zero assets (j = 1).
- Individuals endowed with one unit of time each period.
 - Indivisible labor: work \bar{n} or zero
 - If work, earn $wz\bar{n}$,

where w: market wage (determined in equilibrium)

- z: idiosyncratic labor productivity (random shock)
- ► Idiosyncratic labor productivity shock $z \in Z$, where $Z = \{z_1, z_2, ..., z_L\}$
 - evolves following an age-dependent first-order Markov process

Preferences

$$E\left[\sum_{j=1}^{J}\beta^{j-1}\left(\prod_{t=1}^{j-1}\rho_{t,h}\right)u\left(c_{j},n_{j}\right)\right],$$

where

$$u(c, 1-n) = \frac{\left[c^{\phi} (1-n)^{1-\phi}\right]^{1-\mu}}{1-\mu}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ → 重 → のへの

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Health Status and Medical Expenditure Uncertainty

- ▶ Health status $h \in \{h_g, h_b\}$
 - Two state Markov chain with a transition matrix $\pi_j^h(h',h)$
- Medical expenditure shock $x \in X_{j,h}$
 - $X_{j,h} = \{x_{j,h}^1, x_{j,h}^2, ..., x_{j,h}^m\}$
 - ▶ probability of expenditure x, π^x_j(x|h'), depends on age and health status revealed mid period.

イロト イロト イヨト イヨト 二日

Employment-based and Individual Health Insurance

- 1. Employment-based Health Insurance (EHI)
 - offered by employers to employees, e = 1 if EHI offered; e = 0 if not.
 - premium does not depend on age or health status
 - premium q^e is tax free income to employees.
- 2. Individual Health Insurance(IHI)
 - Everyone has access to IHI
 - Price is a function of individual specific characteristics
 - ► The premium qⁱ (j, h) paid before this period's medical expenditure x is realized.

Government: Tax Revenues

- 1. Consumption tax: τ_c
- 2. Income taxes:
 - 2.1 Labor income tax, τ_l
 - 2.2 Capital income tax, au_k

Government Funded Social Programs

Medicare

- public health insurance for the elderly
- eligibility age $J^r = 45$ (corresponds to age 65)
- covers a fraction ω_m of medical expenditures
- ▶ financed by government revenue (88%) and a Medicare premium q^m (12%)
- Social Security
 - ▶ provides the elderly with a benefit s at the eligibility age of J^r = 45 (corresponds to age 65)
- Welfare
 - guarantees a minimum level of consumption <u>c</u> for all households
 - Transfer T is made such that a minimum level of consumption <u>c</u> is affordable

Government Budget Constraint

Government budget constraint

$$\int \{\tau_l[(w\eta_j zn - q^e \cdot e) + s] + \tau_k r (a+b) + \tau_c c + q^m\} d\Phi$$
$$= \int [T + s + \omega_m \cdot x] d\Phi + G,$$

where Φ is the distribution of population over state variables. • *G* is residual

Supply Side

Production Technology

$$Y = F(K, L)$$
$$= AK^{\theta}L^{1-\theta},$$

where Y denotes aggregate output, K aggregate capital stock, L aggregate effective labour, and θ the capital income share.

Agent's Problem

Time line for decisions within a period

- ► Stage 1: Employment and health insurance are chosen given (e, z, a, h, j).
- Stage 2: Consumption and savings are chosen after health status and medical expenditure, (h', x), are realized.

Agent's Problem

State vector $\boldsymbol{s} = (\boldsymbol{a}, \boldsymbol{h}, \boldsymbol{z}, \boldsymbol{e}, \boldsymbol{j})$

$$V(s) = \max_{n \in \{0,\bar{n}\}, \ \iota_{IHI}} \sum_{(h',x)} \pi_j^x(x|h') \pi_j^h(h',h) \left\{ \max_{c,\ a'} \ u(c,n) + \beta \rho_{j,h'} \sum_{(z',e')} P_{(z',e')|(z,e)}^j V(s') \right\}$$

subject to

$$(1 + \tau_c)c + a' + q^i(j,h)i_{IHI} = W + T$$

$$W \equiv (1 - \tau_l) (wzn - q^e * \iota_{EHI}) + (1 + (1 - \tau_k)r) (a + b) - (1 - \hat{\omega}) x$$

$$T = \max\{0, (1 + \tau_c)\underline{c} - W\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Agent's Problem

$$\hat{\omega} = \begin{cases} \omega & \text{if } \iota_{EHI} = 1 \text{ or } \iota_{IHI} = 1 \\ 0 & \text{otherwise} \end{cases}$$
$$\iota_{EHI} = \begin{cases} 1 & \text{if } e = 1 \text{ and } n = \bar{n} \\ 0 & \text{otherwise} \end{cases}$$
$$a' \ge 0; \quad c \ge 0.$$

Old Agent's Problem

$$V(j, a, h) = \max_{c, a'} \{ u(c, 0) + \beta \rho_{j,h'} V(j + 1, a', h') | h', x \}$$

subject to

$$(1 + \tau_c)c + a' = W + T$$

$$W \equiv s + (1 + (1 - \tau_k)r)(a + b) - (1 - \omega_m)x - q^m$$

$$T = \max\{0, (1 + \tau_c)\underline{c} - W\}$$

$$a' \ge 0; \quad c \ge 0.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Equilibrium Conditions

$$L = \int n(s) z \eta_j d\Phi$$
$$K = \int (a+b) d\Phi$$

where

$$b = \int \frac{(1 - \rho_{j-1,h})a}{1 + g} d\Phi$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - のへで

Equilibrium Conditions

$$\begin{split} q^{i}(j,h) &= \psi \sum_{(h',x)} \pi_{j}^{x}(x|h') \pi_{j}^{h}(h',h) \omega \ x \\ q^{e} &= \int \sum_{(h',x)} \pi_{j}^{x}(x|h') \pi_{j}^{h}(h',h) \omega \ x \ \iota_{EHI} \ d\Phi \\ q^{m} &= (1-\sigma_{m}) \int \sum_{(h',x)} \pi_{j}^{x}(x|h') \pi_{j}^{h}(h',h) \omega_{m} \ x \ (\iota_{j \geq J^{r}}) d\Phi \end{split}$$

where ψ is the markup for IHI and Φ is the equilibrium distribution of population over state variables.

Medicare Buy-in

$$V(s) = \max_{n \in \{0,\bar{n}\}, \iota_{IHI}, \iota_{MB}} \sum_{(h',x)} \pi_j^x(x|h') \pi_j^h(h',h) \left\{ \max_{c, a'} u(c,n) + \beta \rho_{j,h'} \sum_{(z',e')} P_{(z',e')|(z,e)}^j V(s') \right\}$$

subject to

$$(1 + \tau_c)c + a' + q^i(j,h) \cdot \iota_{IHI} + q^{mb}(j) \cdot \iota_{MB} = W + T$$
$$W \equiv (1 - \tau_l)(w\eta_j zn - q^e i_{EHI}) + (1 + (1 - \tau_k)r)(a + b) - (1 - \hat{\omega})x$$
$$T = \max\{0, \ (1 + \tau_c)\underline{c} - W\}$$

Medicare Buy-in

$$\hat{\omega} = \begin{cases} \omega & \text{if } \iota_{EHI} = 1, \text{ or } \iota_{IHI} = 1 \\ \omega_b & \text{if } \iota_{MB} = 1 \\ 0 & \text{otherwise} \end{cases}$$
$$\iota_{EHI} = \begin{cases} 1 & \text{if } e = 1 \text{ and } n = \bar{n} \\ 0 & \text{otherwise} \end{cases}$$
$$a' \ge 0; \quad c \ge 0;$$

イロン 不良と 不良とう

3

Medicare Buy-in-Insurance premium

$$q^{b}(j) = (1 - \sigma_{b}) \int \sum_{(h', x)} \pi^{x}_{j}(x|h') \pi^{h}_{j}(h', h) \omega_{b} \ x \ \iota_{MB} \ \iota_{j} d\Phi$$

where σ_b is the government subsidy rate. If the Medicare buy-in is not priced by age:

$$q^{b} = (1 - \sigma_{b}) \int \sum_{(h',x)} \pi_{j}^{x}(x|h')\pi_{j}^{h}(h',h)\omega_{b}x\iota_{MB}d\Phi$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ● のへで

Calibration

- Medical Expenditure Panel Survey (MEPS) is used for our calibration of income fluctuations, health status transition, and medical expenditures.
 - ▶ We use eight two-year panels from 1999/2000 to 2006/2007.
 - All values are transformed to 2007 dollars.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Labor Productivity Shocks \boldsymbol{z} and EHI offer \boldsymbol{e}

Specify 5 earning groups from whole sample with equal size

 $Z = \{0.05, 0.43, 0.79, 1.23, 2.50\}$

expressed as fraction of average earnings in 2007 dollars (\$30, 678).

- *e*, an indicator of EHI offer, is either 0 or 1.
- Calibrate transition probabilities of z and e jointly a 10 by 10 matrix for each 5-year age group.

EHI offer and Labor Productivity Shocks z_t

Age	e' = 1	e' = 0	e' = 0				
20-24	$z' = z_1$	$z' = z_2$	$z' = z_3$	$z' = z_4$	$z' = z_5$	$z' = z_1$	$z' = z_2$
$e = 1 \ z = z_1$	0.08	0.24	0.25	0.09	0.07	0.10	0.11
$e = 1 \ z = z_2$	0.04	0.38	0.24	0.09	0.02	0.07	0.11
$e = 1 \ z = z_3$	0.01	0.11	0.48	0.24	0.03	0.02	0.04
$e = 1 \ z = z_4$	0.01	0.04	0.16	0.58	0.13	0.01	0.01
$e = 1 \ z = z_5$	0.01	0.02	0.03	0.19	0.63	0.00	0.00
$e = 0 \ z = z_1$	0.01	0.04	0.02	0.02	0.00	0.59	0.24
$e = 0 \ z = z_2$	0.01	0.06	0.05	0.02	0.01	0.22	0.47
$e = 0 \ z = z_3$	0.01	0.04	0.07	0.05	0.01	0.09	0.26
$e = 0 \ z = z_4$	0.01	0.02	0.04	0.15	0.06	0.08	0.14
$e = 0 \ z = z_5$	0.00	0.00	0.04	0.17	0.00	0.04	0.12

Table: Joint transition matrices of earnings and EHI offer by age group 20-24

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Health Status and Medical Expenditure Shocks x_t

- Self-reported health status in MEPS, from 1 to 5 representing excellent, very good, good, fair and poor health.
- Mapping to health status in model: Scores from 1 to 3, h = g; scores from 4 to 5, h = b.
- ► To capture the long-tail in the distribution of health expenditures, we use three expenditure states with uneven measures (top 5%, 35% and 60%) for each age and health status.

Health Status and Medical Expenditure Shocks x_t

		Medical expenditure				
Age	Health	60%	35%	5%		
20-29	Good	62	1,353	10,870		
	Bad	158	3,132	20,560		
30-39	Good	110	1,670	12,259		
	Bad	252	4,108	33,161		
40-49	Good	214	2,285	14,394		
	Bad	548	6,082	40,926		
50-64	Good	521	3,863	24,336		
	Bad	1,225	9,645	53,103		
65-	Good	1,258	8,118	47,871		
	Bad	2,597	15,540	63,096		

Tabl	e: Health	expenditures	from	MEPS (2007	dollars

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ の Q @

Summary of Parameter Values

Parameters	Notations	Values	Target/Note
Discount Factor	β	0.974	K/Y ratio = 2.5
Risk Aversion	μ	3	
Depreciation Rate	δ	0.08	
Labor Parameter	ϕ	0.7	Agg. labor $= 0.34$
Capital Income Share	θ	0.36	
IHI premium Markup	ψ	0.08	$PHI \ take \ up = 0.64$
Social assistance	<u>C</u>	24% of	Jeske and
		avg earnings	Kitao (2009)
Social security	s	45% of	
benefit		avg earnings	

Summary of Parameter Values (cont'd)

Parameters	Notations	Values	Target/Note
PHI coverage rate	ω	0.70	AKV (2008)
Medicare coverage rate	ω_m	0.50	AKV (2008)
Medicare Buy-in coverage rate	ω_{mb}	0.70	
Consumption tax rate	$ au_c$	0.05	
Capital tax rate	$ au_k$	0.40	
Labor tax rate	$ au_l$	0.35	

イロト イヨト イヨト イヨト

э.

Quantitative Analysis

- Benchmark economy
- Policy experiments
 - 1. Mandate
 - 2. Medicare buy-in
- Policy implications
 - 1. Insurance coverage
 - 2. Tax burden
 - 3. Labor market
 - 4. Welfare

Benchmark economy

Table: Benchmark properties

	Working	Working-age population			
	Total PHI coverage	EHI take-up	IHI take-up	Labor hours	Capital-output ratio
Model Bench	0.64	0.54	0.10	0.34	2.5
MEPS data	0.64	0.51	0.13	-	-

Figure 1: Age profile of HI take-up ratio (Benchmark)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Figure: PHI, EHI and IHI take-up ratios (Benchmark)

Figure : Total PHI take-up ratio by health status (Benchmark)

Figure: IHI purchase by health status (Benchmark)

Figure 2: Income, Consumption and Asset Holding (Benchmark)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Figure 3: Labor Participation (Benchmark)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Policy Experiments

- Mandate No government financing
 - 1. A mandate without new health insurance options
 - 2. A mandate with voluntary Medicare Buy-in for age 55-64
 - adverse selection problem
 - results same as the first policy
 - ▶ 3. With mandatory Medicare Buy-in for age 55-64
- Voluntary Medicare Buy-in subsidy required
 - ▶ 1. No price discrimination with various subsidy rates
 - 2. Priced by age with various subsidy rates

Policy implication: insurance coverage and tax burden

Reform policy	MB take-up ratio without EHI offer	MB subsidy to GDP ratio	Labor tax rate
Mandate	_	_	35%
Mandate MB	100%	0%	35%
MB (10% S)	28.5%	0.009%	35.015%
MB (20% S)	44.6%	0.028%	35.048%
MB (44% S)	100%	0.100%	35.160%
MB PA (10% S)	44.0%	0.014%	35.025%
MB PA (20% S)	44.8%	0.028%	35.047%
MB PA (38% S)	100%	0.088%	35.140%

Table: Insurance coverage and tax burden

Policy implication: Impact on labor market

Figure 6: Labor participation

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー のへで

Policy implication: Welfare

Table: Welfare comparison (CEV from Bench)

			Without EHI offer			
	New-born	All	Young good H	Young bad H	Mid age good H	Mid age bad H
Mandate						
Mandate	-0.141%	-0.112%	-0.139%	-0.092%	-0.301%	-0.119%
Mandate MB	-0.136%	-0.082%	-0.122%	-0.065%	-0.359%	0.251%
Voluntary MB wit	th subsidy					
MB (44% S)	-0.012%	0.010%	-0.051%	-0.014%	0.349%	0.919%
MB PA (38% S)	-0.122%	0.013%	-0.041%	-0.006%	0.277%	0.850%
Note: Young – a	ige<55; Mid	age - 55-0	64.			

Conclusion

- Without subsidy or mandate, adverse selection eliminates market for Medicare Buy-in.
- Even with mandate, adverse selection eliminates market for Medicare Buy-in if individuals can purchase IHI.
- ► To get 100 percent of 55-64 to purchase insurance requires 44% subsidy of Medicare Buy-in premium if all participants pay the same.
 - ► The subsidy is reduced to 38% if price differently by age.

Conclusion

 A subsidized Medicare Buy-in does not cause significant reduction in employment.

- All policies considered reduce lifetime expected welfare of an individual at the beginning of life.
- Mandate to purchase Medicare Buy-in for those without EHI improves welfare for those 55-64 and in bad health.
- Subsidized Medicare Buy-in improves average welfare.