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Abstract

The global financial crisis in 2007-2009 was accompanied by sharp decreases in

the short-term debt of the financial institutions. This phenomenon may be modeled

as a collective action similar to the bank runs. In this paper we develop a simple

dynamic model of bank runs. We introduce the banking sector which is subject to

the refinance risk in an infinite horizon business cycle model. We show the existence

and uniqueness of the equilibrium in which the banks can accumulate the debt over

time and the depositors run on the banks if the amount of the banks’ debt exceeds

the debt capacity, which is determined endogenously. There is a trade-off concerning

the debt restructuring after the bank run. If the depositors’ bargaining power is high,

the debt capacity is high, whereas once the bank run occurs it is likely to recur. If

the depositors’ bargaining power is low, the debt capacity is low, whereas once the

bank run occurs, it is not likely to recur.

1 Introduction

We introduce the banking sector that is financed by the demand deposits, or the one-

period debt, into a simplified real business cycle model. The demand deposit is a sim-

plification of various short-term debt instruments in the financial markets in reality.
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The motivation is that we want to analyze the collective action problem (i.e., the

bank runs) in a dynamic setting in which agents live forever.1 To analyze the global

financial crisis of 2007–2009, the business cycle models with financial frictions have been

intensively studied (Christiano, Motto, Rostagno 2009, Gertler and Karadi 2009, Gertler

and Kiyotaki 2010). These models consider borrowing constraints due to costly state ver-

ification à la Carlstrom and Fuerst (1997) and Bernanke, Gertler and Gilchrist (1999).

While there are casual observations that the phenomenon like a systemic bank run oc-

curred in the global financial markets in September 2008 when the Lehman Brothers

collapsed (see Lucas 2009, Gorton and Metrick 2009, Adrian and Shin 2009, Uhlig 2009),

the collective action problem is not analyzed in these models. In the present paper, we

explicitly consider the collective action problem in a dynamic model. Although our mo-

tivation is quite close to He and Xiong (2010), their formulation of the model, which is in

the literature of the global game, is quite different from ours and is difficult to reconcile

with the standard business cycle model. Acharya, Gale, and Yorulmazer (2009) study an

informational problem in the rollover of debts under a cost of liquidating the collateral.

This paper is also related to the models with default risks (Hopenhayn and Werning

2008, Arellano 2008, Chaterjee et. al. 2007). The models with defaults are used to study

the sovereign debt crises and business cycle issues. The present paper, in which defaults

occur due to the collective runs by the creditors on the borrowers, may be understood as

a complement to these models, in which defaults occur as a result of optimal decisions by

the borrowers. This is because in reality it seems that the collective action by creditors

sometimes forces borrowers to choose to default in the case of sovereign debt crises and

bankruptcies of financial or non-financial firms. Incidentally, the mathematical structure

of our model is quite close to Arellano’s (2008) model.

1In the existing literature, the bank runs are usually analyzed in a two-period or three-period models

(see, for example, Diamond and Dybvig 1983, and Allen and Gale 1998). These models in the banking lit-

erature is not easily compatible with the standard dynamic models. There are the overlapping-generations

models with infinite horizon, in which the banking sector plays the crucial role. See, for example, Smith

(2002), Schreft and Smith (1996), Paal and Smith (2000), Cooper and Ejarque (1995), and Cooper and

Corbae (2002).
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2 The Model

2.1 The Environment

The economy is a closed economy, with discrete time that continues forever: t = 0, 1, 2, . . . .

There are the infinitely-lived consumers and banks inhabited in this economy, the mea-

sures of which are both a unit mass. The household maximizes the following utility:

E0

[ ∞∑
t=0

βt{u(ct) − ht}

]
, (1)

where β is the intertemporal discount factor for the utility flow (0 < β < 1), ct is

consumption, ht is the labor supply. We assume that the consumer can produce ht units

of the consumption goods from ht units of labor, as in Lagos and Wright (2005). That

the utility is linear in ht and the output is linear in ht makes the analysis of dynamics

tractable by, as we see below, fixing the risk-free interest rate at β−1. The budget

constraint for the consumer is

ct + bt + dt ≤ ht + (1 + rt−1)bt−1 + R̃t−1dt−1, (2)

where bt is the risk-free bond, dt is the bank deposits, (1 + rt) is the gross rate of return

on the risk-free bond, and R̃t is the gross rate of return on the bank deposits, the value

of which varies depending on whether or not the bank run occurs. The value of R̃t is

specified below.

Bank and deposits: At the initial period t = 0, each consumer owns one unit of land.

While the consumers cannot produce anything from the land, the banks can produce the

consumption goods from the land. For simplicity we assume that each bank can operate

only one unit of land. This assumption on the banks is similar to that in Diamond

and Rajan (2001): the banks have a specific human capital that can utilize the land in

production of the consumption goods, while the depositors (consumers) do not have this

specific human capital. The bank produces At (≥ 0) units of the consumption goods

from one unit of land, where At is the aggregate productivity of the economy and is an

exogenous random variable. We assume that At is independent from its past history
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such that the probability density function of At is f(At), which does not depend on

At−i (i = 1, 2, · · · ). The support of At is [0, +∞] and
∫ ∞
0 f(A)dA = 1. For expositional

convenience, we define that f(A) = 0 for A < 0. Thus
∫ ∞
−∞ f(A)dA = 1. At t = 0, the

consumers give the land to the banks in exchange for the bank deposit liabilities, which is

X in terms of the consumption goods. X is determined as an equilibrium outcome. We

assume that the financial market is incomplete and subject to the following constraint:

Assumption 1 The financial contract cannot be contingent on the realization of At,

which is observable for all agents but not verifiable in the court. Only the debt contract

is available for the consumers (depositors) and the banks. The bank can voluntarily walk

away without repaying the debt in the midst of production of the consumption goods,

leaving z units of consumption goods and one unit of land to the depositors. If the

depositors refuse to refinance the bank’s debt and the banks are forced to repay a larger

amount than At, the bank is forced to walk away, leaving z and the land to the depositors.

We assume that if the bank walks away, voluntarily or involuntarily, the bank simply exit

the economy and gets 0 utility thereafter, and that the new banks are born such that

the total measure of the banks in the economy remain the same. The bank maximizes

the following expected utility conditional on that the bank continues operation.

E0

[ ∞∑
t=0

βtU(At − Rt−1Dt−1 + Dt)

]
, (3)

where U(C) is the flow utility, where U ′(C) > 0, U ′′(C) ≤ 0 and U(0) = 0; and Dt is

the total amount of bank deposits at the end of period t. Since U(C) > 0 for C > 0 and

the value of exiting for the bank is 0, the bank never walks away voluntarily. Therefore,

unlike the optimal default models (e.g., Arellano 2008), the bank never choose to default

unless all consumers refuse to refinance Dt, even though the bank has an option to

default. In our model only the depositors choose whether or not to run on the bank.

Threshold of a bank run: The bank run is a situation that Rt−1Dt−1 > At and

the depositors collectively refuse to refinance Dt. In this case the bank is forced to exit.

The depositors decide whether or not to run on the bank. We construct an equilibrium
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where if Dt exceeds a threshold value, D, all depositors refuse to deposit Dt with the

bank. The threshold is determined as an equilibrium outcome. The bank run does not

occur if Rt−1Dt−1 − At ≤ Dt ≤ D. If Rt−1Dt−1 − At > D, the bank run is inevitable

because Dt > D even if the bank sets its consumption at 0.

Debt restructuring after a bank run: When the bank run occurs in period t,

a depositor gets full amount of deposit, Rt−1dt−1, with probability z/(Rt−1Dt−1). The

1 − z
Rt−1Dt−1

depositors get equal fraction of the bank’s land. The group of depositors

need to sell the land to a new born bank at the price X. Therefore, the return for the

1 − z
Rt−1Dt−1

depositors are X
Rt−1Dt−1−z . The maximum liabilities that a bank with one

unit of land can sustain is D. Because the banks have the specific human capital that

can produce the consumption goods from the land, while the depositors do not have the

ability to utilize the land, the price of land, X, is determined between 0 and D depending

on the market structure or the bargaining between the new born banks and the groups

of the depositors. We do not construct the market structure or the bargaining protocols,

but simply assume the following as a reduced form:

X = θD, (4)

where θ (0 ≤ θ ≤ 1) is the parameter representing the bargaining power of the depositors.

2.2 Optimization Problems

The consumers maximize (1) subject to (2). The first-order conditions (FOCs) imply

that in the equilibrium where the consumers hold bank deposits

1 + rt = β−1, (5)

Et[R̃t] ≥ 1 + rt. (6)

If (6) is not satisfied, the consumers do not purchase the bank deposits in period t and

cause the bank run. Therefore, (6) is the participation constraint for the depositors

that the bank needs to take into account. The bank’s optimization is formulated as the
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following Bellman equation. We define V (xt−1) as the value function of a bank at the

beginning of period t when At is not revealed yet and xt−1 = Rt−1Dt−1 is the gross

amount of debt liability of the bank at the beginning of period t. The Bellman equation

is written as follows:

V (xt−1) =
∫ ∞

xt−1−D
max

Rt(At), Dt(At)
{U(At − xt−1 + Dt) + βV (RtDt)}f(At)dAt, (7)

subject to

E[R̃t] ≥ 1 + rt, (8)

max{0, xt−1 − At} ≤ Dt, (9)

Dt ≤ D. (10)

Note that to set Dt > D is infeasible for the bank because the depositors do not finance

Dt if Dt > D and the bank is forced to exit due to the bank run. To set Dt ≤ D is feasible

if and only if xt−1 − At ≤ D. If Dt ≤ D is feasible, the bank optimally chooses Dt ≤ D

and avoid the bank run. Therefore, the bank run occurs if and only if At < xt−1 − D.

Given this condition, Et[R̃t] can be written as follows:

E[R̃t] = Rt

∫ ∞

RtDt−D
f(At+1)dAt+1 +

(
z

RtDt
Rt +

RtDt − z

RtDt

X

RtDt − z

)∫ RtDt−D

0
f(At+1)dAt+1

= Rt

∫ ∞

RtDt−D
f(At+1)dAt+1 +

(
z

Dt
+

X

RtDt

)∫ RtDt−D

0
f(At+1)dAt+1. (11)

We can show the following proposition concerning this Bellman equation.

Proposition 1 The Bellman equation (7), subject to (8)–(11), has a unique solution.

See Appendix A for proof. It is easily shown that (8) is always binding:

Lemma 1 Given Dt, the value of Rt is determined as a solution to (8) with equality. If

(8) has two or more solutions, the bank chooses the smallest one.

See Appendix B for proof.

If At < Rt−1Dt−1 − D, the bank run occurs in period t and the existing banks exit

and new born banks enter into the economy. In this case, output becomes z in period t

and the new banks issue bank deposits X to the consumers. Therefore, {Dt+j , Rt+j}∞j=0

evolves from Dt = X, where Rt is determined as a solution to (8), given Dt = X.

6



2.3 Equilibrium

The equilibrium is characterized by the sequence {Dt, Rt, At}∞t=0, where given At, Dt

and Rt are the solution to the bank’s optimization (7) subject to (8)–(11). When At <

Rt−1Dt−1 − D, Dt jumps to X as a result of the bank run. The upper bound for the

sustainable debt, D, is uniquely determined by

D = max

{
D

∣∣∣∣∣max
R

R

∫ ∞

(R−1)D
f(A)dA +

(
z

D
+

X

RD

) ∫ (R−1)D

0
f(A)dA ≥ 1

β

}
. (12)

We can show the following lemma for D:

Lemma 2 Suppose that D is given by (12). This D is the unique value that satisfies the

following claim: Given that the depositors in period t + 1 refuse to refinance Dt+1 if and

only if Dt+1 > D, it is optimal for the depositors in period t to refuse to refinance Dt if

and only if Dt > D.

(Proof) We consider the pair of debt capacities {Dt, Dt+1} such that,given that the depositors in

period t + 1 refuse to refinance Dt+1 if and only if Dt+1 > Dt+1, it is optimal for the depositors

in period t to refuse to refinance Dt if and only if Dt > Dt. Taking Dt+1 as given, Dt must be

determined by

Dt(Dt+1) = max
{

D

∣∣∣∣max
R

G(R, D;Dt+1) ≥
1
β

}
, (13)

where

G(R, D; Dt+1) = R

∫ ∞

RD−Dt+1

f(A)dA +
(

z

D
+

X

RD

)∫ RD−Dt+1

0

f(A)dA.

The function Dt(Dt+1) is the best response of the depositors in period t to those in period t + 1.

We consider G(R,D; Dt+1) only for D that satisfies

D > βz + β2X ≡ D. (14)

If D satisfies (14), it is always true that R > z
D + X

RD for R ≥ β−1. This means that the promised

return on the bank deposit (R) is greater than the expected return on the deposit in the case of

the bank run. Thus the derivative of G(R, D; Dt+1) satisfies

G2(R, D;D) = −
{

R −
(

z

D
+

X

RD

)}
Rf(RD − D) −

(
z

D2
+

X

RD2

) ∫ RD−D

0

f(A)dA.
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Since G(β−1, βD;D) = β−1, the solution to (13) is no less than βDt+1. Therefore, for D > βDt+1

and R ≥ β−1,

G2(R,D;Dt+1) < 0. (15)

For D, which is the solution to (12), the following statements hold: maxR G(R,D; D) = β−1;

maxR G(R, D; D) > β−1 for D < D; and maxR G(R,D; D) < β−1 for D > D. These conditions

and (15) imply that

Dt(Dt+1) > Dt+1 for Dt+1 < D,

Dt(Dt+1) < Dt+1 for Dt+1 > D.

Therefore, the value D given by (12) is the unique threshold that is consistent with the rational

expectations of the depositors. (QED)

With the equilibrium condition (4), the above condition (12) uniquely determines D and

X = θD, given the depositors’ bargaining power θ in debt restructuring.

For numerical calculations, we set β = 0.96, E[A] = 1, and z = 0.1 throughout this

section. Figure 1 shows the relationship between θ and D in the case where At follows

the log-normal distribution with mean 1 and variance 1. D is larger as the bargaining

power of depositors, θ, is larger. The full value of the land is obviously βE[A]
1−β , which is

24 for the parameter values in Figure 1. D is much smaller than βE[A]
1−β even if θ = 1,

because a substantial rent goes to the bank.

Figure 1: Debt capacity, D, and depositors’ bargaining power, θ (ν2 = 1).

It is shown numerically that the debt capacity is negatively correlated with the vari-

ance of At. Figure 2 shows that in the case where θ is fixed at 1, the debt capacity D

decreases as the variance ν2 increases. The intuition is as follows: Given R and D, the

probability of the bank run in (12) increases as ν2 increases, and the maximand of (12)

decreases for all D. Therefore, D, the solution to (12), decreases as ν2 increases.

Figure 2: Debt capacity, D, and variance, ν2 (θ = 1).
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Lemma 1 implies that if Dt is given, Rt is uniquely pinned down by the following

equation:

Rt

∫ ∞

RtDt−D
f(At+1)dAt+1 +

(
z

Dt
+

θD

RtDt

)∫ RtDt−D

0
f(At+1)dAt+1 = β−1.

The probability, as of period t, of occurrence of the bank run in period t + 1 is

Pr(Dt) ≡
∫ RtDt−D

0
f(A)dA. (16)

We have the following lemma.

Lemma 3 If Dt ≤ βD, then Rt = β−1 and Pr(Dt) = 0. If βD < Dt ≤ D, then

Rt > β−1 and Pr(Dt) > 0.

Proof is obvious. Figure 3 illustrates the implication of the above lemma on the evolution

of Dt.

Figure 3. The amount of the bank debt and the risk of the bank run.

In Figures 4 and 5, we show Rt and Pr(Dt) as functions of Dt in the case where At

follows the log-normal distribution with mean 1 and variance 1. We show the cases

corresponding to 0 < θ < β and β < θ < 1, respectively.

Figure 4. Rt and Pr(Dt) in the case where θ = 0.95 < β

Figure 5. Rt and Pr(Dt) in the case where β < θ = 0.99

This figure shows that there is a trade-off concerning θ. If the depositors’ bargaining

power is strong, i.e., θ is larger than β, the debt capacity of the bank D is large, as

Figure 1 shows. Meanwhile, since X = θD > βD in this case, Figure 3 shows that after

the debt restructuring subsequent to a bank run the bank debt stays in the region of a

positive risk of occurrence of another bank run. If θ is small, the debt capacity D is also

small, while X = θD < βD and the bank debt decreases sufficiently after the bank run

such that the risk of another bank run becomes zero (Figure 2). The dynamics of Dt is
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characterized by the FOC:

U ′(Ct) + βRtV
′(RtDt) + λ(At) − η(At)+

µ(At)

[
−

{
Rt −

(
z

Dt
+

X

RtDt

)}
Rtf(RtDt − D) −

(
z

D2
t

+
X

RtD2
t

) ∫ RtDt−D

0
f(A)dA

]
= 0,

where Ct = At − Rt−1Dt−1 + Dt and λ(At) and η(At) are the Lagrange multipliers for

(9) and (10), respectively; and the envelope condition:

V ′(Rt−1Dt−1) = −
∫ ∞

Rt−1Dt−1−D
U ′(Ct)f(At)dAt − βV (RD)f(Rt−1Dt−1 − D) −

∫ x

0
λ(At)dAt.

The dynamics of Dt depend crucially on the form of U( · ). If U(C) is sufficiently concave,

Dt may exhibit a feature of the mean-reversion around a specific value (incomplete). The

following example simplifies the dynamics.

2.4 Example

If the utility of the banks is linear, that is, U(C) = C, then the dynamics become simple.

Lemma 4 If U(C) = C, then Dt = D̂t, where D̂t = max{0, Rt−1Dt−1−At}, if D̂t ≤ D;

and Dt = θD if D̂t > D.

See Appendix C for proof. This lemma says that if U(C) = C, the bank sets its con-

sumption at zero as long as the remaining debt is positive and reduces the debt as fast

as possible; and that only when the remaining debt becomes zero, it consumes the net

profits, At − Rt−1Dt−1.

3 Generalization of the Model

We introduce the labor input in this economy and show that the equilibrium with col-

lective bank run can be defined in this generalized model consistently.

3.1 Environment

In addition to the consumers and the banks, we introduce the firms that produce the

consumption goods using the labor input (lt) and the capital input (kt), where lt is
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supplied by the consumers and kt is the capital service generated from the banks’ land.

We assume that the firms’ technology is Cobb-Douglas and maximizes its profits in each

period in a perfectly competitive environment after the realization of productivity, At.

Therefore the firms’ problem is as follows: Given r̃t and w̃t,

max
lt,kt

Atk
α
t l1−α

t − r̃tkt − w̃tlt.

Since the total supply of land is unity, kt = 1 in equilibrium. Thus,

r̃t = αAtl
1−α
t ,

w̃t = (1 − α)Atl
−α
t ,

unless the bank run occurs. If the bank run occurs, the banks are forced to withdraw

their land from production by the firms and to give z and the land to their depositors.

Therefore, if the bank runs occur for all banks, production by the firms becomes infea-

sible. (If the bank runs occur only for some fraction of banks, the amount of k in the

Cobb-Douglass production becomes the amount of land of the banks that are not run

on.) We assume that in each period t, the consumers supply labor lt before At is revealed.

Supplying lt incurs utility cost c(lt) to the consumer. Therefore, the consumer’s problem

is

max
ct,lt,ht

E0

[ ∞∑
t=0

βt{u(ct) − c(lt) − ht}

]
,

subject to

ct + bt + dt = (1 + rt−1)bt−1 + R̃tdt + w̃tlt + ht,

where lt is chosen before w̃t is realized. The FOC for lt is

c′(lt) = Et[w̃t]. (17)

3.2 Bank’s problem and equilibrium

Similar to the basic model, we consider the equilibrium in which the bank runs occur if

the banks’ debt exceeds a threshold D. At the beginning of period t, the state variables
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for a bank is xt−1 and lt, where xt−1 = Rt−1Dt−1. Since the revenue of the bank is

rt = αAtl
1−α
t , the Bellman equation for a bank entering period t is as follows:

V (xt−1, lt) =
∫ ∞

A(xt−1,lt)
max
Rt,Dt

{
U(αAtl

1−α
t − xt−1 + Dt) + βV (RtDt, lt+1)

}
f(At)dAt,

(18)

where A(xt−1, lt) ≡ xt−1−D

αl1−α
t

, subject to

max{0, xt−1 − αAtl
1−α
t } ≤ Dt, (19)

Dt ≤ D, (20)

Rt

∫ ∞

A(RtDt,lt+1)
f(At+1)dAt+1 +

(
z

Dt
+

X

RtDt

)∫ A(RtDt,lt+1)

0
f(At+1)dAt+1 ≥ β−1.

(21)

Note that lt+1 is not a choice variable for the bank and the banks take lt+1 as given when

they choose Rt and Dt. From (17), the equilibrium condition that determines lt+1 is

c′(lt+1) =
∫ ∞

A(RtDt,lt+1)
(1 − α)At+1l

−α
t+1f(At+1)dAt+1. (22)

Note that in (22) the consumers take RtDt as given. We assume (4) for X as in the basic

model. D is determined by

D = max

{
D

∣∣∣∣∣max
R

R

∫ ∞

(R−1)D

αl1−α

f(A)dA +
(

z

D
+

θ

R

) ∫ (R−1)D

αl1−α

0
f(A)dA ≥ 1

β

}
, (23)

where l is determined by

c′(l) =
∫ ∞

(R−1)D

αl1−α

(1 − α)Al−αf(A)dA. (24)

Solving (23) and (24) for D and l simultaneously, D is determined.

Equilibrium: The equilibrium is the sequence {At, lt, Dt, Rt}, where Dt and Rt are

the solution to (18)–(21), given At and lt; and lt+1 satisfies (22), given Rt and Dt.
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Bank runs in the generalized model (Incomplete): In the basic model in the

previous section, the bank’s revenue is At, which is exogenously given and does not change

depending on the agents’ actions, while in the generalized model the bank’s revenue is

rt = αAtk
α−1
t l1−α

t , which may vary depending on the other agents’ actions. In this case,

the threshold of the bank run may not be well defined. For example, suppose that the

realization of At is very small. If all depositors equally run on all banks, all banks goes

bankrupt; on the other hand, if only one bank is not run on but the other banks are run

on, the rental price of capital rt for this bank goes up because the other banks withdraw

capital services from the firms due to the bank runs; in this case, it is optimal for the

depositors of this bank not to run; then this bank survives and the depositors of this

bank obtain the full amount of deposits. Therefore, even when the realization of At is

identical, the bank run may or may not occur at a given bank. It is not difficult, though,

to construct a structure of the game among the depositors such that in equilibrium all

banks are run on if and only if

At <
xt−1 − D

αl1−α
t

. (25)

For example, because the banks are forced to withdraw the capital services from the

firms as a result of the depositors’ run, if the depositors of all banks must simultaneously

choose whether to refinance their banks or to refuse to refinance, the prisoners’ dilemma

among the depositors (within a bank and between banks) results in the bank runs for

all banks when At is in the range of (25). Note that the right-hand side of (25) can be

positive only if

Dt−1 > βD.

Therefore, Lemma 3 also applies to the generalized model. When Dt ≤ βD, the labor

supply is determined by lt+1 = l∗, where

c′(l∗) = (1 − α)E[A](l∗)−α. (26)

When Dt > βD, the labor supply lt+1, determined by (22), is less than l∗.
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Simulation result: The numerical simulations are shown in Figures 6–9. Parameter

values are set that β = 0.96, E[A] = 1, z = 0.1, α = 0.3, and c(l) = l2

2 . The results are

qualitatively the same as those for the basic model. The probability of bank runs, which

is ∫ (RtDt−D)/(αl1−α
t+1 )

0
f(At+1)dAt+1, (27)

tends to be much higher in the generalized model than in the basic model because αl1−α
t+1

is considerably smaller than one (Figures 8 and 9). It is also shown that the labor supply

decreases as Dt increases when Dt > βD (Figures 8 and 9).

4 Conclusion

We develop a simple dynamic model of bank runs, in which the banking sector is subject

to the refinance risk in each period. We show the existence and uniqueness of the

equilibrium in which the banks can accumulate the debt over time and the depositors

run on the banks if the amount of the banks’ debt exceeds a threshold value, which is

determined endogenously. There is a trade-off concerning the debt restructuring after

the bank run. If the depositors’ bargaining power is strong, the threshold of debt for

the bank runs is high, whereas once the bank run occurs it is likely to repeat. If the

depositors’ bargaining power is weak, the threshold is low, whereas once the bank run

occurs, it is not likely to repeat.

The framework of this model may be useful to study the financial crisis further.

For example, if the price of land, X, includes the bubble component and the asset-price

bubble collapsed suddenly, then the debt capacity D may go down suddenly and trigger a

bank run. Thus it may be a promising topic for future research to analyze the interaction

between the asset-price bubble and the bank runs. The distortion in the real allocations

during a financial crisis may be an another promising topic for future research.2 The

2Ohanian (2001) and Hayashi and Prescott (2002) point out the productivity declines during the finan-

cial crises. Chari, Kehoe and McGrattan (2007) and Kobayashi and Inaba (2006) show the deteriorations

in the labor wedge during the financial crises.
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model shows that if Dt is large the probability of occurrence of the bank runs become

positive, while it is zero if Dt is smaller than a threshold. In the generalized model, the

risk aversion of the consumers leads to a decrease in the labor supply, or a widening of the

labor wedge. In addition, if the risk aversion affects the choice of production technology,

the aggregate productivity may decline when the banks’ debt Dt increases and enters

the region of positive risk of the bank runs. The model might be useful to analyze

the interaction between the balance-sheet deteriorations of financial institutions and the

monetary policy during the financial crises. The model implies that the real interest rate

becomes higher when Dt exceeds βD. Under the nominal rigidities the central bank can

lower the real interest rate by lowering the nominal interest rate. Thus it may be efficient

for the central bank to set a lower rate when Dt > βD than when Dt ≤ βD. The model

may imply that the monetary policy should respond to the balance-sheet variables, such

as the leverage of the financial institutions.

Appendix A: Proof of Proposition 1

We consider an operator T mapping a space C[0, RD] of bounded continuous functions

into itself, where R and D are the solutions to (12). Tv(x) is defined as follows:

Tv(x) =
∫ ∞

x−D
max
R, D

{U(A − x + D) + βv(RD)}f(A)dA, (28)

subject to

max{0, x − A} ≤ D, (29)

D ≤ D, (30)

R

∫ ∞

RD−D
f(A′)dA′ +

(
z

D
+

X

RD

) ∫ RD−D

0
f(A′)dA′ ≥ β−1. (31)

The proof of Proposition 1 is to show the existence and uniqueness of the fixed point of

the operator T . We define F , a subset of C[0, RD], by

F =
{

v(x)
∣∣∣∣v(x) ∈ C[0, RD] and 0 ≤ v(x) ≤ βE[U(A)]

1 − β
for all x ∈ [0, RD]

}
.
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F is closed and bounded. Following Stokey and Lucas (1989) we call T monotone if

v, w ∈ F and v ≥ w implies Tv ≥ Tw, where v ≥ w means that v(x) ≥ w(x), all

x ∈ [0, RD]. It is also easily shown that T , defined by (28)–(31), is continuous and

monotone.

Definition 1 A subset S of C[0, RD] is equicontinuous if for every ϵ > 0 there exists

δ > 0 such that |x − y| < δ implies |v(x) − v(y)| < ϵ, for all v ∈ S.

Lemma 5 The family T(F) is equicontinuous.

(Proof) Since U(c) is a concave function with U(0) = 0, for every ϵ > 0 there exists δ > 0 such

that |x − y| < δ implies |U(x) − U(y)| < ϵ. Pick a pair (ϵ, δ) that satisfies this property. For a

given x, denote R(A, x) and D(A, x) as the solution to the optimization of (28)–(31).

Tv(x + δ) =
∫ ∞

x+δ−D

max
R, D

{U(A − x − δ + D) + βv(RD)}f(A)dA,

subject to max{0, x + δ − A} ≤ D ≤ D and (31). {R(A, x), D(A, x)} is feasible for this problem

and obviously Tv(x + δ) ≤ Tv(x) and

Tv(x + δ) ≥
∫ ∞

x−D

{U(A − x − δ + D(A, x)) + βv(R(A, x)D(A, x))}f(A)dA.

Therefore,

0 ≤ Tv(x) − Tv(x + δ) ≤
∫ ∞

x−D

{U(A − x + D(A, x)) − U(A − x − δ + D(A, x))}f(A)dA

< ϵ

∫ ∞

0

f(A)dA = ϵ.

We have shown for every ϵ > 0 there exists δ > 0 such that |x−y| < δ implies |Tv(x)−Tv(y)| < ϵ,

for all v ∈ F . Therefore, T (F ) is equicontinuous. (QED)

To show the existence of the fixed point of T , we apply Theorem 17.7 in Stokey and

Lucas (1989):

Theorem 1 (Stokey-Lucas, Theorem 17.7) Let X ⊂ Rl be a bounded set; let C(X) be

the space of bounded continuous functions on X, with the sup norm; and let F ⊂ C(X) be

closed and bounded. Assume that the operator T : F → F is continuous and monotone

and that T (F ) is an equicontinuous family. Suppose there exists f0 ∈ F such that either

f0 ≤ Tf0 or f0 ≥ Tf0. Then the limit f = limTnf0 exists, f is in F , and f is a fixed

point of T .
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To apply this theorem to T , we pick v0(x) = 0 and w0(x) = βE[U(A)]
1−β . Then v0 ≤ Tv0

and w0 ≥ Tw0. Applying the theorem, it is proven that there exist fixed points v and

w, where v = limTnv0 and w = lim Tnw0. As the corollary of Theorem 17.7 in Stokey

and Lucas (1989) shows, since v0 and w0 are minimal and maximal elements of F , every

fixed point h of T satisfies

lim Tnv0 = v ≤ h ≤ w = lim Tnw0.

The uniqueness of the fixed point of T is established by the following lemma:

Lemma 6 The minimal and maximal fixed points, v and w, are identical.

(Proof) Proof is by contradiction. Suppose that v ̸= w. Then there should exist x0 ∈

[0, RD] such that w(x0) > v(x0). Let ∆ = w(x0) − v(x0). We can choose n such that

δ ≡ βn βE[U(A)]
1 − β

<
∆
2

.

Since w and v are the fixed points of T , applying the operator T for n times yields

w(x0) = Ẽ0

[
n−1∑
i=0

βiU(c̃i)

]
+ Ẽ0[βnw(x̃n)],

v(x0) = Ê0

[
n−1∑
i=0

βiU(ĉi)

]
+ Ê0[βnv(x̂n)]

where c̃i = Ai − x̃i−1 + D̃i and x̃i = R̃iD̃i are the variables on the optimal path corre-

sponding to the operation Tw; ĉi = Ai−x̂i−1+D̂i and x̂i = R̂iD̂i are those corresponding

to Tv; and

Ẽ0[U(c̃i)] =
∫ ∞

R−1D−1−D

[
· · ·

[∫ ∞

R̃i−2D̃i−2−D

[∫ ∞

R̃i−1D̃i−1−D
U(c̃i)df(Ai)

]
df(Ai−1)

]
· · ·

]
df(A0),

Ê0[U(ĉi)] =
∫ ∞

R−1D−1−D

[
· · ·

[∫ ∞

R̂i−2D̂i−2−D

[∫ ∞

R̂i−1D̂i−1−D
U(ĉi)df(Ai)

]
df(Ai−1)

]
· · ·

]
df(A0).

Since 0 ≤ Ê0[βnv(x̂n)], Ẽ0[βnw(x̃n)] ≤ δ, we have

Ẽ0

[
n−1∑
i=0

βiU(c̃i)

]
− Ê0

[
n−1∑
i=0

βiU(ĉi)

]
= w(x0) − v(x0) − Ẽ0[βnw(x̃n)] + Ê0[βnv(x̂n)]

> ∆ − δ. (32)
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Since {c̃i, x̃i}, the optimal path corresponding to Tw, satisfies the constraints (29)–(31)

for Tv, we have the following inequality:

v(x0) = Ê0

[
n−1∑
i=0

βiU(ĉi)

]
+ Ê0[βnv(x̂n)] ≥ Ẽ0

[
n−1∑
i=0

βiU(c̃i)

]
+ Ẽ0[βnv(x̃n)]

≥ Ẽ0

[
n−1∑
i=0

βiU(c̃i)

]
, (33)

where the first inequality is because {c̃i, x̃i} is not the optimal path corresponding to Tv.

Inequalities (32) and (33) imply that

δ ≥ Ê0[βnv(x̂n)] ≥ Ẽ0

[
n−1∑
i=0

βiU(c̃i)

]
− Ê0

[
n−1∑
i=0

βiU(ĉi)

]
≥ ∆ − δ.

This inequality implies that 2δ ≥ ∆, which is a contradiction because we set δ such that

2δ < ∆. Therefore, it must be the case that v = w. (QED)

From this lemma, the uniqueness of the fixed point of T is established.

Appendix B: Proof of Lemma 1

The FOC for the Bellman equation (7)–(11) with respect to Rt is

βDtV
′(RtDt)+

µ(At)

[∫ ∞

RtDt−D

f(A)dA −
{

Rt −
(

z

Dt
+

X

RtDt

)}
Dtf(RtDt − D) − X

R2
t Dt

∫ RtDt−D

0

f(A)dA

]
= 0,

(34)

where µ(At) is the Lagrange multiplier for (8). The envelope condition implies

V ′(x) = −
∫ ∞

x−D
U ′(At − x + Dt)f(At)dAt − βV (RD)f(x − D) −

∫ x

0
λ(At)dAt,

≤ −
∫ ∞

x−D
U ′(At − x + Dt)f(At)dAt < 0, (35)

where λ(A) is the Lagrange multiplier for (9). The inequalities follow from that V (x)

and λ(A) are nonnegative and f(A) and U ′(A − x + D) are strictly positive for some

A (> x−D). The above conditions imply that µ(At) ̸= 0 because if µ(At) = 0 (34) does

not hold because (35) implies that V ′(RtDt) < 0. Therefore, since µ(At) is nonnegative,
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µ(At) > 0 for all At, implying that (8) is always binding. Since V ′(RtDt) < 0, for any

given Dt the bank chooses the smallest value of Rt from the feasible values. Hence if (8)

with equality has two or more solutions, the bank chooses the smallest one.

Appendix C: Proof of Lemma 4 (Outline)

We set U(C) = C in the Bellman equation (7)–(11). The FOC with respect to Dt is

1 + βRtV
′(RtDt) + λ(At) − η(At)+

µ(At)

[
−

{
Rt −

(
z

Dt
+

X

RtDt

)}
Rtf(RtDt − D) −

(
z

D2
t

+
X

RtD2
t

)∫ RtDt−D

0

f(A)dA

]
= 0,

(36)

where η(At) is the Lagrange multiplier for (10). Substituting (34) for µ(At) in (36)

implies that LHS, the left-hand side of (36), can be written as

LHS =1 + λ(At) − η(At)

+
βV ′(RtDt)

[
Rt

∫ ∞
RtDt−D f(A)dA + z

Dt

∫ RtDt−D
0 f(A)dA

]
[∫ ∞

RtDt−D f(A)dA −
{

Rt −
(

z
Dt

+ X
RtDt

)}
Dtf(RtDt − D) − X

R2
t Dt

∫ RtDt−D
0 f(A)dA

] .

We prove that λ(At) > 0 in the case where Dt > βD, and then we prove it in the case

where Dt ≤ βD.

Case 1. Dt > βD: Since f(RtDt −D) > 0 in this case, equation (35) directly implies

that

V ′(RtDt) < −
∫ ∞

RtDt−D
f(A)dA. (37)

Lemmas 1 implies that∫ ∞

RtDt−D
f(A)dA =

1
βRt

−
(

z

RtDt
+

X

R2
t Dt

) ∫ RtDt−D

0
f(A)dA.

We can show from (37) and the above equation that

LHS < 1 + λ(At) − η(At) − Γ,

19



where

Γ ≡
1 − β

(
z

Dt
+ 2X

RtDt

) ∫ RtDt−D
0 f(A)dA + β2

(
z

Dt
+ X

RtDt

)
X

RtDt

(∫ RtDt−D
0 f(A)dA

)2

1 − β
(

z
Dt

+ 2X
RtDt

) ∫ RtDt−D
0 f(A)dA − βRtDt

{
Rt −

(
z

Dt
+ X

RtDt

)}
f(RtDt − D)

.

Note that Γ ≥ 1, because z
Dt

+ X
RtDt

is the expected return for a depositor in the bank

run, which is no greater than Rt. Therefore, if λ(At) = 0, the above inequality implies

that LHS < 0 for Dt that satisfies f(RtDt − D) > 0, i.e., Dt > βD. Since (36) implies

that LHS = 0, it is a contradiction. Therefore, λ(At) > 0 and Dt = D̂t.

Case 2. Dt ≤ βD: If V ′(RtDt) < −
∫ ∞
RtDt−D f(A)dA, then we can prove that

λ(At) > 0 by the same logic as in Case 1. Therefore, the following claim is true.

Claim 1. If λ(At) = 0, then V ′(RtDt) = −
∫ ∞
RtDt−D f(At+1)dAt+1.

We prove V ′(RtDt) < −
∫ ∞
RtDt−D f(A)dA by contradiction. Suppose that V ′(RtDt) =

−
∫ ∞
RtDt−D f(At+1)dAt+1. (35) implies that it must hold that

∫ x
0 λ(At+1)dAt+1 = 0,

where x = RtDt. Claim 1 with forwarding one period implies that V ′(Rt+1Dt+1) =

−
∫ ∞
Rt+1Dt+1−D f(At+2)dAt+2 for all Rt+1Dt+1 that corresponds to each realization of

At+1 ∈ [0, RtDt]. Then for each Rt+1Dt+1, it must hold that
∫ x
0 λ(At+2)dAt+2 = 0,

where x = Rt+1Dt+1. Iterating this process, we have∫ Rt+jDt+j

0
λ(At+j+1)dAt+j+1 = 0 (38)

for all j = 0, 1, · · · and At+j+1 ∈ [0, Rt+jDt+j ], where Rt+jDt+j is attainable from

Rt−1Dt−1. But (38) cannot hold, because if At+i (0 ≤ i ≤ j − 1) is close to zero for

sufficiently many consecutive periods then Dt+j must exceed βD. Then from Case 1,

λ(At+j+1) > 0. The probability, as of period t, of occurrence of the event that Dt+j >

βD is strictly positive. Therefore,
∫ x
0 λ(At+j+1)dAt+j+1 > 0 with a strictly positive

probability. This contradicts (38). Therefore, the initial assumption that V ′(RtDt) =

−
∫ ∞
RtDt−D f(At+1)dAt+1 does not hold. Thus, we have shown that λ(At) > 0 for Dt <

βD. Combining Case 1 and Case 2, we have shown that λ(At) > 0 for Dt ≤ D.
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Figure 1: Debt capacity, D, and depositors’ bargaining power, θ (ν2 = 1).
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Figure 2: Debt capacity, D, and variance, ν2 (θ = 1).
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Figure 3: Illustration of Path of Bank Debt.
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Figure 4: Rt and Pr(Dt) in the case where θ = 0.95 < β
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Figure 5: Rt and Pr(Dt) in the case where β < θ = 0.99
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Figure 6: Debt capacity, D, and bargaining power, θ (ν2 = 0.01).
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Figure 7: Debt capacity, D, and variance of productivity, ν2 (θ = 0.99).
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Figure 8: Rt, Pr(Dt), lt+1 in the case where θ = 0.95 < β.
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Figure 9: Rt, Pr(Dt), lt+1 in the case where β < θ = 0.99.
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