A Dynamic Model of Bank Runs

Keiichiro Kobayashi[†]

† Canon Institute for Global Studies (CIGS) Research Institute of Economy, Trade and Industry (RIETI)

May 29, 2010

Introduction

- Banks subject to the refinance risk in a dynamic model
 - Collective actions in the financial crisis
 - Runs on short-term debts observed in 2008–2009 (Lucas 2009, Gorton and Metrick 2009, Adrian and Shin 2009)
 - Models of Financial Frictions Borrowing constraints (Christiano et al 2009, Gertler-Karadi 2009, Gertler-Kiyotaki 2010; Carlstrom-Fuerst 1997, Bernanke-Gertler-Gilchrist 1999)
 - Static models of bank runs (Diamond and Dybvig 1983, Diamond and Rajan 2001, Allen and Gale 1998, Uhlig 2009)
 - Dynamic debt runs (He and Xiong 2010, Acharya, Gale, and Yorulmazer 2009)
 - Complement to Optimal Default literature
 - * Sovereign debt crisis, bankruptcies in business cycles
 - Optimal defaults Borrowers choose to default (Hopenhayn and Werning 2008, Arellano 2008, Chatterjee et al. 2007)
 - Collective runs Lenders choose to refuse refinancing.

Summary

- We introduce the banks subject to refinance risk in the infinite-horizon business cycle model.
- We show the existence and uniqueness of the equilibrium with an endogenous debt capacity, which is the threshold of the bank run.
- Debt capacity is higher as variance of productivity is smaller.
- Trade-off in debt restructuring after the bank run.
 - If the depositors' bargaining power is high, the debt capacity is high, whereas once the bank run occurs it is likely to recur.
 - If the depositors' bargaining power is low, the debt capacity is low, whereas once the bank run occurs it is not likely to recur.

Setup (1/2)

- Closed economy with discrete time: $t = 0, 1, 2, \dots, \infty$.
- Unit mass of the consumers and the banks
- Fixed amount of land endowed initially to the consumers.
 - Banks have human capital to produce the goods from land.
 One bank can operate only one unit of land.
 - Consumers cannot use land. (Land is useless for consumers.)
 - ► Land produces A_t units of the goods, where A_t is the aggregate productivity, which is a random variable with $A_t \in [0, +\infty]$ and $\int_0^\infty f(A) dA = 1$, where f(A) is the PDF of A_t .
 - Banks can walk away (without producing A_t), leaving z units of the goods and the land.
- In the initial period, consumers give land to banks in exchange for bank deposits (or short-term debt).

Setup (2/2)

• Consumer's problem:

$$E_0\left[\sum_{t=0}^{\infty}\beta^t \{u(c_t) - h_t\}\right],$$
 (1)

subject to

$$c_t + b_t + d_t \le h_t + (1 + r_{t-1})b_{t-1} + \tilde{R}_{t-1}d_{t-1}.$$
(2)

Participation Constraint of depositors for the banks:

$$E_t[\tilde{R}_t] \ge 1 + r_t = \beta^{-1}.$$
(3)

Bank Runs

• Banks try to issue new debt D_t and consume

 $C_t = A_t - R_{t-1}D_{t-1} + D_t$, conditional on no bank runs, to

$$\max E_0\left[\sum_{t=0}^{\infty} U(C_t)\right]$$

- Bank Run: All consumers refuse to refinance D_t .
- If the bank fails to refinance D_t, it must walk away from the depositors, leaving z units of the goods and the land.
- Once the banks walk away, they get zero utility thereafter; and the same number of new-born banks enter the economy.
- The group of depositors sells the land to a new-born bank in exchange for *X* units of bank deposits. (*X* is endogenous.)
- During the bank run, a depositor gets the following returns:
 - R_t with probability $\frac{z}{R_{t-1}D_{t-1}}$.

•
$$\frac{X}{R_{t-1}D_{t-1}-z}$$
 with probability $1 - \frac{z}{R_{t-1}D_{t-1}}$.

Debt Capacity

• The consumers refinance the banks' debt, D_t , if

 $E_t[\tilde{R}_t] \ge \beta^{-1}$. (Participation Constraint) (4)

There is an endogenous threshold, D
 , such that E_t[R
 ,] < β⁻¹ if and only if

$$D_t > \overline{D}_t$$

• Since $D_{t+1} > \overline{D} \Leftrightarrow A_{t+1} < R_t D_t - \overline{D}$, (4) can be rewritten as

$$R_{t} \int_{R_{t}D_{t}-\overline{D}}^{\infty} df(A_{t+1}) + \left(\frac{z}{R_{t}D_{t}}R_{t} + \frac{R_{t}D_{t}-z}{R_{t}D_{t}}\frac{X}{R_{t}D_{t}-z}\right) \int_{0}^{R_{t}D_{t}-\overline{D}} df(A_{t+1})$$

$$= R_{t} \int_{R_{t}D_{t}-\overline{D}}^{\infty} f(A_{t+1}) dA_{t+1} + \left(\frac{z}{D_{t}} + \frac{X}{R_{t}D_{t}}\right) \int_{0}^{R_{t}D_{t}-\overline{D}} f(A_{t+1}) dA_{t+1} \ge \beta^{-1}.$$
(5)

• The determination of \overline{D} is specified later.

Keiichiro Kobayashi (CIGS)

Dynamic Bank Runs

How to determine X

- After the bank run, the depositors seize the land and sell it to a new-born bank in exchange for *X* units of bank deposits.
- Maximum liability that a bank with one land can sustain is \overline{D} .
- X should be between 0 and \overline{D} .
- Bargaining between the group of the depositors and the new-born bank determines *X*. As a reduced form, we assume

$$X = \theta \overline{D},\tag{6}$$

where θ (0 < θ < 1) is the bargaining power of the depositors.

Optimization for Banks

• Bellman equation for the value at the beginning of period *t*:

$$V(x_{t-1}) = \int_{x_{t-1}-\overline{D}}^{\infty} \max_{R_t(A_t), \ D_t(A_t)} \{ U(A_t - x_{t-1} + D_t) + \beta V(R_t D_t) \} f(A_t) dA_t,$$
(7)

subject to

$$E[\tilde{R}_t] \ge 1 + r_t,\tag{8}$$

$$\max\{0, x_{t-1} - A_t\} \le D_t,\tag{9}$$

$$D_t \le D,\tag{10}$$

where $U(C_t)$ is the bank's utility, $C_t = A_t - x_{t-1} + D_t$ is the consumption, and $x_{t-1} = R_{t-1}D_{t-1}$.

Existence and Uniqueness (1/2)

- Proposition 1: The Bellman equation has a unique solution.
 (Proof)
 - Define the operator T by

$$Tv(x) = \int_{x-\overline{D}}^{\infty} \max_{R, D} \{U(A - x + D) + \beta v(RD)\}f(A)dA, \quad (11)$$

subject to

$$\max\{0, x - A\} \le D \le \overline{D},\tag{12}$$

$$R\int_{RD-\overline{D}}^{\infty} f(A')dA' + \left(\frac{z}{D} + \frac{X}{RD}\right)\int_{0}^{RD-\overline{D}} f(A')dA' \ge \beta^{-1}.$$
 (13)

• Define a set of functions $F \subset C[0, \overline{RD}]$ by

$$F = \left\{ v(x) \left| 0 \le v(x) \le \frac{\beta E[U(A)]}{1 - \beta} \text{ for all } x \in [0, \overline{RD}] \right\}.$$
(14)

Existence and Uniqueness (2/2)

Proof (continued)

- ▶ The solution to the Bellman equation is the fixed point of *T*.
- ► *F* is closed and bounded.
- $T: F \rightarrow F$ is continuous and monotone.
- T(F) is an equicontinuous family (Lemma 5).
- Theorem 17.7 in Stokey and Lucas (1989) implies the existence of the fixed points of T in F.
- The uniqueness established by that the minimal and maximal fixed points are identical (Lemma 6).

Determination of *R*_t

• Lemma 1. *R_t* is pinned down by

$$E_t[\tilde{R}_t] = \beta^{-1}.$$

The FOC and the envelope condition imply

$$\beta D_t V'(R_t D_t) + \mu_t(A_t)[\cdots] = 0, \tag{15}$$

$$V'(x) \le \int_{x-\overline{D}}^{\infty} U'(A_t - x + D_t) df(A) < 0.$$
 (16)

- $\mu(A_t)$ cannot be zero. Otherwise V'(RD) = 0 from (15) and V'(RD) < 0 from (16), a contradiction.
- Therefore, $\mu(A_t) > 0$ and $E_t[\tilde{R}_t] \ge \beta^{-1}$ is binding.

Determination of \overline{D} (1/2)

• \overline{D} is uniquely determined by

$$\overline{D} = \max\left\{ D \left| \max_{R} R \int_{(R-1)D}^{\infty} f(A) dA + \left(\frac{z}{D} + \frac{X}{RD}\right) \int_{0}^{(R-1)D} f(A) dA \ge \frac{1}{\beta} \right\} \right\}$$
(17)

• Lemma 2: Suppose that \overline{D} is given by (17). This \overline{D} is the unique value that satisfies the following claim: Given that the depositors in period t + 1 refuse to refinance D_{t+1} if and only if $D_{t+1} > \overline{D}$, it is optimal for the depositors in period t to refuse to refinance D_t if and only if $D_t > \overline{D}$.

Determination of \overline{D} (2/2)

- Proof of Lemma 2
- Define $\overline{D}_t(\overline{D}_{t+1})$, the best response of the depositors in period *t* to those in period t + 1:

$$\overline{D}_{t}(\overline{D}_{t+1}) = \max\left\{ D \left| \max_{R} G(R, D; \overline{D}_{t+1}) \ge \frac{1}{\beta} \right\},$$
(18)

where

$$G(R,D;\overline{D}_{t+1}) = R \int_{RD-\overline{D}_{t+1}}^{\infty} df(A) + \left(\frac{z}{D} + \frac{X}{RD}\right) \int_{0}^{RD-\overline{D}_{t+1}} df(A).$$
(19)

- \overline{D}_t is maximum amount in *t* that satisfies PC for depositors *t*, given that \overline{D}_{t+1} is maximum amount in t + 1.
- It is shown that

$$\overline{D}_{t}(\overline{D}_{t+1}) > \overline{D}_{t+1} \text{ for } \overline{D}_{t+1} < \overline{D},$$
(20)

$$\overline{D}_{t}(\overline{D}_{t+1}) < \overline{D}_{t+1} \text{ for } \overline{D}_{t+1} > \overline{D}.$$
(21)

• \overline{D} is the unique threshold consistent with Rational Expectations.

Debt Capacity and Depositors' Bargaining Power

Parameter values: $\beta = 0.96$, E[A] = 1, z = 0.1.

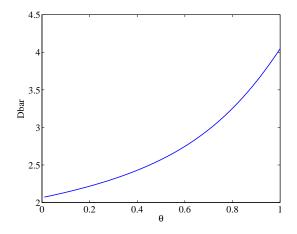


Figure 1. Debt capacity, \overline{D} , and bargaining power of depositors, θ .

Keiichiro Kobayashi (CIGS)

Debt Capacity and Variance of Productivity

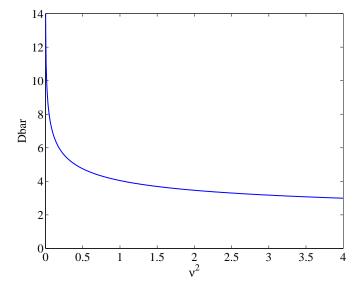


Figure 2. Debt capacity, \overline{D} , and the variance, v^2 ($\theta = 1$).

R_t and Probability of Bank Runs

• R_t is uniquely pinned down by the following, given D_t ,

$$R_t \int_{R_t D_t - \overline{D}}^{\infty} f(A_{t+1}) dA_{t+1} + \left(\frac{z}{D_t} + \frac{\theta \overline{D}}{R_t D_t}\right) \int_0^{R_t D_t - \overline{D}} f(A_{t+1}) dA_{t+1} = \beta^{-1}.$$
(22)

• Probability, as of t, of occurrence of bank run in t + 1:

$$Pr(D_t) \equiv \int_0^{R_t D_t - \overline{D}} f(A) dA.$$
 (23)

• Lemma 3:

- If $D_t \leq \beta \overline{D}$, then $R_t = \beta^{-1}$ and $Pr(D_t) = 0$.
- If $\beta \overline{D} < D_t \le \overline{D}$, then $R_t > \beta^{-1}$ and $Pr(D_t) > 0$.

Illustration of Path of Bank Debt

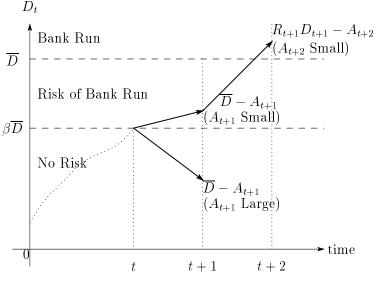


Figure 3. Illustration of Path of Bank Debt.

Keiichiro Kobayashi (CIGS)

Dynamic Bank Runs

Probability of Bank Runs for a Small θ

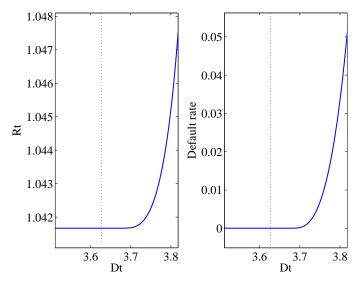


Figure 4. R_t and $Pr(D_t)$ in the case where $\theta = 0.95 < \beta$

Probability of Bank Runs for a Large θ

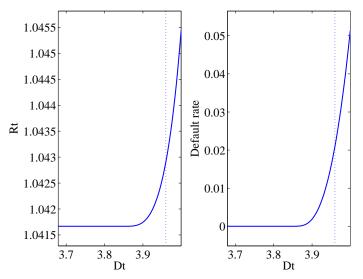


Figure 5. R_t and $Pr(D_t)$ in the case where $\beta < \theta = 0.99$

Trade-off between \overline{D} and $Pr(D_t)$

If θ is large,

- Debt capacity, \overline{D} , is large,
- After the bank run, the bank debt becomes D_t = X = θD > βD.
 Since Pr(X) > 0, the risk of another bank run occurring in the next period is positive.
- If θ is small,
 - Debt capacity, \overline{D} , is small,
 - After the bank run, the bank debt becomes $D_t = X = \theta \overline{D} < \beta \overline{D}$. Since Pr(X) = 0, the risk of another bank run occurring in the next period is zero.

Dynamics of D_t

- Dynamics of D_t depend on the form of function U(C).
- If U(C) is sufficiently concave, D_t may exhibit the mean-reversion.
- Lemma 4: If U(C) = C, then

$$D_t = R_{t-1}D_{t-1} - A_t$$
, when $R_{t-1}D_{t-1} - A_t \le \overline{D}$;
and $D_t = \theta \overline{D}$, when $R_{t-1}D_{t-1} - A_t > \overline{D}$.

- If the banks maximize the discounted sum of profits, the banks minimize the remaining debt in each period.
- ► The banks repay the debt as much as possible, and consume zero if D_t > 0.
- The banks consume $A_t R_{t-1}D_{t-1}$ only if D_t becomes zero.

Generalized Model – Setup

- Introducing labor: $y_t = A_t l_t^{1-\alpha}$. (cf. $y_t = A_t$ in the basic model.)
- Consumers, Banks, and Firms.
- Firms produce goods using labor from consumers and capital from banks.
- Firms' production is feasible if the bank runs do not occur.

$$\max_{l_t,k_t} A_t k_t^{\alpha} l_t^{1-\alpha} - \tilde{r}_t k_t - \tilde{w}_t l_t.$$
(24)

The FOCs imply

$$\tilde{r}_t = \alpha A_t l_t^{1-\alpha},\tag{25}$$

$$\tilde{w}_t = (1 - \alpha) A_t l_t^{-\alpha}, \tag{26}$$

Generalized Model – Consumer's problem

• Consumers choose the labor supply l_t before A_t is realized.

$$\max_{c_t, l_t, h_t} E_0 \left[\sum_{t=0}^{\infty} \beta^t \{ u(c_t) - c(l_t) - h_t \} \right],$$
(27)

subject to

$$c_t + b_t + d_t = (1 + r_{t-1})b_{t-1} + \tilde{R}_t d_t + \tilde{w}_t l_t + h_t,$$
(28)

where l_t is chosen before \tilde{w}_t is realized. The FOC for l_t is

$$c'(l_t) = E_t[\tilde{w}_t]. \tag{29}$$

Generalized Model – Bank's problem

- The state variables are $x_{t-1} = R_{t-1}D_{t-1}$ and l_t .
- Banks take l_{t+1} as given, and choose R_t and D_t :

$$V(x_{t-1}, l_t) = \int_{A(x_{t-1}, l_t)}^{\infty} \max_{R_t, D_t} \left\{ U(\alpha A_t l_t^{1-\alpha} - x_{t-1} + D_t) + \beta V(R_t D_t, l_{t+1}) \right\} df(A_t)$$
(30)

where
$$A(x_{t-1}, l_t) \equiv \frac{x_{t-1} - \overline{D}}{\alpha l_t^{1-\alpha}}$$
, subject to

$$\max\{0, x_{t-1} - \alpha A_t l_t^{1-\alpha}\} \le D_t,$$
(31)

$$D_t \le \overline{D},$$
 (32)

$$R_{t} \int_{A(R_{t}D_{t},l_{t+1})}^{\infty} f(A_{t+1}) dA_{t+1} + \left(\frac{z}{D_{t}} + \frac{X}{R_{t}D_{t}}\right) \int_{0}^{A(R_{t}D_{t},l_{t+1})} f(A_{t+1}) dA_{t+1} \ge \beta^{-1}.$$
(33)

Generalized Model – Equilibrium Conditions

• l_{t+1} is determined by

$$c'(l_{t+1}) = \int_{A(R_t D_t, l_{t+1})}^{\infty} (1 - \alpha) A_{t+1} l_{t+1}^{-\alpha} f(A_{t+1}) dA_{t+1}.$$
 (34)

• \overline{D} is determined by

$$\overline{D} = \max\left\{ D \left| \max_{R} R \int_{\frac{(R-1)D}{al^{1-\alpha}}}^{\infty} f(A) dA + \left(\frac{z}{D} + \frac{\theta}{R}\right) \int_{0}^{\frac{(R-1)D}{al^{1-\alpha}}} f(A) dA \ge \frac{1}{\beta} \right\} \right\}$$
(35)

where l is determined by

$$c'(l) = \int_{\frac{(\overline{R}-1)\overline{D}}{\alpha l^{1-\alpha}}}^{\infty} (1-\alpha)Al^{-\alpha}f(A)dA.$$
 (36)

Generalized Model – Labor supply and Bank Runs

• Lemma 3 applies to the generalized model.

• If $D_t \leq \beta \overline{D}$, then $R_t = \beta^{-1}$ and $Pr(D_t) = 0$. $l_{t+1} = l^*$, where

$$c'(l^*) = (1 - \alpha)E[A](l^*)^{-\alpha}.$$
 (37)

• If $\beta \overline{D} < D_t \le \overline{D}$, then $R_t > \beta^{-1}$ and $Pr(D_t) > 0$. $l_{t+1} < l^*$

• Labor supply decreases as D_t exceeds $\beta \overline{D}$.

• Parameter values:
$$\alpha = 0.3$$
, $v^2 = 0.01$, $c(l) = l^2/2$.

Debt Capacity and Depositors' Bargaining Power

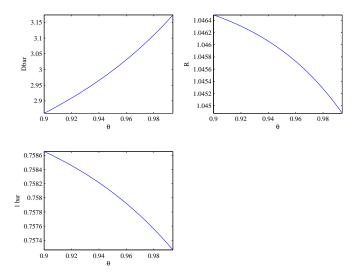


Figure 6. Debt capacity, \overline{D} , and bargaining power, θ ($v^2 = 0.01$).

Keiichiro Kobayashi (CIGS)

Debt Capacity and Variance

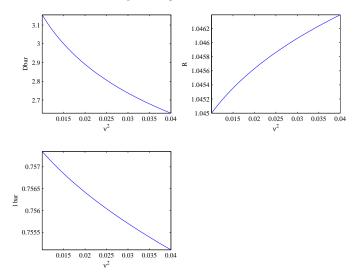


Figure 7. Debt capacity, \overline{D} , and variance of productivity, v^2 ($\theta = 0.99$).

Keiichiro Kobayashi (CIGS)

Low bargaining power and risk of bank runs

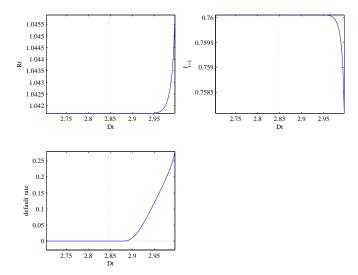


Figure 8. R_t , $Pr(D_t)$, l_{t+1} in the case where $\theta = 0.95 < \beta$.

High bargaining power and risk of bank runs

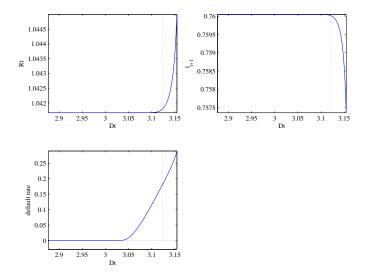


Figure 9. R_t , $Pr(D_t)$, l_{t+1} in the case where $\beta < \theta = 0.99$.

Conclusion

- Banks are subject to refinance risk.
- Existence and uniqueness of the equilibrium in which the depositors run on the banks if the bank deposits exceed the debt capacity.
- There is a trade-off between the debt capacity and the risk of recurrence of the bank runs.
 - If θ is high, the debt capacity is high, whereas the risk of recurrence of the bank runs is positive.
 - If θ is low, the debt capacity is low, whereas the risk of recurrence of the bank runs is zero.

Topic for Future Research

Bubble and bank runs

If X includes the bubble component and declines suddenly, then \overline{D} declines suddenly and the bank run is triggered.

Distortion in productivity

Risk aversion may lead to TFP declines when $\beta \overline{D} < D_t \le \overline{D}$, through agents' choice of the production technology.

Monetary Policy

Introduce Nominal Rigidities. The nominal interest rate should be lower when $\beta \overline{D} < D_t \leq \overline{D}$, than when $D_t \leq \beta \overline{D}$.