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common) market environment.  Furthermore, synchronization occurs faster (i.e., with 
a smaller reduction in trade costs) when the country sizes are more unequal, and it is 
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1.  Introduction 

How does globalization affect macroeconomic co-movements across countries?  A vast 

majority of research approaches this question by assuming that productivity movements in each 

country are driven by some exogenous processes.  As already demonstrated by innovation-based 

models of endogenous growth, however,  globalization can change the growth rates of 

productivity.   In this paper, we demonstrate that globalization can also change synchronicity of 

productivity fluctuations across countries in a two-country model of endogenous fluctuations of 

innovation activities.1 

The intuition we want to capture can be simply stated.  Imagine that there are two 

structurally identical countries.  In autarky, each of these countries experiences endogenous 

fluctuations of innovation, due to strategic complementarities in the timing of innovation among 

firms competing in their domestic market, which causes temporal clustering of innovation 

activities and hence aggregate fluctuations.  Without trade, endogenous fluctuations in the two 

countries are obviously disconnected.  As trade costs fall and firms based in the two countries 

start competing against each other, the innovators from both countries start responding to an 

increasingly global (hence common) market environment.  This leads to an alignment of 

innovation incentives, thereby synchronizing innovation activities, and hence productivity 

movements, across countries. To capture this intuition in a transparent manner, we consider a 

model that consists of the following two building blocks. 

Our first building block is a model of endogenous fluctuations of innovations, originally 

proposed by Judd (1985).  In this classic article, Judd developed three dynamic extensions of the 

Dixit-Stiglitz monopolistic competitive model, in which innovators could pay a one-time fixed 

cost to introduce a new (horizontally differentiated) variety.  First, he showed that the 

equilibrium trajectory converges monotonically to a unique steady state under the assumption 

                                                
1Empirically, Frankel and Rose (1998) and many subsequent studies have established that countries that trade more 
with each other have more synchronized business cycles.  The evidence is particularly strong among developed 
countries as well as among developing countries, while it is less so between developed and developing countries. 
Standard international RBC models have difficulty explaining this, and it is easy to see why.  With exogenous 
productivity shocks driving business cycles in these models, more trade leads to more specialization, which means 
less synchronization, to the extent that the shocks have sector-specific components.  Some attempts to resolve such 
“trade-comovement puzzle” by appealing to vertical specialization across countries have met limited success, and 
some authors suggested that it would help to improve their performances if globalization would also synchronize 
productivity movements that drive business cycles across countries: see, e.g., Kose and Yi (2006).  We hope that our 
model offers one such theoretical ingredient. 
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that innovators hold monopoly over their innovations indefinitely.2  Then, he turned to the cases 

where the innovators hold monopoly only for a limited time, so that each variety is sold initially 

at the monopoly price and later at the competitive price. The assumption of temporary monopoly 

drastically changes the nature of dynamics and generates endogenous fluctuations.  This is 

because, with free entry to innovation, each innovator needs to recover his cost of innovation by 

earning enough revenue during his monopoly.  Certainly, it is discouraging for him to see others 

entering the market at the same time, because he has to compete with their innovations.  (This 

means no strategic complementarities between contemporaneous innovations.)  Nevertheless, the 

impact of such contemporaneous innovations is relatively muted, because they are also sold at 

the monopoly prices.  What is even more discouraging is for him to see the innovations 

introduced in the recent past start being sold competitively, as their innovators lose their 

monopoly.  Thus, an innovator would rather enter the market when others do, so that he enjoys 

his monopoly while they still hold their monopoly, instead of waiting and entering the market 

after they lose their monopoly.   Or to put it differently, the full impact of innovations occurs 

with a delay, which creates strategic complementarities in the timing of innovation (despite that 

there is no strategic complementarities in innovations).  This leads to a temporal clustering of 

innovation, generating aggregate fluctuations of productivity. 

Judd developed two models that formalize this idea, of which we use the one, sketched 

by Judd (1985; Sec.4) and examined in greater detail by Deneckere and Judd (1992; DJ for short) 

for its analytical tractability.  What makes it analytically tractable is the assumption that time is 

discrete and that the innovators hold their monopoly for just one period, the same period in 

which they introduce their varieties.  With this assumption, the state of the economy in each 

period (how saturated the market is from past innovations) is summarized by one variable (how 

many varieties of competitive goods the economy has inherited).  And the entry game played by 

innovators in each period becomes effectively static because they do not expect to earn any profit 

in the future (although the outcome of this game will affect the outcome of the games in the 

future).3  Since the profit from innovating in any period is decreasing in the aggregate 

innovations in the same period, the free entry condition pins down the outcome of this static 

                                                
2 This version of the Judd model has been extended to a two-country, two-factor model by Grossman and Helpman 
(1988).  It also provided the foundation for the endogenous growth literature developed by Romer (1990) and others. 
3 Furthermore, it obviates the need for pricing the ownership share of the innovating firms, because their profits are 
just enough to cover the innovation cost, so that there is no dividend to pay out. 
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entry game uniquely.  As a result, the equilibrium trajectory can be obtained uniquely by 

iterating a one-dimensional (1D) map from any initial condition.  This map turns out to be 

isomorphic to the skew tent map.  That is, it is noninvertible and piecewise linear (PWL) with 

two branches.  It depends on two parameters; σ (the elasticity of substitution between goods) and 

δ (the survival rate of the existing goods).4  A higher σ increases the extent to which a past 

innovation, which is competitively sold, discourages innovators more than a contemporaneous 

innovation, which is monopolistically sold.  A higher δ means more of the past innovations 

survive and carry over to discourage current innovations.  For a sufficiently high σ and/or a 

sufficiently high δ, strategic complementarities in the timing of innovation are strong enough to 

cause temporal clustering of innovation that makes the unique steady state unstable and the 

equilibrium trajectory fluctuate forever, starting from almost all initial conditions.  For a 

moderately high σ and/or δ, the equilibrium trajectory asymptotically converges to a unique 

period-2 cycle, along which the economy alternates between the period of active innovation and 

the period of no innovation.  For a much higher σ and/or δ, even the period-2 cycle is unstable, 

and the trajectory converges to a chaotic attractor.   Since the equilibrium trajectory is unique, 

fluctuations are driven neither by multiplicity nor by self-fulfilling expectations.  This feature of 

the model makes it useful as a building block to examine the effects of globalization on the 

nature of fluctuations across two countries.5 

Our second building block is Helpman and Krugman (1985; Ch.10; HK for short), a 

model of international trade in horizontally differentiated (Dixit-Stiglitz) varieties with iceberg 

trade costs between two structurally identical countries, which may differ only in size.  This 

model has two key parameters; the distribution of country sizes and the degree of globalization, 

which is inversely related to the trade cost.  In this model, the equilibrium number of firms based 

in each country is proportional to its size in autarky (with infinitely large trade costs).  As trade 

costs fall, horizontally differentiated goods produced in the two countries mutually penetrate 

                                                
4 In a model of horizontal innovation (or expanding variety), new goods are added to old goods without replacing 
them, so that the market could eventually become so saturated that innovations would stop permanently.  One way 
to avoid this is to let the economy grow in size, exogenously as in Judd (1985) or endogenously as in Matsuyama 
(1999, 2001).  Here, we assume instead, by following DJ (1992),  that the existing goods are subject to idiosyncratic 
obsolescence shocks, so that only a constant fraction of them, δ, carries over to the next period. 
5It is worth pointing out that the discrete time specification is not responsible for causing fluctuations.  Indeed, Judd 
(1985; Sec.3) developed a continuous time model in which each innovator holds monopoly for a fixed duration of 
time, T > 0 (i.e., an one-hoss shay specification), and showed that the economy alternates between the periods of 
active innovation and the periods of no innovation along any equilibrium trajectory for almost all initial conditions 
when T is sufficiently large (but finite). 
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each other’s home market (Two-way flows of goods), and the equilibrium distribution of firms 

become increasingly skewed toward the larger country (Home Market Effect and its 

Magnification). 

By combining the DJ mechanism of endogenous fluctuations of innovations with the HK 

model of international trade, we show: 

 The state space of our two-country model of the world economy is two-dimensional (i.e., 

how many competitive varieties each country has inherited, which determines how saturated 

the two markets are from past innovations) and represents the global market condition for the 

current innovators in the two countries. 

 For each initial condition, the equilibrium trajectory is unique and obtained by iterating a 

two-dimensional (2D), piecewise smooth (PWS), noninvertible map, which has four 

parameters (the two coming from DJ and the two coming from HK). 

 In autarky, with infinite trade costs, the dynamics of two countries are decoupled in the sense 

that the 2D-system can be decomposed into two independent 1D-systems, which are 

isomorphic to the original DJ model.  Under the same parameter condition that ensures the 

instability of the steady state in the DJ model, the dynamics of the two countries may 

converge to either synchronized or asynchronized fluctuations, depending on the initial 

conditions;  

 As trade costs fall, and the goods produced in two countries mutually penetrate each other’s 

home market, the dynamics become synchronized in the sense that the basin of attraction6 for 

the synchronized cycle expands and eventually covers a full measure of the state space, and 

the basin of attraction for the asynchronized cycle shrinks and eventually disappears.7  To 

put it differently, as trade costs fall, the innovation dynamics becomes more likely to 

converge to the synchronized 2-cycle, and for a sufficiently small trade cost, it converges to 

the synchronized 2-cycle for almost all initial conditions. 

                                                
6In the terminology of the dynamical system theory, the set of initial conditions that converge to an attractor (e.g., an 
attracting steady state, an attracting period-2 cycle, a chaotic attractor, etc.) is called its basin of attraction. 
7For these results, we impose the parameter conditions that ensure the existence of a unique, stable period-2 cycle in 
the DJ model.  As pointed out above, the equilibrium trajectory in the DJ model converges to a chaotic attractor 
under the parameter conditions that ensure the instability of the (unique) period-2 cycle.  Although we have obtained 
some interesting results for these cases, we have chosen not to discuss them here partly because the stable 2-cycle 
case is sufficient for conveying the economic intuition behind the synchronization mechanism and partly because we 
want to avoid making this paper more technically demanding in order to keep it accessible to a wider audience. 
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 Synchronization occurs faster (i.e., with a smaller reduction of trade costs) when the two 

countries are more unequal in size.  Furthermore, even a small country size difference speeds 

up synchronization significantly.  And the larger country sets the tempo of global innovation 

cycles, with the smaller country adjusting its rhythm to the rhythm of the larger country. 

The intuition behind these results should be easy to grasp.  With globalization, the markets 

become more integrated.  As a result, a wave of innovations that took place in one country in the 

past discourages innovations today not only in that country, but also in the other country, causing 

synchronization of innovation activities across the two countries.  Furthermore, as innovation 

activities become synchronized, the market conditions in the two countries become more similar, 

which further causes synchronization.  The larger country plays a more important role in setting 

the rhythm of global innovation cycles, because the innovators based in the smaller country rely 

more heavily on the revenue earned in the export market to recover the cost of innovation than 

those based in the larger country. 

Related Literature:  To the best of our knowledge, this is the first attempt to explain how 

globalization may synchronize productivity fluctuations across countries.  Nevertheless, it is 

related to several strands of literature.  First, it is related to static models of international trade, 

particularly those of intra-industry trade and home market effects.  This is one of the core 

materials of international trade.  We have chosen HK as one of our building blocks, because it is 

perhaps the most standard textbook treatment.  Second, there are now a large body of literature 

that study the effects of globalization in innovation-driven models of endogenous growth: see 

Grossman and Helpman (1991), Rivera-Batiz and Romer (1991), Acemoglu and Zilibotti (2001), 

Ventura (2005), Acemoglu (2008; Ch.19), Acemoglu, Gancia and Zilibotti (2014) and many 

others.  All of these examine the effects of globalization on productivity growth rates along the 

balanced growth path.  Third, there are many closed economy models of endogenous fluctuations 

of innovation, which include Shleifer (1986), Gale (1996), Jovanovic and Rob (1990), Evans, 

Honkaponja and Romer (1998), Matsuyama (1999, 2001), Wälde (2002, 2005), Francois and 

Lloyd-Ellis (2003, 2008, 2009),  Jovanovic (2006),  Bramoullé and Saint-Paul (2010), and 

Benhabib (2014), in addition to Judd (1985) and Deneckere and Judd (1992).  We have chosen 

DJ as one of our building blocks because of its tractability and the uniqueness of the equilibrium 
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trajectory.8  We conjecture that the basic intuition--globalization synchronizes innovation 

activities across countries, as the innovators everywhere respond to the increasingly global (and 

hence common) market environment--, should go through in a much wider class of models of 

endogenous innovation cycles.   

Among these studies, Matsuyama (1999, 2001) embed the DJ mechanism into a closed 

economy endogenous growth model with capital accumulation similar to Rivera-Batiz and 

Romer (1991)  and showed that the two engines of growth, innovation and capital accumulation, 

move asynchronously.  This is because there is only one source of endogenous fluctuations; 

capital accumulation merely responds to the fluctuations of innovation.9  In contrast, our model 

has two sources of endogenous fluctuations. 

To put our contribution in a broader context, we offer a new model of synchronization of 

coupled oscillators.  The subject of coupled oscillators is concerned with the effects of 

combining two or more systems that generate self-sustained oscillations, in particular, how they 

mutually affect their rhythms.  It is a major topic in natural science, ranging from physics to 

chemistry to biology to engineering, with thousands of applications.10  We are not aware of any 

previous example from economics.11  To the best of our knowledge, this is the first two-country, 

                                                
8 Perhaps it might be instructive to compare the DJ model with the Shleifer model.  In the Shleifer model, there are 
no costly innovation activities.  Instead, every period, a constant fraction of the agents receives an idea exogenously, 
which they could implement to earn profit.  Once implemented, it will be quickly imitated so that the agent with an 
idea can earn profit for only one period.  Furthermore, the profit depends on the size of the market.  If the agents 
anticipate that a boom is imminent, they are willing to postpone the implementation of the idea.  But a boom occurs 
in the period when many agents implement their ideas and earn their profits, which they have to spend during the 
same period.  In other words, the profit from innovation in a given period increases with the aggregate innovations 
in that same period.   This generates strategic complementarities between contemporaneous innovations in the 
Shleifer model.  Anticipations of an imminent boom could be self-fulfilling, which could generate a cyclical 
equilibrium.  However, this is one of multiple equilibria.  The cyclical equilibrium co-exists with a stationary 
equilibrium, in which every agent implements his or her idea immediately.  In contrast, in the DJ model, different 
innovations compete with each other, so that the profit from innovation decreases with the number of innovations.   
Thus, there is no strategic complementarity between contemporaneous innovations, which ensures the uniqueness of 
the equilibrium path.  What creates strategic complementarities in the timing of innovation in the DJ model is a 
delay effect of innovations.  Past innovations are more discouraging than contemporaneous innovations so that 
innovators would not want to innovate after others innovated.  To quote Shleifer (1986, footnote 1), “Judd’s 
mechanism is almost the opposite of mine; innovations in his model repel rather than attract other innovations.”    
9 See also Gardini, Sushko, and Naimzada (2008) for a complete characterization of the Matsuyama (1999) model. 
10 Just to name a few, consider the Moon, with its rotation around its own axis and its revolution around the Earth.  
These two oscillations are perfectly synchronized in the same frequency, which is the reason why we observe only 
one side of the Moon from the Earth.  Or consider the London Millennium Bridge.  In its opening days, hundreds of 
pedestrians tried to adjust their footsteps to lateral movements of the bridge.  In doing so, they inadvertently 
synchronized their footsteps among themselves, which caused the bridge to swing widely, forcing a closure of the 
bridge. See Strogatz (2003) for a popular, non-technical introduction to this huge subject. 
11Of course, there may have been attempts to borrow an existing model of coupled oscillators from science and give 
an economic interpretation to its variables.  The problem of this approach is that it would be hard to give any 
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dynamic general equilibrium model of endogenous fluctuations.  Indeed, this is one of the only 

two dynamic general equilibrium models, whose equilibrium trajectory can be characterized by a 

dynamical system, which can be viewed as a coupling of two dynamical systems that generate 

self-sustained equilibrium fluctuations.  The other one is our companion piece, Matsuyama, 

Sushko, and Gardini (forthcoming), which develops a two-sector, closed economy model, where 

each sector produces a Dixit-Stiglitz composite of differentiated goods, as in DJ.  When the 

consumers have Cobb-Douglas preferences over the two composites, innovation dynamics in the 

two sectors are decoupled.  For the cases of CES preferences, it is shown that, as the elasticity of 

substitution between the two composites increases (decreases) from one, fluctuations in the two 

sectors become synchronized (asynchronized), which amplifies (dampens) the aggregate 

fluctuations.12  The above two are among the few economic examples of 2D dynamic systems, 

defined by PWS, noninvertible maps. 13 

Matsuyama, Kiyotaki, and Matsui (1993) is also related in spirit in that they too consider 

globalization as a coupling of two games of strategic complementarities. They developed a two-

country model of currency circulation. The agents are randomly matched together, and currency 

circulation is modeled as a game of strategic complementarities, where an agent accepts a certain 

object as a means of payment if he expects those he would run into in the future to do the same.  

In autarky, agents are matched only within the same country, so that two countries play two 

separate games of strategic complementarities, hence different currencies may be circulated in 

the two countries.  Then, globalization increases the frequency in which agents from different 

countries are matched together.  Interestingly, the agents from the smaller country, not those 

from the larger country, are the first to adjust their strategies and to start accepting a foreign 

                                                                                                                                                       
structural interpretation to the parameters of the system.  Importantly, we derive a system of coupled oscillators from 
a fully specified economic model, and we need to analyze this system, because it is new and different from any 
system that has been studied before.  Furthermore, the country size difference has nontrivial effects in our model, 
and plays an important role in our analysis.  We are not aware of any previous studies, which conduct a systematic 
analysis of the role of size difference between coupled oscillators. 
12 Some may find this result surprising, because the presence of complementary (substitutes) sectors is commonly 
viewed as an amplifying (moderating) factor.  However, this result is not inconsistent with such a common view, 
which is concerned about the propagation of exogenous productivity shocks from one sector to others.  This result is 
concerned about how productivity in various sectors responds endogenously to a change in the market condition.  
Sectors producing substitutes (complements) respond in the same (opposite) direction, thereby amplifying 
(moderating) the aggregate fluctuation. 
13See Mira, Gardini, Barugola and Cathala (1996) for an introduction to 2D noninvertible maps in general, and see 
Sushko and Gardini (2010) for PWS examples.  



©Kiminori Matsuyama, Globalization and Synchronization of Innovation 

Page 9 of 58 

currency, and as a result, that the larger country’s currency emerges as a vehicle currency of the 

world trade. 

The rest of the paper is organized as follows.  Section 2 develops our two-country model of 

endogenous fluctuations of innovation, and derives the 2D-PWS, noninvertible map that governs 

the equilibrium trajectory.  Section 3 considers the case of autarky, where the 2D system can be 

decomposed into two independent 1D-PWL, noninvertible maps, which are isomorphic to the 

original system obtained by DJ.  In Section 3.1, we offer a detailed analysis of this 1D map, 

thereby revisiting the DJ model.  We also introduce the notion of synchronized and 

asynchronized cycles as well as their basins of attraction in section 3.2.  Section 4 then returns to 

the 2D system in order to study the effects of globalization, or a coupling, on innovation 

dynamics in the two countries.  First, in Section 4.1, we show that the effects of globalization on 

the cross-country distribution of this model at its unique steady state and along synchronized 

fluctuations are identical with those of the HK model.  For the rest of the paper, we assume the 

parameter condition that ensures the existence of a stable period-2 cycle in the DJ model.  In 

Section 4.2, we consider the symmetric case where the two countries are of equal size.  Then, in 

Section 4.3 we turn to the asymmetric cases to study the role of country size differences on the 

synchronization effects of globalization.  In Section 4.4, we offer some time series plots of  

equilibrium trajectories, which encapsulate the key predictions of the model.  They also help to 

illustrate transient behaviors.  We conclude in Section 5.  

 

2.  Model 

Time is discrete and indexed by ,...}2,1,0{t .  The world economy consists of two 

countries, indexed by  j or k = 1 or 2.  The representative household of country j inelatically 

supplies the single nontradable factor, labor, by jL  (measured in its efficiency unit) at the wage 

rate, jtw .  The two countries are structurally identical, and may differ only in labor supply, so we 

let 21 LL  without loss of generality.  The household consumes the single nontradeable final 

good, which is competitively produced by assembling the two types of tradeable intermediate 

inputs, with the following Cobb-Douglas technology:  
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where o
ktX  is the homogeneous input, produced with the linear technology that converts one unit 

of labor into one unit of output.  This input is competitively supplied and tradeable at zero cost 

so that the law of one price holds for this input.  By choosing this input as the numeraire, we 

have jtw  1, and jtw  = 1 holds whenever country j produces the homogeneous input.  The second 

type of the inputs, ktX , is a composite of differentiated inputs, aggregated as  

(2)    



t

dxX ktkt  
1

1
1

1
)( ,  (σ > 1),       

where )(ktx  is the quantity of a differentiated input variety v t used in the final goods 

production in country k in period t;  σ > 1 is the direct partial elasticity of substitution between a 

pair of varieties, and t  is the set of differentiated input varieties available in period t, which 

changes over time due to innovation as well as obsolescence.  These differentiated varieties can 

be classified depending on where they are produced and whether they are supplied competitively 

or monopolistically.  Thus, t  =  
j jt = 

j
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jt

m
jt )( , where c

jt
m
jtjt   is the set of all 

differentiated inputs produced in j in period t: m
jt  is the set of new input varieties introduced 

and produced in j and sold exclusively (and hence monopolistically) by their innovators for just 

one period.  And c
jt  is the set of competitively produced input varieties in  j in period t, which 

were introduced in the past.  Hence, m
jt  is endogenously determined in in period t, while c

jt is 

predetermined in period t. 

Demands for Differentiated Inputs:  

Assuming the balanced trade, the demand curves for these inputs by the final goods 

sector in k are derived from (1) as:  
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where )(ktp is the unit price of variety v in k; ktP  is the price index for differentiated inputs in k, 

given by  

(4)    
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and  kt
Y

kt PP   is the price of the final good.  The unit price of variety v depends on k, because 

of the (iceberg) trade costs.  That is, to supply one unit of a variety jt  in k, 1jk  units 

need to be shipped from j.  Then the effective unit price in k is )(ktp  = jkjtp  )( )(jtp  for 

jt .  Inserting this expression to (3), the total demand for each variety can be obtained as: 

(5) )(jtD  = k ktjk vx )(  =  ))(( jtjt pA ,  for jt  

where  

(6)  
k

kt

kktjk
jt P

Lw
A 


1)(

,   with 1)( 1   jkjk , 

may be interpreted as the demand shift parameter for a variety produced in j, with   1)( jkjk  

being the weight attached to the aggregate spending in country k.  We follow HK and assume 

12211  ; 12112    so that 12211   ;  2112  1)( 1   .  Thus, )1,0[

measures how much the final goods producers spend on an imported variety, relative to what 

they would spend in the absence of the trade cost; and it is inversely related to  , with 0  for 

  and 1  for 1 .  This is our measure of globalization.   

Differentiated Inputs Pricing:  

Producing one unit of each variety of differentiated inputs requires   units of labor, so 

that the marginal cost is equal to jtw for jt .  Since all competitive inputs produced in the 

same country are priced at the same marginal cost, and they all enter symmetrically in 

production, we could write, from (5), as: 

(7) c
jtjtjt pwp  )( ; )(vD jt

 )( c
jtjt pA c

jty  for jt
c
jt  , (j  = 1 or  2), 

where c
jtp  and c

jty  are the (common) unit price and output of each competitive variety produced 

in country j and period t.  Eq. (5) shows that all monopolists face the same constant price 

elasticity of demand,  .  Thus, they all use the same marked-up rate.  Hence all monopolistic 

varieties produced in the same country are priced equally, and produced by the same amount 

because they all enter symmetrically in production.  Thus, 

(8) m
jt

jt
jt p

w
p 








/11

)( ; )(vD jt
 )( m

jtjt pA m
jty  for c

jtjt
m
jt  ,  
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where m
jtp  and m

jty  are the (common) unit price and output of each monopolistic variety produced 

in country j and period t.  From (7) and (8),   

(9) 111 
m

jt

c
jt

p
p

;  111 





 



m
jt

c
jt

y
y

;   m
jt

c
jt

m
jt

c
jt

y
y

p
p







 





111 ),1( e . 

Thus, a competitive variety is cheaper, and hence produced and sold more than a monopolistic 

variety.  Furthermore, the final goods producer spends more on a competitive variety than on a 

monopolistic variety by the factor,   > 1.  Using (7)-(9), the price indices in (4) can be written 

as:  

       


j
m
jtjk

m
jt

c
jtjk

c
jtkt pNpNP 


111

    




























j jtjkc
jt

m
jtm

jt
c
jt w

p
p

NN 


 1
1

,   

where c
jtN  ( m

jtN ) denote the measure of c
jt  ( m

jt ).  Using 12211    and  2112   , this 

can be further written as: 

(10)   


1/ktP     





11
jtjtktkt wMwM , 

where  

(11) /m
jt

c
jtjt NNM  ,  

is the effective total input varieties produced in j available to the final goods producers, i.e., 

which captures the degree of competition that innovators would have to face upon entering.   

Note that the measure of monopolistic varieties is discounted by   to convert it to the 

competitive variety equivalent in eq.(11).  Thus, a unit measure of competitive varieties has the 

same effect with measure   of monopolistic varieties.  With  > 1, a competitive variety is 

more discouraging to innovators than a monopolistic variety.  Note that   is monotone 

increasing in σ, with 1  as 1  and ...71828.2 e , as  , and yet, it varies little 

with  over an empirically relevant range, with  2.37 at 4  and  2.62 at 14 .  For 

this reason, we set 5.2  for all of our numerical demonstrations.14  Note also that the measure 

of foreign varieties is multiplied by   < 1 to convert it to the domestic variety equivalent in 

eq.(10). 

Introduction of New Varieties: 

                                                
14 It turns out that we need 2 (i.e., 2 ) for generating endogenous fluctuations. 


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In each period, new varieties of differentiated input varieties may be introduced by using 

f units of labor per variety in each country.  Following DJ, we assume that innovators hold 

monopoly over their innovations for only one period, the same period in which their varieties are 

introduced.  With free entry to innovation activities, the net benefit of innovation must be equal 

to zero, whenever some innovations take place, and it must be negative whenever no innovation 

takes place.  Thus, the following complementarity slackness condition holds:  

0m
jtN ;  0)(  fwywp jt

m
jtjt

m
jt

m
jt  , 

where one of the two inequalities holds with the equality: 0m
jt

m
jt N .  In other words, either the 

zero profit condition or the non-negativity constraint on innovation must be binding in each 

country.  Note that the gross benefit of innovation is equal to the monopoly profit earned in the 

same period in which a new variety is introduced, because innovators lose its monopoly after one 

period.  By using (7)-(9) and (11), these conditions can be further rewritten as 

(12)  0)(  c
jtjt

m
jt NMN  ;   )( jtjt wA = c

jty  





 fym
jt 






 

11 .  

For the remainder of this paper, we follow HK and consider the case of non-

specialization, where both countries always produce the homogeneous input, which ensures 

1jtw , for all t.  (See Appendix A for a sufficient condition for the non-specialization.)   By 

setting 121  tt ww  in eq. (6) and (10) , eq. (12), becomes 

(13) 0)(  c
jtjt

m
jt NMN  ; f

MM
L

MM
L

ktjt

k

ktjt

j 















 )/()(
1








,    (j ≠ k). 

Thus, innovation is active in country j, if and only if the revenue for a new variety introduced in 

country j, given in the square bracket, is just enough to cover the cost of innovation.15  The first 

term in the bracket is the revenue from its domestic market, j, equal to its aggregate spending on 

differentiated inputs, jL , divided by the effective competition it faces at home, )( ktjt MM    

= )( m
kt

c
kt

m
jt

c
jt NNNN   .  Notice that the measure of competitive varieties is multiplied by 

1 ,  relative to the monopolistic varieties, and that the measure of the foreign varieties are 

multiplied by 1 , relative to the home varieties, due to the disadvantage the foreign varieties 

                                                
15 Note that, from eq. (8), the gross profit per unit of the revenue is  /1/)(  jtjtjt pwp .  
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suffer in their export market, j.  The second term in the bracket is the revenue from its export 

market, k, equal to its aggregate spending on differentiated inputs, kL , divided by the effective 

competition it faces abroad, )/(  ktjt MM   =  /)( m
kt

c
kt

m
jt

c
jt NNNN  .  Notice that the 

measure of the foreign varieties are multiplied by 1/1  , relative to the home varieties, due to 

the advantage the foreign varieties enjoy in their domestic market, k. 

Obsolescence of Old Varieties:  

All new varieties, introduced and supplied monopolistically by their innovators in period 

t, are added to the existing old varieties of differentiated inputs which are competitively supplied.  

Each of these varieties is subject to an idiosyncratic obsolescence shock with probability, 

)1,0(1   . Thus, a fraction )1,0(  of them survives and carries over to the next period and 

become competitively supplied, old varieties. 16   This can be expressed as: 

(14)     )(1
c
jtjt

c
jt

m
jt

c
jt

c
jt NMNNNN   .   )1,0( . (j = 1 or  2) 

Dynamical System: 

To proceed further, let us introduce normalized measures of varieties as:  

)( 21 LL
fN

n
c
jt

jt 




; 
)( 21 LL

fN
i

m
jt

jt 




 and 
)( 21 LL

fM
m jt

jt 




 


jt
jt

i
n   

Then,  eqs .(13) can be rewritten as: 

(15)  0)(  jtjtjt nmi  ;  )( ktjjt mhm  , 

where 0)( kj mh  is implicitly defined by  

1
/)()(





  kkj

k

kkj

j

mmh
s

mmh
s

, 

with )/( 21 LLLs jj  , the share of country j.   Eq.(14) can be written as:    

(16)  jtjtjt inn  1   )( jtjtjt nmn     jtjt nm )1(    

                                                
16In addition, we could assume that labor supply in each country may grow at a common, constant factor, 1G ; 

t
jjt GLL )(0 .  Then, the measures of varieties per labor would follow the same dynamics by replacing   with 

1/ G .  It turns out that we need ...71828.11/1  eG  for generating endogenous fluctuations.  To see 
what this implies, let Td)1(  and TgG )1(  , where T is the period length in years, d the obsolescence 

probability per year and g the annual growth rate of the exogenous component of TFP.  Then, )/log( G  

)]1/()1log[( dgT   ...5413.0)1log()(  eTdg . 
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Notice that eq.(15) may be interpreted as the equilibrium conditions of  the static 

innovation games simultaneously played in the two countries.  Conditional on the current global 

market condition, 2
21 ),(  Rnnn ttt , which shows how saturated the two markets are from past 

innovations, the innovators in each country decide whether to introduce new varieties.  For any

)1,0[ , the Nash outcomes of these games in period t  are unique.  Indeed, eq.(15) can be 

solved for its unique solution, 2
21 ),(  Rmmm ttt  as a function of  2

21 ),(  Rnnn ttt .17  

Inserting this solution into eq.(16) generates the market condition in the next period, 
2

12111 ),(   Rnnn ttt .  Thus, we  obtain the 2D-dynamical system that governs the equilibrium 

law of motion for 2
21 ),(  Rnnn ttt , which we state formally as follows. 

Theorem:  For each initial condition,   2
20100 ,  Rnnn , the equilibrium trajectory,  0ttn  = 

  021 , ttt nn , is obtained by iterating the 2D-dynamical system, )(1 tt nFn  ;  22:  RRF , 

given by: 

 tt nsn 1111 )1()(     for tn   )(, 2
21 jjLL snRnnD    

 tt nsn 2212 )1()(         
 

tt nn 111      for tn   )(, 2
21 kjjHH nhnRnnD    

  tt nn 212   
(17) 
  tt nn 111      for tn   )();(, 12211

2
21 nhnsnRnnDHL     

   ttt nnhn 21212 )1()(    
   
   ttt nnhn 12111 )1()(     for tn   )();(, 22211

2
21 snnhnRnnDLH    

tt nn 212   

where  











 1,
1

min)(1)( 21
21 




ss
ss  ,  with 115.0 21  ss   and 0)( kj nh  defined 

                                                
17 One may wonder what happens if ρ = 1. Then, the two markets become fully integrated, and there will no home 
market advantage; the location of innovation no longer matters.  As a result, eq.(15)  no longer has a unique 
solution; and 2

21 ),(  Rmmm ttt ,  and hence 2
21 ),(  Riii ttt  become indeterminate.  However, tt mm 21   and 

hence tt ii 21   is uniquely determined by tt nn 21  , and hence the dynamics of the world aggregates follows the same 
1D-dynamics obtained by DJ.  Effectively, the world economy becomes a single closed economy.  



©Kiminori Matsuyama, Globalization and Synchronization of Innovation 

Page 16 of 58 

implicitly by  1
/)()(





  kkj

k

kkj

j

nnh
s

nnh
s

.  

See Appendix B for the derivation of eq.(17).  Once we obtain the equilibrium trajectory for 
2

21 ),(  Rnnn ttt  by iterating this 2D-system, it is straightforward to obtain the equilibrium 

trajectory for many other variables of interest.   For example, from eq.(15) and eq.(17), the 

dynamics of innovations, in their normalized form, )( jtjtjt nmi    /)( 1 jtjt nn    can be 

derived as: 

ti1 ))(( 11 tns   ; ti2 ))(( 22 tns     for tn  DLL, 

ti1 0     ti2 0     for tn  DHH,  

(18)  ti1 0    ti2 ))(( 212 tt nnh    for tn  DHL, 

   ti1 ))(( 121 tt nnh  ; ti2 0     for tn  DLH. 

Likewise, it can be shown that Total factor productivities (TFPs),   
 ktktkktkt PwLYZ //

follow )log()log( 10 ktkt zZ    with: 

tz1 1)1( s     tz2 2)1( s    for tn  DLL, 

(19)  tz1 tt nn 21     tz2 tt nn 21      for tn  DHH, 

   tz1 )( 121 tt nhn   tz2 )( 121 tt nhn     for tn  DHL, 

   tz1 tt nnh 221 )(   tz2 tt nnh 221 )(     for tn  DLH. 

  Some Preliminary Observations:  

  Starting from the next section, we will conduct a step-by-step analysis of the 2D-system, 

eq. (17).  However, it is worth offering some preliminary observations about this system.  First, it 

is characterized by the four parameters: ),1( e ; )1,0( ; )1,0( ;  and )1,5.0[1s .   (The 

first two come from DJ, and the second two from HK.)  Second, it is a continuous, piece-wise 

smooth system, consisting of four smooth maps defined over four domains, depending on which 

of the two inequalities in eq.(15) hold with the equalities in each country.   Third, 11 tn  is 

decreasing in tn1  in DLH  and DLL  and increasing in tn1  in DHH  and DHL.  Similarly, 12 tn  is 

decreasing in tn2  in DLL and DHL and increasing in tn2  in DLH  and DHH.   This suggests, among 
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others, that the map is noninvertible.   Fourth, if )(/)(/ 2121  ssnn tt  , )(/)(/ 211211  ssnn tt  .  

Thus, the ray,  )(/)(/),( 2121
2

21  ssnnRnn   , is forward-invariant.  Once the trajectory 

reaches there, it stays there forever.  However, it is not backward-invariant, because the map is 

noninvertible.18 

  Figure 1 illustrates the four domains and their boundaries for 1/0 12  ss .  For tn  

DHH, both markets are so saturated that there is no innovation, ti1 0  and ti2 0 .  Due to the 

obsolescence shocks, tt nn 111   and tt nn 212  , so that the map is contracting toward the 

origin in this domain.  For tn  DLL, neither market is saturated that innovation is active and the 

zero profit condition holds in both markets.  Due to the obsolescence shocks, the unique steady 

state of this system is located in this domain,  *
2

*
1

* ,nnn    DLL.  For tn  DHL, the non-

negativity constraint is binding in country 1 and the zero-profit condition is binding in country 2.  

Innovation is thus active only in country 2, given by ti2  ))(( 212 tt nnh  .  Because ρ > 0, which 

implies 0)(' 12 tnh , innovation in country 2 is discouraged by the competitive varieties based in 

country 1 (a higher tn1 ), but not as much as by the competitive varieties based in country 2 (a 

higher tn2 ), because ρ < 1, which implies 1)(' 12 tnh .  Hence, the iso-innovation curves for 

country 1 in this domain, /)( 122 inhn   for i  > 0  (not drawn in Figure 1), are downward-

sloping with their slopes less than one in absolute value.  Furthermore, it becomes steeper as 

varies from zero to one.  So is the border between DHL and DLL, )( 122 nhn  .  Likewise, in DLH, 

the iso-innovation curves for country 2 , /)( 211 inhn   for i  > 0  (not drawn in Figure 1), are 

downward-sloping with their slopes greater than one in absolute value.  Furthermore, it becomes 

less steep as  varies from zero to one.  So is the border between DLH and DLL, )( 211 nhn  . 

  Before proceeding, we offer some words of caution to the reader accustomed to see the 

2D-phase diagram for an ordinary differential equation in two variables.  Our model is in discrete 

time, so that a trajectory generated by iterating eq.(17)  can be represented as a sequence of 

points, which hop around in the state space.  It cannot be represented as a continuous flow. This 

                                                
18A set, 2

RS , is  forward-invariant,  if SSF )( , and is  backward-invariant,  if SSF  )(1 .   
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is why we did not draw any isocline curves nor any arrows indicating the direction of 

movements.  They are not particularly useful for understanding the dynamics; indeed, they could 

be misleading. 

 

3. Autarky and Decoupled Innovation Dynamics 

We begin our analysis of eq.(17) with the case of autarky, 0 .  Then, jj ss )( and 

jkj smh )( .   Hence, eq. (17) becomes: 

 tt nsn 1111 )1(     for tn   2211
2

21 ;, snsnRnnDLL    

 tt nsn 2212 )1(    
 

tt nn 111      for tn   2211
2

21 ;, snsnRnnDHH    

  tt nn 212   
 
  tt nn 111      for tn   2211

2
21 ;, snsnRnnDHL    

   tt nsn 2212 )1(    
 
   tt nsn 1111 )1(     for tn   2211

2
21 ;, snsnRnnDLH    

tt nn 212  , 
as illustrated in Figure 2.  Not surprisingly, the dynamics of the two countries are unrelated in 

autarky, and hence the 2D system can be decoupled to two independent 1D systems: 

))1(()( jtjjtjL nsnf    for jjt sn  ; 

(20)  )(1 jtjjt nfn        ( 10   ; e1 ) 

jtjtjH nnf )(    for jjt sn  . 

From (18) and (19), innovation and TFP move as: 

 0,max jtjjt nsi  ;   jtjjt nsz ,max .   

 

3.1 1D-Analysis of The Skew Tent Map: Revisiting Deneckere-Judd (1992) 
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Figure 3 illustrates the 1D-system that governs the dynamics of each country, eq. (20), 

which is isomorphic to the original DJ system.  (We drop the country indices in this subsection.)   

It is a PWL, noninverible map with the following two branches:19   

 The H-branch, defined over snt  , is upward-sloping, and located below the 45º line.  With 

too many competitive varieties, the market is too saturated for innovation.  Hence, the non-

negativity constraint is binding, 0ti .  With no innovation and 1 , the map is contracting 

over this range. 

 The L-branch, defined over snt  , is downward-sloping.  Without too many competitive 

varieties, there is active innovation, so that the zero-profit condition is binding.  Notice that it 

is downward sloping because 1 .  Because old, competitive varieties are more 

discouraging than new monopolistic varieties, unit measure of additional competitive 

varieties this period would crowd out 1  measure of new varieties so that the economy 

will be left with fewer competitive varieties in the next period.  This effect is stronger when 

differentiated varieties are more substitutable (a higher σ and hence, a higher θ). 

Since 1 , the unique steady state,   

ssn 






)1(1

* ,  

is located in L-branch, where the slope of the map is equal to  1  .  Hence, the unique 

steady state is stable and indeed globally attracting for   11  .  For   11  , it is 

unstable.  For this case, there exists an absorbing interval, )](,[ sfsJ L  , indicated by the red 

box in Figure 4.  Inside the red box, there exists a unique period 2-cycle,   

2
*

2

2
*

)1(1)1(1 











snsn HL ,  

that alternates between the L- and the H-branches.  This is also illustrated in Figure 4.  The graph 

of the 2nd iterate of the map,  )()( 2
2 ttt nfnffn   , shown in blue, crosses the 45° line three 

times.  The red dot indicates the unstable steady state, *n , where the slope of the 2nd iterate is 

  1)1()(')(' 222**2  nfnf .  The two blue dots, one in the L-branch and the other in the 

                                                
19 The map of this form is called the skew tent map, which has been fully characterized in the applied math 
literature: see, e.g., Sushko and Gardini (2010, Section 3.1) and the references therein. 
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H-branch, indicate the two points on the period-2 cycle,  )()( ***
LLHHHL nffnfn   and 

 )()( ***
HHLLLH nffnfn  .  The slope of the 2nd iterate at these points is    ** '' HL nfnf  

 12   .  Hence, for   112  , the period 2-cycle is stable and attracting from almost all 

initial conditions (i.e., unless the initial condition is equal to *n  or one of its pre-images).20  

Thus, the attracting 2-cycle exists if and only if    1112   .  In words, it exists if and 

only if the survival rate of the existing varieties is high enough that innovation this period is 

discouraged by high innovation one period ago, but not high enough that it is not discouraged by 

high innovation two periods ago. 

For   112  , the unique period 2-cycle is unstable.   For this range, DJ noted that the 

2nd iterate of the map is expansive over the absorbing interval, i.e., 1)('2 nf  for all 

differentiable points in J , from which they observed in their Theorem 2 that the system has 

ergodic chaos by appealing  to Lasota and Yorke (1973; Theorem 3).  In fact, we can say more.  

From the existing results on the skew tent map, it can be shown that this system has a robust 

chaotic attractor that consists of one interval, two intervals, four intervals, or more generally, 2m-

intervals, (m = 0, 1, 2, …).21  Figure 5 summarizes the asymptotic behavior of the equilibrium 

trajectory governed by eq. (20) in the (δ, σ)-plane.  Notice that endogenous fluctuations occur  

with a higher σ (hence a higher θ), which makes competitive varieties even more discouraging to 

innovators than monopolistic varieties, which makes the delayed impact of innovation caused by 

                                                
20 The pre-images of a point, n, are all the points that map into n after a finite number of iterations.   Note that the 
unstable steady state, *n , has countably many pre-images because our map is noninvertible.  One of them, 

)( *1*
1 nfn H


  , is shown in Figure 4. 

21 In contrast, many existing examples of chaos in economics are not attracting, particularly those relying on the Li-
Yorke theorem of “period-3 implies chaos.”  This theorem states that, on the system defined by a continuous map on 
the interval, the existence of a period-3 cycle implies the existence of a period-n cycle for any n ≥ 2, as well as the 
existence of an aperiodic (chaotic) fluctuation for some initial conditions.  The set of such initial conditions may be 
of measure zero.  For such a chaotic fluctuation to be observable, it has to be attracting, so that at least a positive 
measure of initial conditions must converge to it.  Furthermore, most examples of chaotic attractors in economics are 
not robust (i.e., they do not exist for an open region of the parameter space), because the set of parameter values for 
which a stable cycle exists is dense, and the set of parameter values for which a chaotic attractor exists is totally 
disconnected (although it may have a positive measure).  Moreover, a transition from period-2 cycle to chaos often 
requires an infinite cascade of bifurcations, as these are general features of a system generated by everywhere 
smooth maps, which most applications assume.  Our system can generate a chaotic attractor, which is robust and a 
transition for the stable 2-cycle to chaos is immediate, because our system is piecewise linear.  Sushko and Gardini 
(2010) discuss more on these issues. 
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the loss of monopoly by the innovator more significant, and with a higher δ, which makes more 

competitive varieties survive to discourage current innovators. 22    

 

3.2 A 2D-View of Autarky: Synchronized vs. Asynchronized 2-Cycles  

Although the innovation dynamics of the two countries in autarky can be independently 

analyzed, it is useful to view them jointly as a 2D-system to provide a benchmark against which 

to observe the effects of globalization studied in the next section.    

We focus on the case where    111 2   , so that the 1D system of each 

country has an unstable steady state, 



)1(1

*


 j

j

s
n  and a stable period 2-cycle, 

2

2
*

)1(1 



 j
jL

s
n   2

*

)1(1 



 j
jH

s
n , which alternates between the L- and H-branches (i.e., 

it alternates between the period of active innovation and the period of no innovation).   As a 2D-

system, the two-country world economy has:  

 An unstable steady state,  *
2

*
1 ,nn LLD ; 

 A pair of stable period 2-cycles:  

o Synchronized 2-cycle:  *
2

*
1 , LL nn  LLD   *

2
*
1 , HH nn  HHD , along which innovation in the 

two countries are active and inactive at the same time.  Furthermore, jtn , jti , and jtZ , move 

in the same direction across the two countries.  For this reason, we shall call it the 

synchronized 2-cycle. 

o Asynchronized 2-cycle:  *
2

*
1 , HL nn  LHD   *

2
*
1 , LH nn  HLD , along which innovation is 

active only in one country.  Furthermore, jtn , jti , and jtZ , move in the opposite direction 

across the two countries.  For this reason, we shall call it the asynchronized 2-cycle. 23  

 A pair of saddle 2-cycles:  *
2

*
1 ,nn L  LLD   *

2
*
1 ,nn H  HLD  and  *

2
*
1 , Hnn  LHD   

 *
2

*
1 , Lnn  LLD . 

                                                
22 Notice also that the only stable cycle is a period-2 cycle in the DJ model.  This is due to the restriction on the 
relative slope of the two branches, 11'/'  eff HL  .  In general, the skewed tent map can generate a stable 
cycle of any positive integer, if the slopes of the increasing and decreasing branches are unrestricted. 
23 Later we will call any 2-cycle that alternates between DHH and DLL synchronized and any 2-cycle that alternates 
between DHL and DLH asynchronized  also in asymmetric cases. 
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In Figure 6, the light green dot indicates the unstable steady state, the dark green dots the two 

saddle 2-cycles, and the black dots the two stable 2-cycles.  The red area illustrates the basin of 

attraction for the synchronized 2-cycle and the white area the basin for the asynchronized 2-

cycle.  Notice that neither basin of attraction is connected, which is one of the features of a 

noninvertible map.24  The boundaries of these basins are formed by the closure of the stable sets 

of the two saddle 2-cycles.25 

 

4. Globalization and Interdependent Innovation Dynamics: 2D Analysis 
 

We now turn to the case  > 0 to study the effects of globalization.   
 
4.1 A Brief Look at the Unique Steady State: Reinterpreting Helpman-Krugman (1985) 
 

First, we look at the unique steady state of eq.(17),  

   )(),(
)1(1

, 21
*
2

*
1 


 ssnn


 , 

which is stable and globally attracting if   11  .  At this steady state, innovations and the 

effective measures of the varieties produced in each country are given by:  

    )(),(
)1(1

)1(, 21
*
2

*
1 


 ssii



 ;     )(),(, 21

*
2

*
1  ssmm   

Figure 7a shows how the share of country 1 in these variables depends on its size at the 

steady state.  In the interior, it is equal to: 

















1

)1()( 1
1*

2
*
1

*
1

*
2

*
1

*
1

*
2

*
1

*
1 ss

mm
m

ii
i

nn
nsn .   

Notice that the slope is (1+ρ)/(1−ρ) > 1.  Thus, a disproportionately larger share of input varieties 

is produced and a disproportionately large share of innovation is done in the country that has the 

                                                
24 To see why the two basins of attraction show the chess board patterns in Figure 6, consider the dynamical system 
defined by the 2nd iterate of the map, eq.(20), whose graph is shown in blue in Figure 4.  It has two stable fixed 
points, *

Ln  and *
Hn , whose basins of attraction are given by alternating intervals, which are separated by its unstable 

fixed point, *n , its immediate pre-image, )( *1*
1 nfn H


  , and all of its pre-images.  If both countries start from the 

basin of attraction for *
Ln ( *

Hn ), they converge to the synchronized 2-cycle in which they both innovate in every even 
(odd) period.  On the other hand, if one country starts from the basin of attraction for *

Ln  and the other starts from 
the basin of attraction for *

Hn , they converge to the asynchronized 2-cycle in which one country innovates in every 
even period and the other innovates in every odd period. 
25The stable set of an invariant set (say, a fixed point, a cycle, etc.) is the set of all initial conditions that converge to 
it.  It is necessary to take the closure in order to include the unstable steady state and all of its pre-images. 
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larger domestic market and hence the larger country becomes the net exporter of the 

differentiated inputs varieties (Home Market Effect), with the smaller country becoming the net 

exporter of the homogeneous input.   Furthermore, this effect becomes magnified if the trade cost 

become smaller (i.e. with a larger ρ), as shown in Figure 7b.26 Thus, the steady state of our 

model shares the same properties with the equilibrium of the static HK model.   

One might think that the comparative steady state analysis of this kind would make sense 

only if the steady state is stable, i.e.,   11  .  In fact, the above comparative analysis is also 

informative even when the steady state is unstable, because globalization causes synchronized 

cycles and the share of country 1 asymptotically converges to the same steady state value, ns , as 

will be shown in Section 4.3.  

 For the remainder of this paper, we assume that the unique steady state is unstable, 

  11  .  Indeed, we will focus on the cases where the dynamics of each country converges 

to the stable period-2 cycle in autarky,    111 2   . 

4.2 Synchronization Effects of Globalization: Symmetric Cases 

In this section, we assume that the two countries are of equal size ( 2/11 s ), so that the 

2D-system defined by eq.(17), becomes symmetric as follows. 

 tt nn 111 )1(2/     for tn   2/1, 2
21   jLL nRnnD  

 tt nn 212 )1(2/         
 

tt nn 111      for tn   )(, 2
21 kjHH nhnRnnD    

  tt nn 212   
(21) 
  tt nn 111      for tn   )(;2/1, 121

2
21 nhnnRnnDHL    

   ttt nnhn 2112 )1()(    
   
   ttt nnhn 1211 )1()(     for tn   2/1);(, 221

2
21   nnhnRnnDLH  

tt nn 212   

where 0)( nh  is defined implicitly by 2
/)(

1
)(
1





  nnhnnh

. 

                                                
26Note that the graph in Figure 7b is a correspondence at ρ = 1 (the lack of lower hemi-continuity), because the 
equilibrium allocation is indeterminate if ρ = 1, as pointed out earlier.  
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Figure 8 shows the symmetric 2D system, with the blue arrows illustrating how the four 

domains change with  .  First, the diagonal,   21
2

21 ),( nnRnn   , is forward-invariant, 

and the dynamics on   is independent of  .  In fact, it is the skew tent map, given by eq. (20) 

with 2/1js .  Second,  has no effect on DLL.  Third, in DLH, a higher   reduces innovation in 

1, given by ))(( 121 nnhi   , as the competitive varieties produced in 2, 2n , discourages 

innovators in 1.  This also causes DLH to shrink and DHH to expand, with the boundary, 

)( 21 nhn  , initially vertical (as 2/11 n ) at  = 0, tilts counter-clockwise as   increases, and 

approaching to 21 1 nn   as 1 .  A higher   also tilts the iso-innovation curves in DLH, 

/)( 21 inhn   (not drawn; horizontally paralleled to the boundary between DLH and DHH), in 

the same way.  Likewise, a higher   reduces innovation in 2 in DHL.  This causes DHL to shrink 

and DHH to expand, with the boundary, )( 12 nhn  , initially horizontal (as 2/12 n ) at  = 0, 

tilting clockwise as   increases, and approaching to 12 1 nn   as 1 .  It has the same tilting 

effect on the iso-innovation curves in DHL, /)( 12 inhn   (not drawn; vertically paralleled to 

the boundary between DHL and DHH).  Taken together, this implies that a higher   causes the 

alignment of innovation incentives across the two countries, in the sense that both a higher 1n  

and a higher 2n  have similar discouraging effects on the innovators in both countries. 

 For    111 2   , each country would have  an unstable steady state, ** nn j     




)1(1
2/


  and a stable 2-cycle, 2

2
**

)1(1
2/





 LjL nn   2
**

)1(1
2/





 HjH nn  in 

autarky,  = 0.  Thus, as already pointed out in Section 3.2, the world economy consisting of the 

two countries in autarky has the two stable 2-cycles.  One of them is the synchronized 2-cycle, 

    HHHHLLLL DnnDnn  **** ,, .  The other is the symmetric asynchronized cycle,  

    HLLHLHHL DnnDnn  **** ,, . 

Now, let   rise.  Since the diagonal is invariant, and  has no effect on the dynamics in 

DLL and DHH , the synchronized 2-cycle,     HHHHLLLL DnnDnn  **** ,, , exists for all )1,0(

.  Indeed, it is independent of   and its local stability is not affected.   
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In addition, there exists a unique symmetric asynchronized 2-cycle, 

    HL
a
L

a
HLH

a
H

a
L DnnDnn  ,, , for all )1,0( .  To see this, if it exists, a

Ln  and a
Hn  must 

satisfy, from eq. (21),  a
Hn  =  a

L
a
H nnh )1()(    =  a

H
a
H nnh  )1()(  , which can be 

written more compactly as:  

a
H

a
H nnh )( , where   )1,(11 2



 


 .   

By inserting this expression into the definition of h , we obtain  

(22)  
















/1

11
2

a
H

a
L nn . 

Note that 1  implies 
2
1

/11
1

1
1

2
1

/1
11

2
1






























a
Hn  and that    

implies a
Ln  = )( a

H
a
H

a
H nhnn   .  This proves the existence and the uniqueness of the 

symmetric asynchronized 2-cycle,     HL
a
L

a
HLH

a
H

a
L DnnDnn  ,, . 

For  = 0, this 2-cycle is equal to    **** ,, LHHL nnnn  .  However, it moves continuously 

as   varies, and is not equal to    **** ,, LHHL nnnn  , for   > 0.  Furthermore, it becomes 

unstable for a sufficiently large  .  More formally, 

Proposition:  Let 5.01 s , ),1( e , and    111 2   .  For all )1,0( , there exists a 

unique symmetric asynchronized 2-cycle,     HL
a
L

a
HLH

a
H

a
L DnnDnn  ,, , given by  

2
1

1
1

2
1



















a
Hn ; )(

1
1

2
a
H

a
H

a
H

a
L nhnnn 













 






  

where   )1,(11 2





 


  and 0)( nh  solves 2
/)(

1
)(
1





  nnhnnh

.  Furthermore,  

i) For 0 <  /12)(  , it is a stable focus; 

ii) For   )(/12 , it is a stable node;  

iii) For 1)(   , it is a saddle,  

where    
   22

22

/1
//1)(







  is a continuous, increasing function with 0)0(   and 
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1)1(  .   

See Appendix C for the proof.   This proposition says that the unique symmetric asynchronized 

2-cycle exists for all )1,0( , but it is stable for ),0( c  and unstable for )1,( c , where 

)1,0(c  is given by  )( c .  Thus, for a sufficiently large  (or a sufficiently small trade 

cost), the stable asynchronized 2-cycle disappears. 

Furthermore, even before its disappearance, a higher   expands the basin of attraction 

for the synchronized 2-cycle and reduces that for the asynchronized 2-cycle for ),0( c .  

Figures 9a-c show this numerically with three different values of   = 0.7, = 0.75, and = 0.8.27   

In all three cases, an increase in   cause the red area (the basin of attraction for the 

synchronized 2-cycle) to expand and the white area (the basin of attraction for the symmetric 

asynchronized 2-cycle) to shrink.  These figures show that the red area fills most of the state 

space at   = 0.8.  However, the symmetric asynchronized 2-cycle is still stable at   = 0.8, so 

that the white area still occupies a positive (though very small) measure of the state space.  Only 

at a higher value of c  , the symmetric asynchronized 2-cycle loses its stability.  For c  , 

the red area covers a full measure of the state space (i.e., the synchronized 2-cycle becomes the 

unique attractor and the equilibrium trajectory converges to the synchronized 2-cycle for almost 

all initial conditions).28 

 
                                                
27Recall that the stable 2-cycle exists in autarky for    111 2   , which implies ...)816.0...,666.0(  for 
  = 2.5.  If we translate this in terms of T (the period length in years), d (the obsolescence probability per year) and 
g (the annual growth rate of the exogenous component of TFP),  ...2027.0)1log()2/1(  Tdg )(   < 

...4054.0)1log(   
28Techinically speaking, the symmetric asynchronized 2-cycle,     HL

a
L

a
HLH

a
H

a
L DnnDnn  ,, , undergoes a 

subcritical pitchfork bifurcation  at c  .  Recall that the closure of the stable sets of the symmetric pair of saddle 
2-cycles form the boundaries of the red and white areas.  At  = 0, this symmetric pair of saddle 2-cycles are given 

by     HLHLLL DnnDnn  **** ,,  and     LLLLHH DnnDnn  **** ,, .  As  rises, they move and simultaneously 

cross the boundary of  LLD  at ccc   , after which they become a symmetric pair of saddles of the form, 
    HLLHLHHL DnnDnn  '''"' ,,  and     HLLHLHHL DnnDnn  ''''" ,, .  Thus, for ),( ccc   , there exist three 
asynchronized 2-cycles; a symmetric pair of asymmetric asynchronized 2-cycles, which are saddles, and the 
symmetric asynchronized 2-cycle, which is stable.  Then, as c  , the symmetric pair of the saddle 2-cycles 
merge with the symmetric asynchronized 2-cycle and disappear, after which the latter becomes a saddle.  However, 
the interval, , seems very narrow.  According to our calculation,  0.87735830 < ρcc < 0.87735831 < ρc 
< 0.87735832  for  δ = 0.7; 0.8333226 < ρcc < 0.8333227 < ρc < 0.8333228 for δ = 0.75; and 0.8189858 < ρcc < 
0.8189859; 0.8189860 < ρc < 0.8189861 for δ = 0.8. 

),( ccc  
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4.3 Synchronization Effects of Globalization: Asymmetric Cases 

We now turn to the cases where the two countries differ in size; 121 15.0 sss  .  We 

continue to assume    111 2    so that, in autarky, each country has an unstable 

steady state, and a stable period 2-cycle.  Thus, viewed as a 2D-system, the world economy has 

an unstable steady state, a pair of stable 2-cycles, one synchronized and one asynchronized, 

whose basins of attraction are already shown in Figure 6 as Red and White, and the boundaries 

of the two basins are given by the closure of the stable sets of a pair of saddle 2-cycles, as 

already pointed out in Section 3.2. 

Now, let   rise.  The blue arrows in Figure 10a illustrate the effects of a higher  , 

which are absent in the symmetric case.  That is, these effects are in addition to those illustrated 

by the blue arrows in Figure 8 for the symmetric case.  With unequal country sizes, 21 5.0 ss  , 

a higher  increases )(1)( 21  ss  , which is nothing but the magnification of the home 

market effect in the HK model.  This causes the ray, )(/)(/ 2121  ssnn tt  , to rotate clockwise, 

and the border point of the four domains,  )(),( 21  ss , to move southeast.  This continues until 

12 /ss , when LLD  and HLD , vanish.   For 12 /ss , there is no innovation in country 2, as 

shown in Figure 10b. 

As long as 1/0 12  ss , innovation will never stop in neither country.  For this 

range, there always exists the stable synchronized 2-cycle,     HH
s
H

s
HLL

s
L

s
L DnnDnn  2121 ,, , 

where 

2

2

)1(1
)(




 js

jL

s
n ; 2)1(1

)(





 js
jH

s
n . 

Along this synchronized 2-cycle, the world economy alternates between LLD and HHD , and stays 

on the ray, )(/)(/ 2121  ssnn tt  , and hence the share of country 1 is equal to )(1 s . 

There also exists a stable asynchronized 2-cycle,     HL
a
L

a
HLH

a
H

a
L DnnDnn  2121 ,, , for 

a small enough c  .  For , it disappears.29  Furthermore, even before its disappearance,  

                                                
29 At c  , the stable asynchronized 2-cycle collides with one of the (no longer symmetric) pair of saddle 2-
cycles co-existing for c  , and they both disappear  via a fold (border collision) bifurcation. 

c 
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a higher   causes the basin of attraction for the synchronized 2-cycle to expand and the basin of 

attraction for the asynchronized 2-cycle to shrink.   Furthermore, this occurs more rapidly with a 

higher 1s .  Figures 11a-d illustrate these numerically, for four different values of s1 = 0.55, = 0.6, 

= 0.7, and = 0.8, for   = 0.75.   Notice that the red becomes dominant faster for a higher s1 = 

0.6.  These figures also show a sudden appearance of infinitely many red islands inside the white 

area just before the disappearance of the asynchronized 2-cycle.30  The results are very similar 

for   = 0.7 and   = 0.8. 

We have also estimated c , the critical value at which the stable asynchronized 2-cycle 

disappears, leaving the synchronized 2-cycle as the unique attractor.  This is reported in this 

Table ( 5.2  for all). 

TABLE 

1s  c  12 / sscc   
 = 0.7  = 0.75  = 0.8 

0.5 0.8773 0.8333 0.8189 1 
0.505 0.6416 0.6341 0.6310 0.9802 
0.51 0.5749 0.5697 0.5676 0.9608 
0.53 0.4513 0.4486 0.4475 0.8868 
0.55 0.3871 0.3852 0.3845 0.8181 
0.6 0.2929 0.2918 0.2913 0.6667 
0.65 0.2325 0.2317 0.2314 0.5385 
0.7 0.1860 0.1854 0.1851 0.4286 
0.8 0.1126 0.1122 0.1120 0.2500 
0.9 0.0525 0.0523 0.0522 0.1111 

 

Notice that c  declines very rapidly as 1s  increases from 0.5, but it hardly changes with δ.  

Notice also that it is significantly less than 12 /sscc  .  That is, as we reduce the trade costs, the 

asynchronized 2-cycle disappears much earlier than the smaller country stops innovating.  Figure 

12 show the graph of the critical value as a function of 1s  for δ = 0.7,  = 0.75, and  = 0.8.31  Each 

shows that the critical value declines sharply, as 1s  increases from 0.5.  Thus, even a small 

difference in country sizes would cause synchronization to occur very rapidly.    

                                                
30 This is due to a contact bifurcation, where a critical curve crosses the basin boundary, after which a new set of 
countably infinite pre-images are created, another common occurrence in systems with noninvertible maps. 
31The three graphs vary little with δ. We would not be able to tell them apart, if we were to superimpose them. 
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 An interesting question is this.  Suppose that the two countries are initially out of sync in 

autarky.  And when globalization causes them to synchronize, which country sets the tempo of 

global innovation cycles.  Or to put it differently, which country adjusts its rhythm to 

synchronize?  Is it the smaller country or the larger country?32   To answer this question, we look 

at the 2nd iterate of the map, )()( 2
2 ttt nFnFFn   , and its four stable steady states, which 

are the four points on the two stable 2-cycles.  In Figure 13, we use the following four colors to 

indicate the four basins of attraction for the four stable steady states of the 2nd iterate.   

 Red:  Basin of attraction for the stable steady state in DLL.  This corresponds to the set of 

initial conditions that converges to the synchronized 2-cycle along which the trajectory visits 

DLL in even periods and DHH in odd periods. 

 Azure: Basin of attraction for the stable steady state in DHH .  This corresponds to the set of 

initial condtions that converges to the synchronized 2-cycle along which the trajectory visits 

DHH in even periods and DLL in odd periods. 

 White: Basin of attraction for the stable steady state in DLH .  This corresponds to the set of 

initial conditions that converges to the asynchronized 2-cycle along which the trajectory 

visits DLH in even periods and DHL in odd periods. 

 Gray:  Basin of attraction for the stable steady state in DHL.  This corresponds to the set of 

initial conditions that converge to the asynchronized 2-cycle along which the trajectory visits 

DHL in even periods and DLH in odd periods. 

Synchronization means that Red and Azure expand, while White and Gray shrink.  Figure 13 

shows that, as ρ goes up, and synchronization occurs by Red invading White and Azure invading 

Gray, instead of Red invading Gray and Azure invading White, and we observe the emergence of 

vertical slips of Red and Azure.  We have experimented with many different values of 

parameters, but this pattern has been always observed.  This means that the tempo of 

synchronized fluctuations is dictated by the rhythm of country 1, which is the larger country and 

that country 2, the smaller country, adjusts its rhythm to the rhythm of the larger country. 

 

4.4 Three Effects of Globalization: Some Trajectories 

                                                
32 We thank Gadi Barlevy for posing this question to us. 
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Finally, we plot some trajectories that encapsulate the key predictions of the model in 

Figure 14.  They also help to illustrate some transient behaviors.33  We fix 1s  = 0.7,   = 2.5, and 

  = 0.75, as in Figures 11c and 13.  With these parameter values, there exists the stable 

asynchronized 2-cycle for  < c = 0.1854… in addition to the stable synchronized 2-cycle.  The 

latter becomes the unique attractor for  > c = 0.1854….   We generate the plots under the 

assumption that the two countries are initially in autarky (  = 0), with the initial condition very 

close to its 2-periodic point in DLH, so that  tt nn 21 ,  oscillates along the asynchronized 2-cycle at 

 = 0,  *
2

*
1 , HL nn  = (0.5339…, 0.30508… ) LHD   *

2
*
1 , LH nn  = (0.7119…, 0.22881) HLD  for 

the first 10 periods, with tt nn 12 /  oscillating between 0.5714… (in even periods) and 0.3214… (in 

odd periods).   Then, we let   = 0.2 or   = 0.3 after the 11th period on.34  Since c = 0.1854… 

, the stable asynchronized 2-cycle disappears and the two countries would almost surely 

converge to the synchronized 2-cycle,   LL
s
L

s
L Dnn 21 ,     HH

s
H

s
H Dnn 21 , , given by  

(0.6101…, 0.1525…) LLD   (0.8135…, 0.2033…) HHD  for   = 0.2;  

(0.6646…, 0.0980…) LLD   (0.8861…, 0.1307…) HHD  for   = 0.3. 

The upper panels of Figure 14 show the plots of tn1  (red), tn2  (green), and tt nn 12 /  

(black).  As   jumps from   = 0 to   = 0.2 (on the left panel) or to   = 0.3 (on the right 

panel), tn1  shifts up and tn2  shifts down, and so does tt nn 12 / , demonstrating the Home Market 

Effect.  Furthermore, tt nn 12 /  quickly stabilizes and converges (to 0.25 for   = 0.2 on the left; to 

0.1475… for   = 0.3 on the right).  Notice that tn1  continues the patterns of “up” and “down,” 

without interruption as   changes.  Thus, the bigger country 1 continues to innovate in every 

even period.  In contrast, tn2  slides down two consecutive periods (for   = 0.2) and four 

consecutive periods (for   = 0.3) immediately after the change.  As a result, the smaller country 

2, which innovated in every odd period under autarky, now starts innovating every even period 

to synchronize to the rhythm of the bigger country 1. 

                                                
33 We thank Bob Lucas for his suggestion to include plots like these. 
34 With θ = 2.5, σ ≈ 6.316….  Thus, τ ≈ 1.35… for ρ = 0.2 and τ ≈ 1.25… for ρ = 0.3.  
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The effects on productivity can be seen in the middle panels of Figure 14, which plot tz1  

(red) and tz2  (green), and in the bottom panels, which plot tt zz 111 /  (red) and tt zz 212 /  (green).  

The middle panels show how both countries benefit immediately from the productivity gains 

from trade.35  This also shows up in the bottom panels, as the huge spikes in the productivity 

growth upon the change.  Notice that productivity in the two countries fluctuate asynchronously 

before the change; then, after the spikes caused by the change, they start synchronizing. 

 

5. Concluding Remarks 

This paper is the first attempt to demonstrate how globalization can synchronize 

productivity fluctuations across countries.  To this end, we proposed and analyzed a two-country 

model of endogenous innovation cycles, built on the work of Deneckere and Judd (1992) and 

Helpman and Krugman (1985).  In autarky, innovation dynamics in the two countries are 

decoupled.  As trade costs fall and intra-industry trade rise, they become more synchronized.  

This is because globalization leads to the alignment of innovation incentives across innovators 

based in different countries, as they operate in the increasingly global (hence common) market 

environment.   Synchronization occurs faster (i.e., with a smaller reduction in the trade cost) 

when the two countries are more unequal in size.  Furthermore, even a small country size 

difference speeds up the synchronization significantly.  And it is the larger country that dictates 

the tempo of global innovation cycles, with the smaller country adjusting its rhythm to the 

rhythm of the larger country.  This is because the innovators based in the smaller country rely 

more heavily on the profit earned in its larger export market to recover the cost of innovation 

than those based in the larger country.  Our results suggest that adding endogenous sources of 

fluctuations would help improve our understanding of why countries that trade more with each 

other have more synchronized business cycles. 

We chose the Deneckere-Judd model of endogenous innovation cycles as one of our 

building blocks due to its tractability and the uniqueness of the equilibrium trajectory.  We 

believe that the basic intuition should go through with a much wider class of models of 

                                                
35 Notice that the productivity in the smaller country 2 overshoots its long run level.  This is due to the legacy of the 
small country innovating in autarky at a level that cannot be sustainable after the globalization.  Here, this legacy 
effect is relatively small because globalization occurs in the period in which country 2 would innovate if it remained 
in autarky.  Instead, if globalization occurs in the period immediately after country 2 innovated in autarky, an 
overshooting would be more pronounced.  
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endogenous innovation cycles.36  As long as globalization causes innovators based in different 

countries to compete against each other in a common market environment, it should synchronize 

their innovation activities, regardless of the specific mechanism through which incentives to 

innovate are affected.  In the Deneckere-Judd model, more competitive market environment 

discourages innovations.  Then, as the market environment becomes more competitive in one 

country, all innovators around the world who hope to make some profit by selling to that country 

would be discouraged in a globalized world, but only local innovators would be discouraged in a 

less globalized world.  In some other models of innovation, more competitive market 

environment might encourage innovations.  Then, as the market environment becomes more 

competitive in one country, all innovators around the world who hope to make some profit by 

selling to that country would be encouraged in a globalized world, but only local innovators 

would be encouraged in a less globalized world.  Thus, regardless of whether more competition 

encourages or discourages innovations, innovators based in different countries would respond to 

a change in the market condition in one country in the same direction in a more globalized world, 

but not in a less globalized world.  Thus, globalization should cause synchronization of 

innovation activities across countries. 

What seems more crucial in our analysis is the assumption that the countries are 

structurally similar.  What if the countries are structurally dissimilar?  For example, what if 

globalization causes vertical specialization through some types of vertical supply chains?  

Imagine that there are two industries, one Upstream and one Downsteam, each producing the 

Dixit-Stiglitz composite as in the Deneckere-Judd model.  And suppose that one country has 

comparative advantage in U and the other in D.  Our conjecture is that it would lead to 

asynchronization of innovation cycles.  This is because, unlike the two countries in the HK 

model, which produce and trade highly substitutable, horizontally differentiated goods, vertical 

chains make the production structure of the two countries complementary.  Then, as the goods 

innovated in the past in one country lose their monopoly, they become cheaper, which 

discourage the innovators in that country, but encourages the innovators in the other country, 

                                                
36 Of course, the prediction would have to be necessarily weaker if we used a model of innovation cycles, in which a 
cyclical equilibrium path co-exists with a stationary equilibrium path.  Nevertheless, one should be able to state the 
prediction in terms of the disappearance of the asynchronized cycle under globalization, although both the 
synchronized cycle and the stationary equilibrium survive under globalization. 
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which produces their complementary goods.37  If this conjecture is confirmed, it is certainly 

empirically not inconsistent, because the evidence for the synchronizing effect of trade is strong 

among developed countries, but less so between developed and developing countries. 

Finally, we would like to stress that innovation might be just one channel through which 

globalization can cause a synchronization of productivity fluctuations across countries.  We hope 

to explore other possible channels as well in our future research.  For example, many recent 

studies on macroeconomics of financial frictions have demonstrated the possibility of 

productivity fluctuations due to credit cycles in closed economy models.  In a two country 

version of such a model, globalization might lead to cross-country spillovers of pecuniary 

externalities, which causes a synchronization of credit cycles, and hence productivity 

comovements, across countries. 

  

                                                
37 This may come as a surprise to those familiar with the existing studies that try to explain synchronization of 
business cycles with vertical specialization.  However, it is not contradictory, because these studies look at the 
propagation effects of a country specific productivity shock from one country to another.  Here, we are considering 
how productivity of different countries responds endogenously to a change in the global market condition.   In this 
paper, we showed that productivity movements synchronize when the two countries produce highly substitutable 
goods.  We conjecture that productivity movements would be asynchronized when the two countries produce 
complements.  (Our conjecture is based on the results in our companion piece, Matsuyama, Sushko, and Gardini 
(forthcoming), in which we have investigated a closed economy, two-sector extension of the Deneckere-Judd model 
and found that innovation cycles in the two sectors are asynchronized in the composites produced in the two sectors 
become more complement.)    
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Appendices: 
 
Appendix A:  The sufficient condition for the non-specialization 

Country j produces the homogeneous input if and only if the total labor demand by its 
differentiated inputs sector falls short of its labor supply.  That is, )()( fyNyNL m
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eq.(12), this inequality is guaranteed if jjtjjt smLfM //1   .  Thus, both countries always 

produce the homogenous input if 


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s
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1

1 ,min0   along the sequence, satisfying eqs. (15) 

and (16), which is bounded so that the upper bound is strictly positive.    Q.E.D. 
 
 
Appendix B:  Derivation of eq.(17) from eqs.(15) and eq. (16) 

We discuss only the case of 1/0 12  ss , which implies )(5.0 1 s   = )(1 2 s  < 
1.  The case of 1/ 12  ss , which implies 1)(1)( 21   ss , is similar (and simpler).

 First, note that 0)( kj mh , defined by 1
/)()(





  kkj

k

kkj

j

mmh
s

mmh
s

, has the 

following properties, as seen in  Figure 15. 
 They are hyperbole, monotone decreasing with 1)( kj mh  as 0km and 1)0( jh  and 

0)( kj mh  as kjk ssm   / .   

 )( 211 mhm   and )( 122 mhm   intersect at ),( 21 mm =  )(),( 21  ss  in the positive quadrant. 

 ))(( 1211 mhhm   implies )(11 sm   and ))(( 2122 mhhm   implies )(22 sm  . 
We now consider each of the four cases in eq.(15).   

i) Suppose jtjt nm   for both  j = 1 and 2.  Then, from (15), )( 211 tt mhm   and tm2 = )( 12 tmh , 

hence )(jjtjt smn  .  Inserting these expressions in eq. (16) yields the map for the 
interior of DLL. 

ii) Suppose )( 211 tt mhm   and )( 122 tt mhm  . Then, from (15), jtjt nm   for both j = 1 and 2, 

hence )( 211 tt nhn   and )( 122 tt nhn  . Inserting these expressions in (16) yields the map for 
the interior of DHH. 

iii) Suppose )( 211 tt mhm   and tt nm 22  .  Then, from (15), tt nm 11   and tm2  = )( 12 tmh ,  hence 
))(( 1211 tt nhhn  , which implies )(11 sn t   and )( 122 tt nhn  .  Inserting these expressions in 

(16) yields the map for the interior of DHL. 
iv) Supposing tt nm 11   and )( 122 tt mhm   similarly yields the map for the interior of DLH. 
Finally, it is straightforward to show that the map is continuous at the boundaries of these four 
domains.          Q.E.D. 
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Appendix C:  Proof of Proposition 
 

Since the unique existence of the symmetric asynchronized 2-cycle has been shown in the 
text, we only need to investigate its local stability properties.  From ),(),( a

H
a
L

a
L

a
H nnFnn   and 

),( a
H

a
L nn  = ),( a

L
a
H nnF , the Jacobian matrix at the asynchronized 2-cycle can be calculated as: 
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  

where  0)('  a
Hnh .  Its eigenvalues are the roots of its characteristic function, 

0)1(})1(2{)det()()( 2422222   JJtraF . 

They are complex conjugated if )det(4)]([ 2 JJtra    242224 )1(4})1(2{    

 

 120 

 < 1. 

Its modulus is 1)1()det( 2  J , hence the 2-cycle is a stable focus in this range.   

For 




12 < 1, )det(4)]([ 2 JJtra  , so that  0)( F  has two real roots.  At 


 12 

 ,  they are both equal to 1)1(2   .  For a higher  , the two real roots are 

distinct, and satisfy 1)1(0 2
2

1   ,  if  0)1(})1(2{1)1( 24222  F  

 222222 /)]1(1[    .  That is, for 


 12  < 


 



)1(1 2

, 

the 2-cycle is a stable node.  For  >  , 0)1( F  and 21 10   , so that the 2-cycle is a 
saddle.   

To obtain  , differentiate the definition of h ,  

2
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
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  nnhnnh

 ,  

with respect to n to have  
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By evaluating this expression at a
Hnn , and using )(' a

Hnh  and )( a
H

a
H nhn  , 

0
)/1(
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)( 22 
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from which, 
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)(
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//1)(' 22

22



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 a
Hnh .    Q.E.D.
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Figure 1:  The State Space and The Four Domains of the 2D System (for 1/0 12  ss ). 
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Figure 2: The State Space and The Four Domains of the 2S-System in Autarky ( 0 ). 
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Figure 3: 1D-System: The Skew Tent Map 
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Figure 4:  The Unstable Steady State, The Absorbing Interval, and the Stable 2-Cycle for 
   1112    

 
 
  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The thick black lines show the graph of the skew tent map, f , eq.(20).  The thin black lines 
show how the graph of the 2nd iterate of the map, 2f , shown in the thick blue lines, can be 
constructed from the graph of f .  The red dot is the steady state, *n , which is unstable for 
  11  . The red box indicates the absorbing interval, which exists for   11  . The blue 

box indicates the period-2 cycle (with the blue dots indicating the two points on the period-2 
cycle, *

Ln  and *
Hn ), which is stable for   112  .  Notice that *

Ln  and *
Hn  are the two stable 

steady states under 2f .  Note that *n  has two immediate pre-images under f , given by *n  < 

)( *1*
1 nfn H


  .  Likewise, *n  has four immediate pre-images under 2f , given by )( *

1
1


 nf L  < *n  < 

*
1n  < )( *

1
1


 nf H .  The two intervals, ( )( *

1
1


 nf L , *n ) and ( *

1n , )( *
1

1


 nf H ), belong to the basin of 

attraction for *
Ln  under 2f .   The interval, ),( *

1
*

nn , as well as an interval immediately below 
)( *

1
1


 nf L  and an interval immediately above )( *

1
1


 nf H , belong to the basin of attraction for *

Hn  
under 2f .  This way, we can see why the two basins are not connected, given by alternating 
intervals, and their boundaries are formed by the pre-images of the unstable steady state, *n . 
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Figure 5: Bifurcation diagram in the (δ, σ)-plane and Its Magnification 
 

mQ2

~  (m = 0, 1, 2,…) indicate the parameter regions for the existence of a chaotic attractor that 
consists of m2 intervals.  The bottom figure is a magnification of the red box area in the top 
figure. 
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Figure 6 : Synchronzied vs. Asynchronized 2-Cycles: A 2D-view of the World Economy with 
the two-countries in autarky 
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Figure 7: Steady State Analysis with 5.011 21  ss  
 
Figure 7a: Home Market Effect 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7b: Globalization and Magnification of the Home Market Effect 
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Figure 8:  Symmetric ( 2/11 s ) 2D System 
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Figure 9a: Synchronized versus Asynchronized 2-Cycles: 5.01 s , 5.2 , 7.0  
 

 
 
 
 
 
 
 
 
 
 

         
Red (the basin for the synchronized  2-cycle) becomes dominant. 
The symmetric asynchronized 2-cycle becomes a stable node at ρ = .817202; and a saddle at ρ = 
.877358.
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Figure 9b:  Synchronized  versus Asynchronized 2-Cycles: 5.01 s , 5.2 , 75.0  
 

 
 
Red (the basin for the synchronized 2-cycle) becomes dominant. 
The symmetric asynchronized 2-cycle becomes a stable node at ρ = .817867, and a saddle at ρ = 
.833323. 



©Kiminori Matsuyama, Globalization and Synchronization of Innovation 

Page 48 of 58 

Figure 9c: Synchronized versus Asynchronized 2-Cycles: 5.01 s , 5.2 , 8.0  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Red (the basin for the synchronized 2-cycle) becomes dominant. 
The symmetric asynchronized 2-cycle becomes a stable node at ρ = .81814; a saddle at ρ = 
.818986. 
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Figure 10a:  Asymmetric ( 2/11 s ) 2D System: 1/0 12  ss  
 
A higher   has additional effects of shifting innovation towards 1 (and away from 2), shown by 
blue arrows. 
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Figure 10b: Asymmetric ( 2/11 s ) 2D System: for 1/ 12  ss . 
 
No innovation in 2; tt nn 212   and 02 tn . 
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Asymptotically, the dynamics is given by a 1D-skew tent map on the horizontal axis.
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Figure 11a:Asymmetric Synchronized & Asynchronized 2-Cycles: 55.01 s , 5.2 , 75.0  

 

 
By ρ = .36, infinitely many Red islands appear inside White.   
By ρ = .39, the stable asynchronized 2-cycle collides with the basin boundary and disappears, 
leaving the Synchronized 2-cycle as the unique attractor.
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Figure 11b: Asymmetric Synchronized & Asynchronized 2-Cycles : 6.01 s , 5.2 , 75.0  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
By ρ = .27, infinitely many Red islands appear inside White region.   
By ρ = .30, the stable asynchro. 2-cycle collides with its basin boundary and disappears, leaving 
the Synchronized 2-cycle as the unique attractor. 
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Figure 11c:Asymmetric Synchronized & Asynchronized 2-Cycles: 7.01 s , 5.2 , 75.0   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

By  ρ = .165, infinitely many Red islands appear inside White.   
By ρ =.19, the stable asynchronized 2-cycle collides with its basin boundary and disappears, 
leaving the Synchronized 2-cycle as the unique attractor. 
 
 



©Kiminori Matsuyama, Globalization and Synchronization of Innovation 

Page 54 of 58 

Figure 11d: Asymmetric Synchronized & Asynchronized 2-Cycles: 8.01 s , 5.2 ; 75.0  

 
By ρ = .10, infinitely many Red islands appear inside White.  
By ρ = .12, the stable asynchro. 2-cycle collides with its basin boundary and disappears, leaving 
the Synch. 2-cycle as the unique attractor. 
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Figure 12:  Critical Value of ρ at which the Stable Asynchronized 2-cycle disappears (as a 
function of 1s ) 
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Figure 13: Four Basins of Attraction: 7.01 s , 5.2 , 75.0  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
As ρ rises, Red invades White, and Azure invades 
Gray, and vertical slips of Red and Azure emerge. 
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Figure 14: Three Effects of Globalization 
 

Home Market Effect and Synchronization of Innovation Cycles 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Productivity Gains 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Productivity Synchronization 
 
 
 
 
 
 
 
 
 
 
 
 



©Kiminori Matsuyama, Globalization and Synchronization of Innovation 

Page 58 of 58 

Figure 15: 
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