Introd	uction 00000	Time-series Analysis	Model 000000	Calibration	Results	Discussion

Response of Inequality to a Growth Rate Slowdown in Japanese Economy during the Lost Decades

N. Sudo, M. Suzuki, T. Yamada

May 27, 2014@CIGS

Table of Contents

Introduction

Time-series Analysis

Model

Calibration

Results

Discussion

Introduction •00000000	Time-series Analysis	Model 000000	Calibration	Results	Discussion
Mativ	ation				

• Slowdown in aggregate growth after bubble burst in Japan (the Lost decades)

• Hayashi and Prescott (2002)

- Changes in income and consumption distribution across households during the same period
 - Lise, Sudo, Suzuki, Yamada, and Yamada (2014, RED)

Time Path of Macroeconomic Variables

Red line: the estimated mean of each variables with structural breaks
 Response of Inequality to a Growth Rate Slowdown
 N. Sudo, M. Suzuki, T. Yamada

Variance of Log. Income and Consumption

• Full-time employed workers: 25–59

• The lost decades are accompanied by the slowdown of inequality growth

Percentiles of the Earnings Distribution

- Top income quantiles grow faster than bottom during 1980s
- Income growth rates decline in mid-1990s

► APPENDIX FIGURE

Introduction	Time-series Analysis	Model 000000	Calibration	Results	Discussion
Questi	ons				

- 1. What are the driving forces of these changes in income and consumption distribution?
 - (i) lower aggregate TFP growth, (ii) skill premium increases, or both?
- **2.** Are these forces responsible for aggregate growth rate slowdown?
- 3. How do they affect the income and consumption distribution?

- Construct *monthly* time series of variance of log income, consumption, and correlation between the two variables

 Family Income and Expenditure Survey
- 2. Structural break tests on time series of cross-section moments
- **3.** Examine link between aggregate slowdown and inequality in a dynamic general equilibrium model with heterogeneous households

Empirical Findings

- Macroeconomic changes during the lost decade?
- 1. Aggregate output growth rate *slowdown*
- 2. Income inequality growth rate *slowdown*
- 3. Consumption inequality growth rate *slowdown*
- 4. *Falls in* covariance/correlation between income and consumption

Theoretical Findings

Slowdown of TFP and demand for skilled labor are both needed to account for the empirical findings

	тгр	demand for
	IFP	skilled labor
Slower aggregate output growth	Yes	Yes
Slower income inequality growth	No	Yes
Slower consumption inequality growth	Yes	Yes
Lower Cov./Corr. between y & c	Yes	Yes / No

Literature Review

- TFP decline in Japan:
 - Hayashi and Prescott (2002)
- Skill premium:
 - Acemoglu (2002), Kawaguchi and Mori (2014), and so on

• Permanent/transitory shocks:

Storesletten, et al. (2004), Blundell, et al. (2008), Guvenen, et al. (2013), and so on

• Consumption inequality:

• Meyer and Sullivan (2013)

• Overlapping-generations models:

 Heckman, et al. (1998), Kaplan and Violante (2009), Heathcote, et al. (2010), and so on

Introduction	Time-series Analysis ●○○○○○	Model 000000	Calibration	Results	Discussion
Data					

Family Income and Expenditure Survey (FIES)

- Monthly survey on household income and expenditures
 - January 1981 December 2008
 - The number of observations: 8,000
 - Panel data: 6 months
- Focus on full-time employed workers: 25-59
 - Two-or-more household members
- Construct monthly series of variables on economic inequality

Introduction Time-series Analysis Model Calibration Results Discussion

Definition of Variables

- Labor income y:
 - Sum of monthly labor income of household members
 - $\circ~$ Household head + his/her spouse + other household members
 - Equivalized by OECD equivalent scale
- Consumption c:
 - Nondurable expenditures: housing, purchasing cars and durables such as furniture are excluded

▶ DETAILS

Time-series Analysis

Structural Break Test: Bai and Perron (1998)

$$\begin{split} \xi_t &= x_t \beta + u_t, & \text{for } t = 1, ..., T_1, \\ \xi_t &= x_t \beta + z_1 \delta_1 + u_t, & \text{for } t = T_1 + 1, ..., T_2, \\ \vdots \\ \xi_t &= x_t \beta + \sum_{j=1}^l z_j \delta_j + u_t, & \text{for } t = T_l + 1, ..., T_{l+1} \\ \vdots \\ \xi_t &= x_t \beta + \sum_{j=1}^m z_j \delta_j + u_t, & \text{for } t = T_m + 1, ..., T. \end{split}$$

- ξ_t : each of the monthly time series
- $T_1, ..., T_m$: break dates, m: the number of breaks
- δ_j : break size

Variance of Log. Income and Consumption

• The lost decades are accompanied by the slowdown of inequality growth

Response of Inequality to a Growth Rate Slowdown

16 / 58

Covariance and Correlation

Transmission from income growth to consumption growth

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada

Introduction	Time-series Analysis	Model ●00000	Calibration	Results	Discussion
Model					

An incomplete-market overlapping-generations model:

- transition between two steady states
- individuals face idiosyncratic income risks
- two types of individuals
 - \circ skilled and unskilled: $e \in \{s, u\}$
- age: $j \in \{1, ..., j^{ret}, ..., J\}$
- population distribution:

$$\mu_{j+1} = s_{j+1}\mu_j$$

Idiosyncratic Labor Income Risk:

• Labor income of individuals of age *j* at period *t*

$$y_{j,t}^e = w_t^e \kappa_j^e \eta_j \varepsilon_j, \quad e \in \{s, u\}$$

• Persistent component of labor income

$$\ln \eta_{j+1} = \lambda \ln \eta_j + \omega_j, \quad \omega \sim \mathcal{N}(0, \sigma_\omega^2)$$

• Transitory shock

$$\ln \varepsilon \sim \mathcal{N}(-\sigma_{\varepsilon}^2/2, \sigma_{\varepsilon}^2), \quad \mathbb{E}_t \varepsilon_{t+1} = 1$$

Household Problem

Bellman Equation:

$$V_{j,t}^{e}(a_{j,t},\eta,\varepsilon) = \max \frac{c_{j,t}^{1-\gamma}}{1-\gamma} + s_{j+1}\beta \mathbb{E}\left[V_{j+1,t+1}^{e}(a_{j+1,t+1},\eta',\varepsilon')\right]$$

subject to
$$c_{j,t} + a_{j+1,t+1} = \tilde{y}_{j,t} + (1 + (1-\tau^{k})r_{t})(a_{j,t} + b_{t})$$
$$\tilde{y}_{j,t} = \begin{cases} (1-\tau^{y}-\tau^{ss})y_{j,t} & \text{if } j \leq j^{ret} \\ ss_{t} & \text{if } j > j^{ret} \end{cases}$$
$$a_{j+1,t+1} \geq 0$$

Introduction	Time-series Analysis	Model ○○○●○○	Calibration	Results 000000000000000000000000000000000000	Discussion
Acaro	gation				

Aggregation

• Labor supply by skill type:

$$L_t^e = \sum_{j=1}^{j^{ret}} \mu_j \int \kappa_j^e \eta \varepsilon d\Psi_{j,t}^e(a,\eta,\varepsilon), \quad e \in \{s,u\}$$

• Aggregate labor:

$$L_t = \left[(A_t^s L_t^s)^\rho + (A_t^u L_t^u)^\rho \right]^{\frac{1}{\rho}}, \quad \rho \le 1$$

1/1-ρ: elasticity of substitution between skilled and unskilled
 Aggregate capital:

$$K_t = \sum_{s,u} \sum_{j=1}^{J} \mu_j \int ad\Psi_{j,t}^e(a,\eta,\varepsilon)$$

Response of Inequality to a Growth Rate Slowdown

21 / 58

Introduction	l ime-series Analysis	Model	Calibration	Results	OO		
000000000		○○○○●○	0000	000000000000000000000000000000000000	OO		
Draduction							

Production

• A representative firm's production function:

$$Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$$

• Factor prices:

$$r_t = \alpha Y_t / K_t - \delta,$$

$$w_t^e = (1 - \alpha) A_t \left(\frac{K_t}{L_t}\right)^{\alpha} L_t^{1-\rho} (A_t^e)^{\rho} (L_t^e)^{\rho-1}, e \in \{s, u\}$$

• TFP factor growth rate:

$$\frac{A_{t+1}^{1/(1-\alpha)}}{A_t^{1/(1-\alpha)}} = 1 + g_{t+1}$$

Government Budget

• Government budget:

$$G_{t} = \tau^{y} \sum_{s,u} \sum_{j=1}^{j^{ret}} \mu_{j} \int w_{t}^{e} \kappa_{j}^{e} \eta \varepsilon d\Psi_{j,t}^{e}(a,\eta,\varepsilon) + \tau^{k} \sum_{s,u} \sum_{j=1}^{J} \mu_{j} \int r_{t} a d\Psi_{j,t}^{e}(a,\eta,\varepsilon).$$

• Social security system:

$$\sum_{s,u} \sum_{j=1}^{j^{ret}} \mu_j \int \tau^{ss} w_t^e \kappa_j^e \eta \varepsilon d\Psi_{j,t}^e(a,\eta,\varepsilon) = \sum_{s,u} \sum_{j=j^{ret}+1}^J \mu_j \int \phi w_t^e \bar{L}_t^e d\Psi_{j,t}^e(a,\eta,\varepsilon)$$

Response of Inequality to a Growth Rate Slowdown

23 / 58

Introduction	Time-series Analysis	Model 000000	Calibration ●○○○	Results 000000000000000000000000000000000000	Discussion			
Parameters								

- TFP factor growth rates: Muto, et al. (2013)
 - 1.84%: initial steady state
 - 0.16%: final steady state
- Preference parameters:

 \circ eta= 0.98, $\gamma=$ 2

- Production parameters: İmrohoroğlu and Sudo (2011)
 α = 0.377, δ = 0.08
- Persistent shock parameters: Lise, et al. (2014) $\circ~\lambda=0.97,~\sigma_{\omega}^2=0.01$
- Transitory shock parameter: Lise, et al. (2014) $\circ \sigma_{\varepsilon}^2 = 0.03$

000000000	000000	000000	0000	000000000000000000000000000000000000000	00		
Calibuation							

Calibration

• $j^{ret} = 45$ and J = 81

 \circ Individuals enter at age 20, retire at 65, and live at most 100

- {s_j}^J_{j=1}: Survival probabilities
 National Institute of Population and Social Security Research
- Tax rates:

•
$$\tau^{y} = 10\%$$
, $\tau^{k} = 39.8\%$, τ^{ss} : 13.58%

Introduction	Time-series Analysis	Model 000000	Calibration ○○●○	Results 000000000000000000000000000000000000	Discussion				
Calibra	Calibration								

• Factor-augmenting skill terms (Acemoglu, 2002):

$$\frac{A^s}{A^u} = \frac{S_H^{\zeta/(\zeta-1)}}{L^s/L^u}, \quad S_H = \frac{w^s L^s}{w^u L^u}$$

use Basic Survey on Wage Structure
s: college graduates, u: high school graduates
ζ ≡ 1/(1-ρ) = 1.4: Heathcote, et al. (2010, JPE)
w^s/w^u = 1.26 in 1980s
w^s/w^u = 1.35 in 2000s
{κ^e_j}^{jret}_{j=1}: age-efficiency profile

Age-Efficiency Profile

TFP Factor Growth Rate Shock

TFP factor growth rate declines at period 1

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada 28 / 58

Introduction Time-series Analysis Model Calibration 00000 December 2000
TFP Factor Growth Rate and Skill Premium

• Left: TFP factor growth rate, Right: skill premium

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada 29 / 58

Output Growth Rate and Var. Log. *y*

Left: output growth rate, Right: variance of logarithm of earnings

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada 30 / 58

 Introduction
 Time-series
 Analysis
 Model
 Calibration
 Results
 Discussion

 000000000
 000000
 0000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <

Interest Rate and Wage

 Left: after-tax rate of return, Right: wages of skilled and unskilled workers

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada 31 / 58

 Introduction
 Time-series
 Analysis
 Model
 Calibration
 Results
 Discussion

 00000000
 000000
 0000
 0000
 0000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 <

Variance of Log. y and c

simulated households=60,000, aged 25–59

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada 32 / 58

Covariance and Correlation: *y* and *c*

• Left: covariance, Right: correlation

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada 33 / 58

Covariance and Correlation: Δy **and** Δc

 Left: covariance of the first differences, Right: correlation of the first differences

Skill Premium Shock

Skill premium increases gradually for 10 years

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada 35 / 58

TFP Factor Growth Rate and Skill Premium

Left: TFP factor growth rate, Right: skill premium

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada 36 / 58

Output Growth Rate and Var. Log. *y*

Left: output growth rate, Right: variance of logarithm of earnings

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada 37 / 58

 Introduction
 Time-series
 Analysis
 Model
 Calibration
 Results
 Discussion

 000000000
 000000
 00000
 0000
 000000
 00

Interest Rate and Wage

 Left: after-tax rate of return, Right: wages of skilled and unskilled workers

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada 38 / 58

Variance of Log. *y* and *c*

simulated households=60,000, aged 25–59

Response of Inequality to a Growth Rate Slowdown

Discussion

Covariance and Correlation

• Left: covariance, Right: correlation

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada 40 / 58

Covariance and Correlation: Δy **and** Δc

 Left: covariance of the first differences, Right: correlation of the first differences

TFP Shock and Skill Premium Shock

TFP shock and skill premium shock

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada 42 / 58

TFP Factor Growth Rate and Skill Premium

Left: TFP factor growth rate, Right: skill premium

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada 43 / 58

Covariance and Correlation

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada

 Introduction
 Time-series
 Analysis
 Model
 Calibration
 Results
 Discussion

 000000000
 000000
 00000
 00000
 00000
 00000
 00000

Data Again

Transmission from income growth to consumption growth

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada

Discussion: Other Important Mechanisms?

- 1. Labor supply decisions
- 2. Borrowing limit due to the bubble burst
- 3. Demographic change
- 4. Tax reforms and transfers
- 5. Changes in permanent/transitory shocks
 - \Rightarrow Precautionary savings

Introduction	Time-series Analysis	Model 000000	Calibration	Results	Discussion ○●
Conclu	sion				

- 1. The lost decades has come together with permanent slowdown of income and consumption inequality growth and weakening of income and consumption correlation
- 2. Declining the macroeconomic growth rate can be a possible explanation for the weakening of income and consumption correlation
 - Future works: expected/unexpected shocks, demography, mpc, borrowing limit, tax code etc.

Introduction	Time-series Analysis	Model	Calibration	Results	Discussion

Appendix Figures

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada 48 / 58

Percentiles of the Earnings Distribution

- Top income quantiles grow faster than bottom during 1980s
- Income growth rates decline in mid-1990s

▲ RETURN

Earnings Distribution in the U.S.

Fig.9, Heathcote, Perri, and Violante (2010)

Introduction	Time-series Analysis	Model	Calibration	Results	Discussion

Data

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada 51 / 58

Introduction	Time-series Analysis	Model 000000	Calibration	Results 000000000000000000000000000000000000	Discussion
Data ((cont.)				

Definition of Variables

- Labor income y:
 - sum of monthly labor income of household members, which include household head, his/her spouse and other household members
- Nondurable expenditure c:
 - food; repair and maintenance of houses; fuel, light and water charges; domestic utensils, non-durable goods, and services; clothing and footwear; medical care; transportation and communication, excluding purchase of vehicles and bicycles; education; culture and recreation, excluding recreational durable goods; and other consumption expenditure, excluding remittance

Introduction	Time-series Analysis	Model	Calibration	Results	Discussion

Two Period Model

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada 53 / 58

Two Period Model

Why declines in economic growth rate affect second moments (consumption inequality)?

 $\max_{c_1, c_2, a_2} \quad u(c_1) + \beta u(c_2),$ subject to $c_1 + a_2 = y_1 + a_1,$ $c_2 = y_2 + (1 + r)a_2,$ $a_2 \ge 0,$ $y_2 = \alpha y_1,$ $a_1 \text{ given, } c_1, c_2 > 0.$

- $u(c) = \frac{c^{1-\gamma}}{1-\gamma}$
- *α*: income growth rate

Response of Inequality to a Growth Rate Slowdown

Discussion

Two Period Model

Analytical solution: non-binding case

$$\begin{aligned} s_2 &= \frac{1}{1+r+\Gamma} (\Gamma x_1 - y_2) \\ c_1 &= \left(\frac{1+r}{1+r+\Gamma}\right) \left(x_1 + \frac{1}{1+r}y_2\right) \\ c_2 &= \Gamma \left\{ \left(\frac{1+r}{1+r+\Gamma}\right) \left(x_1 + \frac{1}{1+r}y_2\right) \right\} = \Gamma c_1 \end{aligned}$$

• $x_1 \equiv y_1 + a_1$: cash on hand

• $\Gamma \equiv \left[\beta(1+r)\right]^{\frac{1}{\gamma}}$: consumption growth rate

Numerical Examples

- Discount factor: $\beta = 0.96$
- IES: $\gamma = 1$
- Interest rate: $r = 1/\beta 1 \Rightarrow \Gamma = 1$
- Labor income at period 1: $y_1 \in \{0.8, 1, 1.2\}$
- Growth rate: $\alpha \in \{1, 1.5\}$

Growth Rate Decline and Borrowing Limit

• Consumption function: $y_1 = 1, a^L = 0.4, a^H = 0.6$

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada

Growth Rate Decline and Borrowing Limit

	Low Growth	High Growth		
	lpha=1	$\alpha = 1.5$		
c ₁ : a ^H	1.3061	1.5510		
c ₁ : a ^L	1.2041	1.4000		
c ₂ : a ^H	1.3061	1.5510		
c ₂ : a ^L	1.2041	1.5000		
Var. Log. c ₁	0.0033	0.0052		

Response of Inequality to a Growth Rate Slowdown

N. Sudo, M. Suzuki, T. Yamada 58 / 58